Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth
|
|
- Elisabeth Axelsson
- för 8 år sedan
- Visningar:
Transkript
1 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth
2 Kul matematik utan lärobok
3 Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier vid lösning av ett problem, Tolka resultat och dra slutsatser, Bedöma om svaret är rimligt, Bedöma en matematisk modells begränsningar) Begrepp (Använda begreppen, Beskriva begreppen, Beskriva likheter och skillnader mellan begreppen, Visa samband mellan begreppen ) Metoder (Använda en skriftlig räknemetod som är anpassad till uppgiften, Använda huvudräkningsmetoder som är effektiva, Använda digitala hjälpmedel (miniräknare eller dator) då detta är lämpligt) Resonemang (Ställa och besvara frågor med matematiskt innehåll i grupp, Följa andra elevers förklaringar och bidra med idéer, Motivera lösningen med matematiska resonemang, muntligt eller skriftligt) Kommunkation (Förklara vad som menas med, Göra skriftligliga lösningar så att någon annan förstår vad som menas, Beskriva och förklara lösningen muntligt eller skriftligt. Berätta och förklara lösningen för en kamrat. Använda olika matematiska uttrycksformer som figurer, diagram och matematiskt språk)
4 Crossing the river Ett klassiskt problem med många bottnar
5 Crossing the river 7 vuxna och 2 barn, hur tar de sig över?
6 Crossing the river Vad är svaret? Hur är det redovisat? och vilket betyg ger det?
7 Bedömning Kunskapskrav för betyget C i slutet av årskurs 9 Eleven kan lösa olika problem i bekanta situationer på ett relativt väl fungerande sätt genom att välja och använda strategier och metoder med förhållandevis god anpassning till problemets karaktär samt formulera enkla matematiska modeller som efter någon bearbetning kan tillämpas i sammanhanget. Eleven för utvecklade och relativt väl underbyggda resonemang om tillvägagångssätt och om resultatens rimlighet i förhållande till problemsituationen samt kan ge något förslag på alternativt tillvägagångssätt.
8 Crossing the river Vad händer om det finns fler än 2 barn? Vad händer om det finns fler än en liten båt?
9 Matematikrapport Namn på uppgiften:. Datum: Vi som arbetat med uppgiften är:.. Beskriv problemet med egna ord: Vilken strategi använde ni för att lösa problemet: Visa med tabell, diagram, figur, uträkningar eller liknande hur ni löste problemet: Skriv lösningen/lösningarna på problemet: Vilka slutsatser kan ni dra: Skriv ett eget liknande problem och lös det.
10 Area och omkrets - Rita en rektangel med samma omkrets som figuren. - Rita en rektangel med samma area som figuren. - Går det rita en rektangel som har både samma omkrets och area som figuren? Motivera.
11 Matematikrapport Namn på uppgiften: Triangelproblem Datum: Vi som arbetat med uppgiften är: Per Berggren (& Maria Lindroth) Beskriv problemet med egna ord (vad är det ni ska ta reda på?): Vi skulle beräkna omkrets och area på en triangel och rita rektanglar som hade lika stor omkrets och area. Frågan var om det gick att göra en rektangel där båda var samma. Vilken strategi använde ni för att lösa problemet? Vi mätte triangelns sidor och höjd för att beräkna omkrets och area. Först gissade vi hur rektangeln skulle se ut men sedan kom vi på att det gick att räkna ut. Visa på något sätt med ord,bild, uträkning, diagram hur ni löste problemet: Sidorna på triangeln var 11 cm, 8,1 cm och 5,5 cm. Höjden mot sidan som är 11 cm var 4 cm. Omkrets = 11+8,1+5,5 = 24,6 cm Area =!!! = 22!"!! Rektangel 1 Omkrets 24, 6 cm 10,3 cm 2 cm Rektangel 2 Area 22 cm 2 5,5 cm 4 cm
12 Visa på något sätt med ord,bild, uträkning, diagram hur ni löste problemet (forts): Rektangel 3 Omrkets 26 cm Area 22 cm 2 11 cm 2 cm Skriv lösningen eller lösningarna på problemet: Den första rektangeln gissade vi omkretsen på men sedan kom vi på att man kan räkna ut den genom att bestämma hur lång en av sidorna ska vara. Den sidan finns det två av och det som blir över delas sedan mitt itu så får man veta hur lång den andra sidan är. I den andra rektangeln så tänkte vi att 5 4 = 20 och då är det 2 kvar och 0,5 4 = 2. Om man gör om den till 2 x 11 så får man en rektangel med samma area som nästan har samma omkrets och då tänkte vi att det borde gå att komma nära. Kanske till och med exakt, men det vet vi inte. Vilka slutsatser kan ni dra/vad har ni lärt er: Eftersom rektanglar kan ha väldigt olika form men ändå ha samma area så kan man göra rektanglar med samma area och omkrets som trianglar. Skriv ett eget liknande problem och lös det: En rektangel har sidorna 3 cm och 12 cm. Kan man göra en triangel med samma omkrets och area.
13 E-nivå Sätter inte ut alla enheter/felaktig cm istället för cm 2. Redovisar inte uträkningar Gör bara något/ett par försök men drar inte någon slutsats. Ger ingen förklaring om uträkning av rektangelns omkrets och/eller area. Har inget eller enkelt eget problem. A-nivå Har med alla enheter korrekt Redovisar ALLA uträkningar Redovisar hypotes(er) / kloka gissningar Gör flera försök och drar slutsats(er) Ger förklaring till beräkning av omkrets och area för rektanglarna Drar en korrekt slutsats om att det går att göra en rektangel med både samma omkrets och area som motiveras genom försöken (eventuellt med förklaring om hur man kan lösa det generellt ) Har ett eget liknande problem som ändå är annorlunda t ex som det i exemplet eller med andra geometriska figurer
14 Lika eller olika
15 Laborationsrapport Namn på uppgiften:_lika eller olika Datum: Vi som arbetat med uppgiften är: David Jonsson Beskriv problemet med egna ord (vad är det ni ska ta reda på?): I en påse har man röda och vita kulor. Hur många av varje färg ska det vara för att det ska vara lika stor chans för att man utan återläggning tar upp två kulor med samma färg som med olika färg? Finns det flera lösningar och i så fall hur många? Vilken strategi använde ni för att lösa problemet? Jag använde mig först av att gissa på några nummer och sedan testa ifall de stämmde. När jag kom fram till några nummer letade jag efter samband så att jag kunde beräkna ännu fler tal. Utifrån de sambanden försökte jag komma på en formel för att utifrån numret i ordningen som talen kom i. Visa på något sätt med ord,bild, uträkning, diagram hur ni löste problemet: Jag bara gissade och provade men så här kom jag fram till att kombinationen stämmde: Jag hade provat med 1 vit och 3 röda kulor. Då tänkte jag att det var 25% chans att ta en vit i den första dragningen och i så fall skulle man med 100% säkerhet ta en röd. Då blev de 25% chans att det blev olika färg på kulorna. Att man däremot tar en röd i första dragningen är 75% chans. Av de 75% finns det 2 olika händelser, det kan alltså bli en vit eller en röd. Att det ska bli en vit och därmed olika färg på kulorna är 75/3= =50% chans att det blir olika färg på kulorna och därmed 50% chans att det blir samma färg på kulorna. Skriv lösningen eller lösningarna på problemet: 1-3, 3-6, 6-10, 10-15, formel för vit kula: nx(0,5n+0,5)=v Formel från vit kula till röd kula: v+n+1=r n=figurnummer, v=vit kula, r=röd kula. Vilka slutsatser kan ni dra/vad har ni lärt er: Dels har jag övat på problemlösning men en mer konkret sak är att när man skriver formler och ökningen för ett tal ökar med 1 måste man alltid ta n(xn) någonstans i formeln.
16 Tydliga mål Planering med: Hur länge vi arbetar med ett avsnitt När vi ska ha examination(er) Vilken/vilka former examinationerna har Krav för respektive betygsnivå (förtydligande av kunskapskraven) Vi ska inte hålla på med geometri. När vi är färdiga med ett avsnitt ska alla kunna Tydliga förväntningar istället för förhoppningar!
17 Feedback och bedömning Eleverna väljer vilken rapport som ska bedömas Kamratrespons Självbedömning Names in a hat
18 Hur ger vi feedback? - Jättebra! Du hade bara ett fel! Red pencil assessment? - Jag ser i ditt arbete att du vet vad jag vill att du ska Personligt eller opersonligt? - Jag har rättat dina fel så att du kan se Ska vi lärare rätta felen? - Provet visar bra förståelse och resonemang. Betyg/Bedömning på Betyg: C arbeten?
19 Hur ger vi feedback? = = x 17 = 10 x x 7 = = = = = = 41 R 13 x 17 = 10 x x 7 = = = = 18 12
20 Feedback som utvecklar Två av uppgifterna är inte rätt lösta. Försök hitta felen och lös dem så att svaren blir rätt. Hitta två liknande uppgifter i boken som är svårare och två som är liknande men lättare. Vad är det som gör dem svårare eller lättare? Feedback med bara kommentar, utan betyg (eller tvärtom). Bedöm arbetet och innehållet, inte personen. Ge konkreta förslag på hur arbetet kan bli bättre.
21 Tack för att ni lyssnade! Kul Matematik Geijersvägen Stockholm
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2015-01-31 Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Läs merLaborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2014-06-17
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2014-06-17 Vad är mönstret värt? Lika eller olika Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika
Läs merLokal pedagogisk planering i matematik för årskurs 8
Lokal pedagogisk planering i matematik för årskurs 8 Arbetsområde 2. Algebra Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera över matematikens
Läs merMatematik - Åk 8 Geometri
Matematik - Åk 8 Geometri Centralt innehåll Metoder för beräkning av area, omkrets och volym hos geometriska objekt, samt enhetsbyten i samband med detta. Geometriska satser och formler och behovet av
Läs merBedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth 2012-11-29
Bedömning för lärande i matematik i praktiken Per Berggren och Maria Lindroth 2012-11-29 Inlärningsnivåer i matematik 1. Intuitiv tänka, tala 2. Konkret göra och pröva 3. Representationsformer synliggöra
Läs merVarierad undervisning för lust a1 lära
Varierad undervisning för lust a1 lära Per Berggren & Maria Lindroth 2012-01- 17 Lgr11- Matema@ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Läs merKOSMOS - Små och stora tal
Undervisning KOSMOS - Små och stora tal Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Reella tal och deras egenskaper samt deras användning i vardagliga och matematiska situationer
Läs merGemensam problemlösning. Per Berggren och Maria Lindroth 2013-03-12
Gemensam problemlösning 2013-03-12 Strategispel Hur ska du spela för att vinna dessa strategispel? Nim Tactical Att arbeta som en matematiker Först vill matematiker ha ett intressant problem. Matematiker
Läs merKriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka
Matematik Enheter - Tid Utveckla och Känner till några enheter och enstaka mätinstrument. Utför enkla mätningar. Avläser analoga och digitala tider.använder både muntliga och skriftliga metoder samt tekniska
Läs mer4-6 Trianglar Namn:..
4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?
Läs merJörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 7
PLANERING OCH BEDÖMNING MATEMATIK ÅK 7 TERMINSPLAN HÖSTTERMINEN ÅK 7: 1 FÖRDIAGNOS 2 FYRA RÄKNESÄTT 3 FYRA RÄKNESÄTT 4 1.1 NATURLIGA TAL 5 1.2 NEGATIVA HELA TAL 6 1.3 TAL I BRÅKFORM 7 FORTS. 1.3 TAL I
Läs merFöräldrabroschyr. Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan?
Föräldrabroschyr Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan? Vad ska barnen lära sig i skolan? Tanken med den här broschyren är att ge Er föräldrar en bild av
Läs merSvenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser.
Svenska Du kan med flyt läsa texter som handlar om saker du känner till. Du använder metoder som fungerar. Du kan förstå vad du läser. Du berättar på ett enkelt sätt om det du tycker är viktigt i texten.
Läs merLäraren som moderator vid problemlösning i matematik
Läraren som moderator vid problemlösning i matematik Cecilia Christiansen 9 oktober 2012 Kursplanen för matematik: matematisk verksamhet är till sin art en kreativ, reflekterande och problemlösande aktivitet
Läs merPRÖVNINGSANVISNINGAR
Prövning i Matematik 5 PRÖVNINGSANVISNINGAR Kurskod MATMAT05 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 5 Skriftligt prov, 4h Teoretiskt prov Bifogas Provet består av två delar.
Läs merBedömning för lärande formativ klassrumspraktik Per Berggren och Maria Lindroth 2016-04-05
Bedömning för lärande formativ klassrumspraktik Per Berggren och Maria Lindroth 2016-04-05 Black & Williams fem principer för formativ klassrumspraktik Klargörande av planering och vilka krav som finns
Läs merTrianglar - Analys och bedömning av elevarbeten
BEDÖMARTRÄNING - MATEMATIK ÅRSKURS 6 Trianglar - Analys och bedömning av elevarbeten Analys och bedömning av Jennifers arbete Metod och beräkning Resonemang och kommunikation Eleven löser uppgiften genom
Läs merDu kommer känna igen en del av området och få chansen att repitera detta men samtidigt kommer du att stöta på lite nytt.
Aritmetik för år 9 Under några veckor kommer vi att arbeta med området Tal. Du kommer känna igen en del av området och få chansen att repitera detta men samtidigt kommer du att stöta på lite nytt. Som
Läs merPesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.
111a Geometri med snöre Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. Areabegreppet När elever får frågan vad area betyder ges mestadels svar som antyder hur man
Läs merUPPGIFT: SKRIV EN DEBATTARTIKEL
Åk 9 Historia & Svenska Namn: UPPGIFT: SKRIV EN DEBATTARTIKEL Du ska skriva en debattartikel på 1-2 sidor (Times new roman 12). Den ska ta upp exempel på hur mänskliga rättigheter försvagas i dagsläget.
Läs merErfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken
Läs merDelprov D handlar om omkrets, punkt och sträcka. Eleverna har möjlighet att visa begrepps-, metod- och kommunikationsförmåga.
Ämnesprovet i matematik i årskurs 3, 2015 Anette Skytt PRIM-gruppen, Stockholms universitet Inledning Syftet med de nationella på proven är att stödja en likvärdig och rättvis bedömning och att ge underlag
Läs merMatematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
Läs merKunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3
Kunskapskraven åk k 3 - matematik 20 Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3 Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med
Läs merFacit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
Läs merNATIONELLA MATEMATIKTÄVLING
NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen
Läs merUpplägg och genomförande - kurs D
Upplägg och genomförande - kurs D Provet består av fyra delprov: Läsa A och B Höra Skriva Tala Läsförståelse Hörförståelse Skriftlig produktion Muntlig produktion och interaktion Tid på respektive provdel
Läs merSyfte Lgr 11 Meningen med att du ska läsa matematik i skolan är för att du ska utveckla förmågan att
Lokal Pedagogisk Planering i Matematik S7 Ämnesområde: Bråk och procent Ansvarig lärare Birgitta Lindgren E-post Birgitta.lindgren@live.upplandsvasby.se Syfte Lgr 11 Meningen med att du ska läsa matematik
Läs merBetygskriterier MATEMATIK. År 9
Betygskriterier MATEMATIK År 9 Allmänt ha förvärvat sådana kunskaper och färdigheter, som behövs för att kunna lösa problem i vardagliga situationer fortsätta studierna Vid bedömning av en elev tar man
Läs merStatistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III TentamensKod: Tentamensdatum:
Läs merbedömning Per Berggren och Maria Lindroth 2014-05-23
Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2014-05-23 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla
Läs merKursplan i svenska. Därför tränar vi följande färdigheter under elevens skoltid i ämnet svenska: Tala, lyssna och samtala. År 1
Kursplan i svenska Språket är människans främsta redskap för att tänka, kommunicera och lära. Genom språket kan människor utveckla sin identitet, uttrycka känslor och tankar och förstå hur andra känner
Läs merVärldshandel och industrialisering
Pedagogisk planering i historia: Världshandel och industrialisering I vår moderna värld finns många som är rika och många som är fattiga. Flera orsaker finns till detta, men många av dem ligger långt tillbaka
Läs merTvå konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
Läs merVarför är det så viktigt hur vi bedömer?! Christian Lundahl!
Varför är det så viktigt hur vi bedömer?! Christian Lundahl! Fyra olika aspekter! Rättvisa! Reflektion och utvärdering av vår egen undervisning! Motivation för lärande! Metalärande (kunskapssyn)! 1. Rättvisa!
Läs merLathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
Läs merSvenska som andraspråk, år 8
1 (6) 2006-03-09 Svenska som andraspråk, år 8 Mål för betyget Godkänd Läser och förstår böcker på ca. 100 sidor eller mer. Läser och förstår svårare böcker. Kan läsa och följa instruktioner Förstår innehållet
Läs merDiskussionsfrågor till version 1 och 2
Diskussionsfrågor till version 1 och 2 Version 1 Tillgång till internet i hemmet A. Vilken åldersgrupp har haft den största ökningen av tillgång till internet under perioden? B. Kan man med hjälp av de
Läs merBedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas.
Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Inledning... 4 Bedömningsanvisningar... 4 Allmänna bedömningsanvisningar...
Läs merAntal grodor i varje familj Antal hopp tills alla bytt plats Ökning 1 3 5 2 8 7 3 15 9 4 24
strävorna 1AB Grodhopp problemlösning taluppfattning algebra Avsikt och matematikinnehåll Elever behöver få möta många aktiviteter där de kan se att algebra bland annat är generaliserad aritmetik. För
Läs merIndex vid lastbilstransporter
index vid lastbilstransporter Matematiken Snabbhjälpen för att räkna rätt Index vid lastbilstransporter Innehåll A. Tre steg för att räkna rätt Sidan 1 B. Förändring enligt index 2 C. Andelskorrigering
Läs merBoken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.
Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat
Läs merATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
Läs merAvsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer.
Strävorna 4A 100-rutan... förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande.... grundläggande
Läs merKvalitetsrapport Så här går det
Kvalitetsrapport Så här går det Uppföljning av det systematiska kvalitetsarbetet på Lärkan förskola, Öja Verksamhetsåret 2013/2014 Kort sammanfattning av enhetens kvalitetsarbete under verksamhetsåret
Läs merSyftet med en personlig handlingsplan
Syftet med en personlig handlingsplan Gör idéerna konkreta Ger dig något att hålla dig till mellan mötena Skapar tillförlitlighet i utvecklingen Hjälper dig att fokusera på några områden Påminnelse om
Läs merBedömning för lärande formativ klassrumspraktik Per Berggren och Maria Lindroth 2016-03-08
Bedömning för lärande formativ klassrumspraktik Per Berggren och Maria Lindroth 2016-03-08 Per Berggren & Maria Lindroth - Lärare i Ma, NO och SO i åk 4-9 - Lärarfortbildare - Författare - Handledare Mål
Läs merUtmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth
Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,
Läs merPlanering Matematik år 9 Repetition inför nationella provet
Planering Matematik år 9 Repetition inför nationella provet Centralt innehåll Strategier för problemlösning i vardagliga situationer och inom olika ämnesområden samt värdering av valda strategier och metoder.
Läs merBRA VIBRATIONER. Namn: Klass: Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012.
BRA VIBRATIONER Ett ämnesövergripande område i Bi,Fy,Tk 8a,8b och 8e ht.2012. Namn: Klass: Förmågor som vi kommer att träna på: Genomföra systematiska undersökningar i fysik. Använda begrepp, modeller
Läs mer4-3 Vinklar Namn: Inledning. Vad är en vinkel?
4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande
Läs merFormativ bedömning en väg till bättre lärande
Formativ bedömning en väg till bättre lärande Inger Ridderlind &Gunilla Olofsson Forskning kring formativ bedömning Konkreta exempel från litteratur & Mimaprojektet Bedömning Bedömning av kunskap - summativ
Läs merLösningar s. 8 Perspek9v s. 7
Källkri9k s. 11 Diskussion s. 2 Åsikter s. 3 Samarbete s. 10 Fördelar och nackdelar s. 4 ELEVHJÄLP Slutsatser s. 9 Konsekvenser s. 5 Lösningar s. 8 Perspek9v s. 7 Likheter och skillnader s. 6 1 Vad är
Läs merIndividuellt Mjukvaruutvecklingsprojekt
Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel
Läs merSubtraktion - Analys och bedömning av elevarbeten
Analys och bedömning av elevarbete 1 Eleven anpassar sitt val av metoder efter de ingående talen genom att använda flera olika metoder för beräkningar; räknar uppåt när talen ligger nära varandra, räknar
Läs merUppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera?
Uppdrag: Huset Praktiskt arbete: (Krav) Göra en skiss över ditt hus. Bygga en modell av ett hus i en kartong med minst två rum. Koppla minst tre lampor och två strömbrytare till ditt hus. Visa både parallellkoppling
Läs merSödervångskolans mål i svenska
Södervångskolans mål i svenska Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret känna till och kunna ljuda alla bokstäver kunna läsa enkla ord, ordbilder och enkel text samt förstå
Läs merSamtals- och dokumentationsunderlag Språk och erfarenheter
Kartläggningsmaterial för nyanlända elever Samtals- och dokumentationsunderlag Språk och erfarenheter Steg 1 2 3 Samtals- och dokumentationsunderlag Steg 1 Information till elev och vårdnadshavare före
Läs merBedömningsuppgift i geografi och svenska (se kraven och bedömning för svenska längre ned)
Bedömningsuppgift i geografi och svenska (se kraven och bedömning för svenska längre ned) Du ska skriva en faktatext om en världsdel. Frågorna du ska utgå ifrån i din inledning är: 1. Hur påverkar klimatet
Läs merVäga paket och jämföra priser
strävorna 2AC 3AC Väga paket och jämföra priser begrepp rutinuppgifter tal geometri Avsikt och matematikinnehåll Den huvudsakliga avsikten med denna aktivitet är att ge elever möjlighet att utveckla grundläggande
Läs mer912 Läsförståelse och matematik behöver man lära sig läsa matematik?
912 Läsförståelse och matematik behöver man lära sig läsa matematik? Med utgångspunkt från min egen forskning kring läsförståelse av matematiska texter kommer jag att diskutera olika aspekter av läsning
Läs merVeckomatte åk 6 med 10 moment
Veckomatte åk 6 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik Lgr -11 3 Grundläggande struktur i Veckomatte - Åk 6 4 Strategier för Veckomatte - Åk 6
Läs merNationella prov i årskurs 3 våren 2013
Utbildningsstatistik 1 (8) Nationella prov i årskurs 3 våren 2013 Syftet med de nationella proven är i huvudsak att dels stödja en likvärdig och rättvis bedömning och betygsättning i de årskurser där betyg
Läs merMatris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4
Ur Kunskapskrav Lgr11 Bedömningsaspekter Förstå recept och instruktioner Matris för Hem och Konsumentkunskap åk.6 8 Nivå 1 Nivå 2 Nivå 3 Nivå 4 Behöver lärarstöd med att förstå och följa ett recept. Är
Läs merL(9/G)MA10 Kombinatorik och geometri Gruppövning 1
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.
Läs merBild Engelska Idrott
Bild skapa bilder med digitala och hantverksmässiga tekniker och verktyg samt med olika material, kommunicera med bilder för att uttrycka budskap, undersöka och presentera olika ämnesområden med bilder,
Läs merKonkretisering av kunskapskraven i matematik år 7-9 (Lgr11)
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.
Läs merSkriva B gammalt nationellt prov
Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska
Läs merVi skall skriva uppsats
Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som
Läs merLokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare).
Lokal kursplan för Ängkärrskolan år 9 Rev. 009-09- Matematik år 9 MOMENT MÅL KRITERIER/EXEMPELl Taluppfattning, aritmetik Repetition av: Skriv med siffror tolv -Positionssystemet. hundradelar. 0,, 0,7
Läs mer2005-01-31. Hävarmen. Peter Kock
2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.
Läs merSundbybergs stad Skolundersökning 2015 Föräldrar förskola Fristående förskolor totalt 2015. Antal svar samtliga fristående förskolor: 360 (57 %)
Sundbybergs stad Skolundersökning Föräldrar förskola Antal svar samtliga fristående förskolor: ( %) Innehåll Om undersökningen Förklaring av diagram Resultat - Per fråga - NöjdKundIndex (NKI) Frågorna
Läs merSystematiskt kvalitetsarbete
Systematiskt kvalitetsarbete Rapport År: 2016 Organisationsenhet: NYEFSK/FSK Nye Förskola Fokusområde: Demokrati och värdegrund Övergripande mål: Normer och värden Deluppgift: Klassens kvalitetsrapport
Läs merArtikel/reportage år 9
7 9 LGR11 SvA Sv Artikel/reportage år 9 1 av 10 Artikel/reportage år 9 2 av 10 Planeringen gäller vecka 37-40 Pedagog: Katja Hellsten Ämne: svenska/svenska som andra språk Aktivitet under perioden: Veta
Läs merSvenska som andraspråk, 1000 verksamhetspoäng
Svenska som andraspråk, 1000 verksamhetspoäng Ämnet handlar om hur svenska språket är uppbyggt och fungerar samt om hur det kan användas. Ämnet ger elever med annat modersmål än svenska en möjlighet att
Läs merMer än bara fotboll VAD HANDLAR BOKEN OM? LGR 11 CENTRALT INNEHÅLL SOM TRÄNAS ELEVERNA TRÄNAR FÖLJANDE FÖRMÅGOR LGRS 11 CENTRALT INNEHÅLL SOM TRÄNAS
ANN-CHARLOTTE EKENSTEN Sidan 1 Mer än bara fotboll Lärarmaterial VAD HANDLAR BOKEN OM? Erik är avundsjuk på sin bästa kompis Love. Love är populär, duktig på allt och framförallt vågar han prata med tjejer.
Läs merKurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000
Kurs: Svenska som andraspråk Kurskod: GRNSVA2 Verksamhetspoäng: 1000 Kursen ger elever med annat modersmål än svenska en möjlighet att utveckla sin förmåga att kommunicera på svenska. Ett rikt språk ger
Läs merSumman av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0 2) Ställ upp ett ekvationssystem för situationen
Läs merSkolans styrdokument, från förskolan
kerstin hagland Rita en bild! Ofta ger lärare sina elever tipset att rita en bild när de har kört fast på ett problem. Men vad menas egentligen med det? Här ges exempel på olika typer av bilder som kan
Läs merNågot om permutationer
105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar
Läs merKängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:
3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra
Läs merKiwiböckerna metod och begrepp
Kiwiböckerna metod och begrepp kiwiböckerna nyckeln till livslångt lärande Läsa för, tillsammans med och självständigt. Grunden för läsinlärning är att läsa för barnet, tillsammans med barnet och vara
Läs merEnkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till
Läs merSundbybergs stad Skolundersökning 2015 Föräldrar förskola Stella Nova förskola
Sundbybergs stad Skolundersökning 2 Föräldrar förskola Stella Nova förskola Antal svar Stella Nova förskola: 2 ( %) Antal svar samtliga fristående förskolor: (5 %) 1 Innehåll Om undersökningen Förklaring
Läs merLPP laboration. Förmågor: Centralt innehåll: Kunskapskrav:
LPP laboration Syfte: Eleverna ska få möjlighet att undersöka vardagliga naturvetenskapliga händelser och skapa förståelse kring varför dessa händelser äger rum. Eleverna ska göra det med hjälp av naturvetenskapliga
Läs merElevinflytande i planeringen av undervisningen. BFL-piloter 121114 Mats Burström
Elevinflytande i planeringen av undervisningen BFL-piloter 121114 Mats Burström Ur Lgr 11 2.3 Elevernas ansvar och inflytande Läraren ska svara för att alla elever får ett reellt inflytande på arbetssätt,
Läs merSerieliknande bilder som visar olika påståenden om ett begrepp eller en situation i en vardaglig kontext.
Begrepps bilder 1 Serieliknande bilder som visar olika påståenden om ett begrepp eller en situation i en vardaglig kontext. Publikrekord avrundning Millgate House Education Åsikter presenteras visuellt
Läs merIntroduktion till Open 2012
Introduktion till Open 2012 av Lisbeth Rydén Funktionen med OPEN som jag ser den Alla har sin egen idé med att åka till OPEN. Någon framförallt för att lära sig något om de ämnen som ska avhandlas (kurs),
Läs merEnkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014
Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Antal elever: 47 Antal svarande: 40 Svarsfrekvens: 85% Klasser: 12BAa, 12BAb, 12LL Skolenkäten Skolenkäten går ut en gång per
Läs merGunilla Essén undervisar i år F-3 på Solskenets skola i Uppsala. Rolf Sjöstedt undervisar i år 6 9 på Dvärsätts skola i Krokom.
711 Samarbetsinlärning en väg till målen Gunilla Essén undervisar i år F-3 på Solskenets skola i Uppsala. Rolf Sjöstedt undervisar i år 6 9 på Dvärsätts skola i Krokom. Inledning Under läsåret 06/07 gick
Läs merFrån min. klass INGER BJÖRNELOO
Från min klass INGER BJÖRNELOO Vi har nu följt Inger Björneloos klass under två år. Klassen börjar i höst på sitt sista lågstadieår, åk 3. Denna årgång av NÄMNAREN kommer att följa upp vad de gör och hur
Läs merEnkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13
Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014 Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Skolenkäten Skolenkäten går ut en gång per termin till de skolor
Läs merEnkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014
Enkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014 Antal elever: 18 Antal svarande: 13 Svarsfrekvens: 72% Klasser: År 2 Skolenkäten Skolenkäten går ut en gång per termin
Läs merSag Mal 1 Woche DET HÄR SKA DU ARBETA MED: DU KOMMER LÄRA DIG: LÄXA: 36-39 Kapitel 1 och 2 *Berätta om dig själv *Siffror *Böja verb i jag- och duform
Vi kommer arbeta med kap 1-5 i Sag Mal 1. Kommunikationens innehåll Ämnesområden som är välbekanta för eleverna. Vardagliga situationer, intressen, personer, platser, aktiviteter och händelser. Vardagsliv
Läs merKompletterande samtalsunderlag för elever med funktionsnedsättning
Skolverkets kartläggningsmaterial för bedömning av nyanlända elevers kunskaper steg 1, dnr 2016:428 Kompletterande samtalsunderlag för elever med funktionsnedsättning Steg 1 2 3 Läs mer om anpassning i
Läs merKristendomen i världen och i Sverige
Kristendomen i världen och i Sverige Vilka kors kan du? Ortodoxt kors Georgekors krucifix Latinskt kors Grekiskt kors Tyska ordens kors (järnkors) Lpp Katolska, Protestantiska och Ortodoxa kyrkan Under
Läs merVad är det att vara en bra brandman? Vad kan man då?
Vad är det att vara en bra brandman? Vad kan man då? Vad säger omvärlden? Youtube? Bra brandman? Google? Bra brandman? Varför bedömning som lärande? Många föreställningar och erfarenheter Inget är så dåligt
Läs merStockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik
Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag
Läs merDet är bra om även distriktsstyrelsen gör en presentation av sig själva på samma sätt som de andra.
Modul: Föreningspresentation Ett stort blädderblocksblad delas upp i fyra rutor. Deltagarna, som under detta pass är indelade föreningsvis, får i uppgift att rita följande saker i de fyra rutorna: Föreningsstyrelsen
Läs merMål Blå kurs Röd kurs
Bråk Mål När eleverna har arbetat med det här kapitlet ska de kunna läsa och skriva bråk veta vad som menas med täljare och nämnare känna till och kunna använda begreppen bråkform och blandad form kunna
Läs mer