Signal- och bildbehandling TSBB14
|
|
- Sven Håkansson
- för 5 år sedan
- Visningar:
Transkript
1 Tentamen i Signal- och bildbehandling TSBB Tid: , 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl och.30 tel Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax och nedanstående tabeller, som får innehålla understrykningar och flikar: Beta, Physics Handbook Uppgifter: Tentamen omfattar 7 st uppgifter Betygsskala: poäng betyg poäng betyg 7-60 poäng betyg 5 Betygslista: Anslås senast 28/
2 Kontinuerlig faltning 9p) Betrakta funktionerna xt) = {, för t 0, för övrigt och { t yt) = 2, för t 0, för övrigt. a) Bestäm faltningen x y)t) = xt λ)yλ) dλ. Redovisa dina beräkningar! p) b) Bestäm faltningen y x)t) = Redovisa dina beräkningar! 5p) 2 Fouriertransform 8p) yt λ)xλ) dλ. Betrakta funktionen { e xt) =e 2t ) ut ) = 2t ), för t 0, för övrigt a) Beräkna funktionens fouriertransform genom att använda tabellslagning och teorem. 3p) b) Beräkna funktionens fouriertransform genom evaluera fouriertransform-integralen. Beräkningarna måste kunna följas. 5p) 3 Tidsdiskret system 9p) Ett kausalt tidsdiskret system beskrivs av följande differensekvation 3yn) 6yn ) + 3yn 2) = xn ) a) Bestäm överföringsfunktionen Hz). 2p) b) Vilka poler, dubbel-poler, nollställen och dubbel-nollställen har Hz)? p) c) Bestäm impulssvaret hn). 2p) d) Beräkna utsignalen yn) då insignalen xn) ges av xn) =δn)+2δn ) 3δn 2). p) Ledning: I dina beräkningar kan du behöva z 2 +2z 3) = z )z +3). 2
3 Ett filter i spatial- och fourierdomän 0p) Nedan visas ett separarerat filtret. Mittpunkten på filtret är utmärkt med en tjockare ram.) f ff2f3 f22f23 f a) Beräkna värdena f, f 2, f 3, f 22, f 23, f 33. Filtret är symmetriskt så resten av värdena behövs inte ges.) 3p) b) Beräkna filtrets kontinuerliga Fouriertransform F u, v). Ledning: Detta går bra om man tänker sig att det sitter en dirac-spik δx A, y B) =δx A) δy B) på varje sampelpunkt. Sätt för enkelhets skull sampelavståndet till. Ledning2: Utnyttja det separerade varianten av filtret annars blir räknearbetet otympligt! 3p) c) Beräkna filtrets 2D DFT, F [k, l]. 2p) Ledning: Använd en den symmetriska definitionen och låt N och M vara fria parametrar. d) Ta nu ditt filter f i uppgift a) samt nedanstående filter e och g och para ihop dem med nedanstående fouriertransformer, A, B och C. För att få poäng på uppgiften måste du motivera dina val. Använd resultatet från uppgift b)! 2p) e 2 2 g A B C
4 5 Binära bilder 7p) En binär bild av en kromosom visas nedan. a) Krymp kromosomen iteration med strukturelementet d 8) =. 2p) b) Tunna kromosomen till ett 8-konnektivt skelett. Markera vilka pixlar som försvinner med fasens nummer. 3p) Ledning: Strukturelementen för fas, 8-konnektiv krympning till skelett visas nedan. Mittpunkten är markerad i fet stil c) Redovisa matchningskärnor som detekterar de ändpunkterna i denna kromosoms skelett. 2p)
5 6 2D diskret bildbehandling 7p) Se nedanstående faltningskärnor, sobel x och sobel y, där nollan med fet stil 0) noterar kärnans centrum. sobel x = /8, sobel y = Bilden fx, y) nedan består av en liten kvadrat med 8:or. De tomma rutorna har värde 0. Värden utanför bilden har också värde 0. /8, fx,y) gxx,y) gyx,y) f2x,y) a) Falta bilden fx, y) dels med sobel x och dels sobel y till g x x, y) och g y x, y). 3p) b) Beräkna också f 2 x, y) = gxx, 2 y)+gyx, 2 y). 2p) c) Bilderna g x x, y), g y x, y), f 2 x, y) visar 3 olika matematiska operationer utförda på bilden fx, y). Vilka? 2p) 5
6 7 Fouriertransform, sampling och rekonstruktion 0p) En vissling som börjar svagt, ökar i styrka och sedan avtar igen kan modelleras som xt) = cos2πf 0 t) e πt2 Funktionen är skissad i signal- och fourierdomän nedan. Signaldomän Fourierdomän xt) Xf) /2 t fo fo f a) Beräkna Xf), fouriertransformen av xt). 2p) b) Funktionen xt) samplas till x s t) genom att multiplicera med impulståget k δt k/)). Skissa X s f). 2p) f c) Rekonstruera sedan genom att multiplicera med ). Detta ger f Y f) =X s f) ). Inverstransformera Y f) till yt). Vad blir yt)? 2p) d) Funktionen xt) samplas till x s t) genom att multiplicera med impulståget k δt k/.5f 0)). Skissa X s f). 2p) f e) Rekonstruera sedan genom att multiplicera med.5f 0.5f 0 ). Detta ger f Y f) =X s f).5f 0.5f 0 ). Inverstransformera Y f) till yt). Vad blir yt)? 2p) 6
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Signal- och bildbehandling TSBB03 och TSEA70
Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
8 Binär bildbehandling
8 Binär bildbehandling 8.. Man kan visa att en kontinuerlig liksidig triangel har formfaktorn P2A = P 2 4πA =.65, där P är omkretsen och A är arean. π Nedanstående diskreta triangel är en approximation
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
SYSTEM. Tillämpad Fysik Och Elektronik 1 SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System.
SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET SYSTEMEGENSKAPER System y(t) y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 207-0-9 Sal (2) Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 207-04-9 Lokaler: G33, G35, TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.00 och 7.30 el 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
7. Sampling och rekonstruktion av signaler
Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid
Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Försättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
System. Z-transformen. Staffan Grundberg. 8 februari 2016
Z-transformen 8 februari 2016 Innehåll Z-transformen Tidsdiskreta LTI-system Överföringsfunktioner Frekvensegenskaper Z-transformen Z-transformen av en tidsdiskret signal y[n] ges av Y (z) = Z[y] = y[n]z
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Tentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
DT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 24--3 Sal (2) R4 U5 Tid 4-8 Kurskod Provkod Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler
Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings
Tentamen i TSKS21 Signaler, information och bilder
1(12) Tentamen i TSKS21 Signaler, information och bilder Provkod: TEN1 Tid: 2017-06-09 Kl: 8:00 13:00 Lokal: G36 Lärare: Mikael Olofsson, tel: 281343 Besöker salen: 9 och 11 Administratör: Institution:
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
Föreläsning 8, Introduktion till tidsdiskret reglering, Z-transfomer, Överföringsfunktioner
Föreläsning 8, Introduktion till tidsdiskret reglering, Z-transfomer, Överföringsfunktioner Reglerteknik, IE1304 1 / 24 Innehåll 1 2 3 4 2 / 24 Innehåll 1 2 3 4 3 / 24 Vad är tidsdiskret reglering? Regulatorn
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 23--8 Sal T Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Medicinska Bilder Institution ISY Antal uppgifter som
Miniräknare, formelsamling i signalbehandling.
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-4 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: Sparta B, D Hjälpmedel: Miniräknare, formelsamling i signalbehandling.
Försättsblad till skriftlig tentamen vid Linköpings universitet G34
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 205-0-29 Sal () G34 Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter
Histogramberäkning på en liten bild
Signal- och Bildbehandling FÖRELÄSNING Histogram och tröskelsättning Binär bildbehandling Morfologiska operationer Dilation (Expansion) och Erosion () och kombinationer Avståndskartor Mäta avstånd i bilder
Signal- och Bildbehandling, TSBB14 Lektionsuppgifter
Signal- och Bildbehandling, TSBB4 Lektionsuppgifter Innehåll Introduktion Tillkännagivande.................................. Lektionsplanering.................................. Signaler 3 Fourierserier.
Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar
6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 00-08-8 Lokaler: TER Ansvarig lärare: Klas Nordberg besöker lokalen kl. 5.00 och 7.00 el 8634 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
TSDT15 Signaler och System
TSDT5 Signaler och System DATORUPPGIFTER VÅREN 03 OMGÅNG Mikael Olofsson, mikael@isy.liu.se Efter en förlaga av Lasse Alfredsson February, 03 Denna uppgiftsomgång behandlar faltning samt system- & signalanalys
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Reglerteknik Z / Bt/I/Kf/F
Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre
TSDT08 Signaler och System I Extra uppgifter
TSDT08 Signaler och System I Extra uppgifter Erik G. Larsson ISY/Kommunikationssystem december, 2008 P. Ett LTI system har impulssvaret och matas med insignalen ht) = e 2t ut) xt) = e 3t ut) + cosπt +
Tentamen i Signaler och kommunikation, ETT080
Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 08-05-3 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Vic A Hjälpmedel: Viktigt: Miniräknare och en valfri
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Tentamen SSY040/041, del B Sensorer, Signaler och System, Z2
Tentamen SSY4/41, del B Sensorer, Signaler och System, Z2 Examinator: Ants R. Silberberg / Gunnar Elgered 9 mars 21 kl. 8.3-12.3 sal: V Förfrågningar: Ants Silberberg, tel. 188 Lösningar: Anslås onsdag
övningstentamen I DYNAMISKA SYSTEM OCH REGLERING
övningstentamen I DYNAMISKA SYSTEM OCH REGLERING SAL: - TID: mars 27, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 73-9699 BESÖKER SALEN:
Övningsuppgifter. Digital Signal Processing. Övningar med svar och lösningar. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.
Övningsuppgifter Digital Signal Processing Övningar med svar och lösningar Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 17 Department of Electrical and Information Technology Lund University Introduktion
0 1 2 ], x 2 (n) = [ 1
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 7-- SIGNALBEHANDLING I MULTIMEDIA, ETI Tid: 8.-3. Sal: Vic - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling och
] så att utflödet v( t) Vattennivån i tanken betecknas h(t) [m]. Nivån h är tankprocessens utsignal. u h Figur: Vattentank
Tenta-uppgifter på reglerteknikdel, Reglerdel-ovn- 4 (3p) En tankprocess beskrivs av följande - se även figuren nedan: En cylindrisk vattentank har bottenarean 30 m 2. Vattenflödet in till tanken betecknas
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2013 05 31, kl. 8.00 13.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas
Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering
Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
TSRT91 Reglerteknik: Föreläsning 5
TSRT9 Reglerteknik: Föreläsning 5 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar / 23 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet
Bildbehandling, del 1
Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex
TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!
TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 6-6- SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 8.-3. Sal: Vic, - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 209-06-07 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Victoriahallen, Victoriahallen 2A Hjälpmedel: Viktigt:
Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår