Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering
|
|
- Johan Sundström
- för 8 år sedan
- Visningar:
Transkript
1 Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande Operator Högpassiltrerade Idealt deriverande Kärna Teori: Kap. 3.7, 3.8, 3.9, 3. p Lågpassiltrering i spatialdomänen Jm Fig. 3.3 * p. /56 Maria Magnusson, atorseende, Inst. ör Sstemteknik, Linköpings Universitet Lågpassiltrering i Fourierdomänen Jm Fig. 3.3 p. 3 Filtrering via multiplikation i FT- p. 4 domänen ger cirkulär altning. Sker via multiplikation i ourier- domänen. Ut- bilden blir lika stor som inbilden. kan örberäknas Fig. 3.9
2 p. 5 p. 6 cirkulär altning g m g n h m n. h 59 där dvs h n noterar cirkulär altning och betecknar modulo operation, et gäller : FT kan uppattas som periodiskt upprepad eller cirkulär. g h m G k H k Bevis inns i kompendiet ör den intresserade. cirkulär altning * * = = Alltså: För att cirkulär altning ska ge samma resultat som vanlig linjär altning kan zero-padding behövas. p. 7 E) Linjär och Cirkulär altning E) Linjär och Cirkulär altning p. 8 Peter Forsberg, d hocke-spelare Inbild Medelvärdesbildande altningskärna Storlek 55 Utbild eter linjär altning Utbild eter cirkulär ik altning
3 Motivering i spatialdomänen att p. 9 - är en deriveringsoperator / Från gmnasiet: g samma! Faltning, g=d*: erivering kan ses som altning med en deriveringsoperator At Antag att ouriertransormen av är F u, Fu En altningskärna ju Fu j u F ju u Fouriertransormen av en deriveringsoperator är en rät linje! vars ouriertransorm liknar en rät linje i ourierdomänen kan användas som deriverings- operator! dvs p. p. Motivering i ourierdomänen att - är en deriveringsoperator / Beräkna ouriertransormen genom att sätta dirac-spikar på varje element i altningskärnan. Antag sampelavstånd. etta ger h / Tag kontinuerlig Fouriertransorm H ju ju u e e v / j sinu / ju då u en liknar en rät linje ör låga rekvenser. en beräknar derivatan bra ör låga rekvenser och dämpar höga rekvenser. p. eriverande (och lågpassiltreran- de) altningskärna i -led (u-led) j sin u /, - / Låt oss kalla den: Simple- v här u Fig. 3.7
4 p. 3 eriverande (och lågpassiltreran- de) altningskärna i -led (v-led) j sinv /, - / Låt oss kalla den: Simple- v här u Fig. 3.7 p. 4 eriverande altningskärna i -led (u-led) med lågpass-eekt i båda ledder j sinu cos v /, Sobel- - - = - /8 - * / /4 här Fig. 3.7 p. 5 eriverande altningskärna i -led (v-led) med lågpass-eekt i båda ledder j sinv cos u /, Sobel = /8 * /4 - / här Fig. 3.7 eriverade altning, gråskale - ärgtabell: svart 7 grå 55 vit bipolär ärgtabell: -8 blå vit 7 röd, alta med / /8, p. 6
5 Beloppet av gradienten tar ram kanter i bilden Inbild Beloppet av gradienten p. 7 erivering och kantdetektering t t =svart 55=vit p. 8 Jm Fig. 3.8 :original ii,,,,,,, -8=s svart 7= =vitt Rotationsinvarians et är önskvärt att ett derivata-ilter-par är rotationsinvariant. ti i i t å kommer kantstrkan, t k absolutbeloppet av gradienten, inte bero av kantens rotationsläge.,,, Med Med Simple- Sobelpareparet Färg- tabell: Vit = Svart = positivt värde p. 9 n, atorn eriva a de eala en id ' d s( ) sinc d S u ju u p. 3.4 Fig.
6 en ideala derivatorn,, orts. ju u 3. Fig. 3.4 ger att multiplikation med ovanstående i ourierdomänen ger derivering (och rekonstruktion) p. Fig / p. erivata- kan skapas genom att önstra ilter med cos och sedan sampla d sinc d d sinc d 3. Fig. 3.4 ger att altning med ovanstående i spatialdomänen ger derivering (och rekonstruktion) /8 - / Ett ilter med centrum mellan pilarna Linjär diskret altning då centrum är mellan pilarna - * = - / / / p. 3 Ger derivering och rekonstruktion en ideala -derivatorn i - och -led Spatialdomän Fourierdomän p. 4 - * = / / - / Önskas bara derivering så samplar man bara iltret! Fig. 3.6
7 en ideala derivatorn, orts. u, v ju uv Fig. 3.6 ger eriverar i -led: G g G d d, sinc sinc u, v jv uv d d eriverar i -led:, sinc sinc g p. 5 p. 6 Ett idealt Laplace-ilter beräk- nar :a-derivatan i - och -led Laplaceoperatorn:, Fouriertransorm:, 4 u v, 4 u v är ett kratigt högpassilter i - och - led Faltningskärna som approi- merar det ideala Laplace-iltret ju ju,,/ : e e / cos v / 4sin u/ /, p. 7 - multiplicerat på det approimativa Laplace-iltret ger ett högpassilter Spatialdomän Fourierdomän p. 8-4 = / / / = / - / / Laplace, negativ sin u sin v 4 Fig. 3.9 Fig. 3.9
8 E) användning av Laplace, negativ: Erhåll en bild med tdligare detaljer p. 9 Fig. 3. Låt altningskärnans koeicienter vara,,..., En medelvärdesbildande (lågpassiltrerande) altningskärna ska normaliseras med K i 3.33 i ormalisering av medelvär- desbildande altningskärnor p. 3 p. 3 ormalisering av deriverande altningskärnor ormalisering av altningskärnor, tumregel p. 3 e tidigare givna deriverande altningskärnorna beräknar korrekt kt skalade derivator ör långsamt varierande gråskalevariationer. et bakomliggande sampelavståndet är. Om man inte vet sampelavståndet kan man t e sätta =.et gör att man kan jämöra olika derivatailter med varandra. ormalisering med L-normen K i i brukar ge ett rimligt värde, dvs omånget på pielvärdena i utbilden brukar bli i samma storleksordning som ör inbilden. Om man enbart ska använda den den altade bilden ör att titta på så kan man bara justera normaliseringsaktorn så att den altade bildens kontrast blir subjektivt bra.
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Signaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
TSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1
TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael Felsberg och Maria Magnusson Computer Vision Laboratory (atorseende) epartment o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer
Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Signaler, information & bilder, föreläsning 15
Översikt Signaler, inormation & bilder, öreläsning 5 Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
Signal- och bildbehandling TSBB03 och TSEA70
Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Bildförbättring i frekvensdomänen (kap.4)
Bildörbättring i rekensdomänen kap.4 Föreläsning a Mer om iltrering Jämörelse med spatialdomänen Filterdesign Lågpassilter ögpassilter omomor iltrering Korrelation OBS!!! Alla bilder rån öreläsningen är
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
Bildbehandling, del 1
Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller
Sinal- och Bildbehandlin ÖRELÄSNING 7 D sinalbehandlin (bildbehandlin) Den diitala bilden, ärtabeller D kontinuerli ouriertransorm och D DT D samplin D diskret altnin Låpassiltrerande D altninskärnor Teori:
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?
Bildbehandling i spatialdomänen och frekvensdomänen
Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet
Bildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Bildbehandling En introduktion. Mediasignaler
Bildbehandling En introdktion Mediasignaler Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän Vad är bildbehandling? Förbättring Image enhancement Återställning
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Signaler, information & bilder, föreläsning 15
Signaler, information & bilder, föreläsning 5 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering michael.felsberg@liu.se Översikt Histogram och tröskelsättning Histogramutjämning
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
MASKINDIAGNOSTIK. Rullningslager = 2. Φ d α, diameter mellan rullkontaktpunkterna z st. rullkroppar. Φ D m. ω RH. Φ d α. ω I
0-09-7/HJo MASKNDAGNOSTK Rullningslager Φ d, diameter mellan rullkontaktpunkterna st. rullkroppar Använda beteckningar: Antal rullkroppar, Antal rullkroppar per radian blir Rullkropparnas kontaktvinkel,
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Modul 2 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Moul 2 Mål och Sammanfattning Derivata. 1. MÅL FÖR MODUL 2 Förstå och använa erivatans efinition Förstå och använa erivata
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling
1(9) Signal- och bildbehandling Programkurs 6 hp Signal and Image Processing TSBB14 Gäller från: 2018 VT Fastställd av Programnämnden för kemi, biologi och bioteknik, KB Fastställandedatum LINKÖPINGS UNIVERSITET
EXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG
FÖRELÄSNING EXEMPEL : ARTVARIATION Kurs- och transform-översikt. Kursintroduktion med typiska signalbehandlingsproblem och kapitelöversikt. Rep av transformer 3. Rep av aliaseffekten Givet: data med antal
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Flervariabelanalys, inriktning bildbehandling, datorövning 3
Matematiska institutionen, LTH, December 2, 2004 Flervariabelanalys, inriktning bildbehandling, datorövning 3 Matlab Gå till underkatalogen matlab (skapa den om den inte redan finns) av din rotkatalog.
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
b) Harled en uppskattning for u's andraderivata uttryckt i givna data f och g. Under vilken forutsattning galler en motsvarande uppskattning for u's a
TMA 690 Partiella dierentialekvationer F, 000-0- Hjalpmedel: Beta och typgodkand kalkylator. Telefonjour/rond: Anders Logg, ankn. 0740-4590. ========================================== Som vanligt betecknar
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
= 0 vara en given ekvation där F ( x,
DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering
Tentamen i TSKS21 Signaler, information och bilder
1(12) Tentamen i TSKS21 Signaler, information och bilder Provkod: TEN1 Tid: 2017-06-09 Kl: 8:00 13:00 Lokal: G36 Lärare: Mikael Olofsson, tel: 281343 Besöker salen: 9 och 11 Administratör: Institution:
Lab 1: Operationer på gråskalebilder
Lab 1: Operationer på gråskalebilder Maria Magnusson, 2016, 2017 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet 1 Introduktion Läs igenom häftet innan laborationen.
11 Dubbelintegraler: itererad integration och variabelsubstitution
Nr, april -5, Amelia ubbelintegraler: itererad integration och variabelsubstitution. Itererad integration tterligare eempel Eempel (97k) Beräkna ( ) och ( ). ( 8) dd om begränsas av, 5 3.75.5.5.5.5 3.75
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06
FÖRELÄSNING 2 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för istanskursen Matematik A - analyselen vi Uppsala universitet höstterminen 2006. 1. Derivata I grunläggane analys
Flerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
Histogramberäkning på en liten bild
Signal- och Bildbehandling FÖRELÄSNING Histogram och tröskelsättning Binär bildbehandling Morfologiska operationer Dilation (Expansion) och Erosion () och kombinationer Avståndskartor Mäta avstånd i bilder
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
Kap Implicit givna funktioner
Kap 12.8. Implicit givna funktioner A 701. Betrakta ekvationen x 2 y 2 = 0 och funktioner y = y(x). a. Hur många funktioner satisfierar ekvationen? b. Hur många kontinuerliga funktioner satisfierar ekvationen?
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
TSBB31 Medicinska bilder Föreläsning 1
TSBB3 Medicinska bilder Föreläsnin Inormaion hp://www.cvl.isy.liu.se/educaion/underraduae/sbb3 Repeiion (och lie ny?) av D Fourierransorm Vikia sinaler (unkioner) Tolknin Teorem Eenskaper Linjär sysem
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 205-0-29 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (6p) a) 2 2 2 2 4 6 4 4 4 6 4 4 4 6 2
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 202-0-25 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler
Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XV. Föreläsning XV. Mikael P. Sundqvist
Föreläsning XV Mikael P. Sundqvist Förändring och lutning Till snälla funktioner kan man prata om förändring. Med det menar vi lutningen på den linje som tangerar grafen (se den blå linjen). Den röda och
Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan
Teori för linjära ordinära differentialkvationer med konstanta koefficienter
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär
Envariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6
Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan
Flerdimensionell analys i bildbehandling
Flerdimensionell analys i bildbehandling Erik Melin 27 november 2006 1. Förord Målet med den här lilla uppsatsen är att ge några exempel på hur idéer från kursen flerdimensionell analys kan användas i
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Kursanvisningar. Lektion 1 1 Repetition av vektoranalysens grunder. Skalära fält och vektorfält. KREYSZIG 9: Kapitel Kompendiet: Kapitel 1
Kursanvisningar Teorikrav: 1. Att kunna samtliga ingående definitioner och satser, samt kunna bevisa följande satser (KREYSZIG 9): Kapitel 9.7: Sats 1 (s. 405) Kapitel 10.2: Sats 1 (s. 426) Sats 3 ( s.
MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.
MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ Nyckelord: Sampling, kvantisering, upplösning, geometriska operationer, fotometriska operationer, målning, filtrering 'LJLWDOUHSUHVHQWDWLRQR KODJULQJDYELOGHU En
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner
Signal- och Bildbehandling FÖRELÄSNING Inrodukion. Signaler och Sysem. Vad är en signal och e sysem? Eempel på olika signaler. Vad kan man anända signalbehandling ill? Eempel på olika illämpningar Klassificering
Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska
Innehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
TENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN jan 0 Ti -7 Analys och linjär algebra, HF008 (Meicinsk teknik), lärare: Jonas Stenholm Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan Linjär