Signal- och bildbehandling TSBB03 och TSEA70
|
|
- Oskar Lundström
- för 8 år sedan
- Visningar:
Transkript
1 Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl och tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling och följande tabeller: Svärdström: Appendix till Signaler och system, Söderkvist: Formler och tabeller, Beta, Physics Handbook, TEFYMA Betygsskala: 5-35 poäng betyg poäng betyg poäng betyg 5 Betygslista: Anslås senast 4/8 1
2 Ledning: Jag hoppas att det inte är om tid på tentan, men jag är inte säker. Räkna därför de uppgifter ni känner er säkra på först! Lycka till!
3 1 Fem små uppgifter (16p) a) D Fouriertransform (3p) Här nedan ser du en testbild g(x, y). g(x,y) Hur ser absolutbeloppet av Fouriertransformen av g(x, y), dvs G(u, v),ut? Välj ett av nedanstående alternativ a) - d) och motivera ditt val med en kort redogörelse där orden rotationsteoremet och skalningsteoremet ingår. a) G(u,v)? b) G(u,v)? c) G(u,v)? d) G(u,v)? b) Tröskelsättning med hysteres (3p) Beskriv kortfattat hur tröskelsätting med hysteres går till och när man har användning för det. c) Visualisering (3p) Vi har i kursen talat om tre olika sätt att visualisera en 3D-volym: djupkodning, ytskuggning och genomlysningsprojektion. Hur går det till att göra ytskuggning av en 3D-volym? Använd 3 av följande 6 ord i din redogörelse: 3D-gradient, medelvärdesfilter, Phongs formel, tröskel, interpolation, mittpunktsmetoden. 3
4 d) Ett litet bevis (3p) Bevisa att faltning är kommutativ, dvs att [h g](t) =[g h](t). Ledning: Använd följande definition och gör ett variabelbyte i integralen. e) Korrelation (4p) [h g](t) = h(t λ) g(λ) dλ. Ett ekolod sänder ner ljudsignalen h(t) =e 3t u(t) i vattnet. Signalen färdas ner i vattnet, reflekteras i bottnen och vänder åter upp mot båten där den tas emot av ekolodets mottagare, som g(t) =e 3(t 0.08) u(t 0.08). Beräkna korrelationen mellan h(t) och g(t), dvs [h g](t). Beskriv sedan hur du ur [h g](t) kan få fram tidsskillnaden mellan utsänd och mottagen signal. Beräkna även vattendjupet. Ledning1: Detta teorem gäller för fouriertransform av korrelation. F [[h g](t)] = H (f) G(f), där F[h(t)] = H(f) och F[g(t)] = G(f) Ledning: Ljudhastigheten i vatten är 1430 m/s. Faltning (9p) Bestäm faltningen [h g](t) = h(t λ) g(λ) dλ, där h(t) =e 5t u(t) och g(t) =e 5t u( t) och u(t) är enhetssteget. a) Utför beräkningen i signaldomänen. (6p) b) Utför beräkningen i fourierdomänen. (3p) 4
5 3 D diskret faltning, tidsberäkning (7p) Se figur nedan. Du vill göra filtreringar på en bild som har storleken N N = med en faltningskärna som har storleken 9 9. Det finns två sätt att göra detta på, antingen i spatialdomänen (res1) eller i Fourierdomänen (res). kärna noll padda kan förberäknas D FFT res1 bild D FFT D 1 FFT res a) Hur många multiplikationer åtgår för att beräkna res1? (3p) b) Hur många multiplikationer åtgår för att beräkna res? (3p) c) Vilket verkar alltså gå snabbast, beräkning i spatialdomänen eller beräkning i fourierdomänen för en 9 9-kärna på en 56-bild? (1p) Ledning: Den beräkning vi gör är alltså lite approximativ eftersom vi struntar i att beräkna antalet additioner. Räkna med att alla koefficienter i faltningskärnan är skilda från 0, 1 och -1. Det åtgår N log N multiplikationer för att beräkna D FFT av en reell bild. För enkelhets skull, bortse från eventuella kanteffekter. 4 Fourierserie (8p) a) Bestäm fourierserieutvecklingen, x(t) =A 0 + A n cos (nω 0 t)+ B n sin (nω 0 t), för den periodiska signalen nedan. 5 n=1 n=1
6 x(t) 1 T 0 T 0 t Ledning: A 0 = 1 T0 / x(t) dt T 0 T 0 / A n = T0 / x(t)cos(nω 0 t) dt T 0 T 0 / B n = T0 / x(t)sin(nω 0 t) dt T 0 ω 0 =π/t 0 T 0 / (5p) b) Signalen x(t) passerar ett idealt bandpassfilter som släpper igenom vinkelfrekvenser i intervallet 1.8ω 0 ω.ω 0. Bestäm utsignalen. Svaret ska förenklas så långt som möjligt. (3p) 5 Binär Bildbehandling (6p) a) Bilden till vänster visar en tröskelsatt bild av en cell. Tyvärr har cellen lite oönskade utskott och hål. Dem vill man få bort så att man kan få fram bilden till höger. (Därefter vill man utföra mätningar på cellen, t ex dess omkrets och area.) Beskriv den bildbehandling som behövs för att snygga till cellen. Redovisa antal operationer och strukturelementens utseende. Räkna med att hålens och utskottens bredd är maximalt 4 pixlar. (3p) bildbehandling 6
7 b) Rasterscan Border follow (RB-algoritmen) är en mycket bra metod att använda för segmentering (etikettering, labeling) av binära bilder. Metoden klarar t ex objekt med hål i utan problem Bilden visar hur RB-algoritmen har börjat arbeta på en bild. Beskriv hur metoden fungerar och rita en mellanresultatsbild som visar hur pixlarna märks upp under algoritmens gång. (3p) 6 Interpolation (8p) Spatialdomän Fourierdomän x u I figuren ovan är den ideala interpolationsfunktionen sinc(x) illustrerad tillsammans med 4 punkters high resolution cubic spline h(x) =h( x), x 3 x +1, för 0 x 1, h(x) = x 3 +5x 8x +4, för 1 x, 0, för x. Båda funktionerna är illustrerade i både spatial- och Fourierdomänen. Som synes har vi antagit att sampelavståndet är 1. a) Skissa på samma sätt linjär interpolationsfiltret i både spatial- och Fourierdomänen. Axlarna ska vara graderade. (p) 7
8 Interpolera signalen f(x) nedan till tre gånger så hög samplingstäthet. Använd... b) närmsta granne interpolation (p) c) linjär interpolation (p) f(x) = d) high resolution cubic spline interpolation. Endast de värden som ligger mellan -an och 3-an behöver beräknas här. (p) 7 TB3 (6p) Tina Bergström, TB3 kallad på grund av sina initialer och favoritsportorten tresteg, ska åka ner till OS i Aten nu i augusti för se sin favorit Christian Ohlsson tävla. TB3 har byggt en egen inspelningsutrustning för att riktigt fånga stämningen i Aten. Häromdagen testade hon sin utrustning hemma i studentlägenheten. Inspelningsutrustningen samt uppspelningsutrustning visas nedan. Man kan räkna med att det mänskliga örat kan uppfatta tonhöjder upp till 0kHz. TB3 har därför ett analogt lågpass-filter h(t) med gränsfrekvensen 0kHz. Låt oss för enkelhets skull anta att lågpass-filtret är idealt. Samplen y[n] lagrar TB3 sedan på en CD-skiva. TB3 vill förstås undvika vikningsdistorsion, samtidigt som hon vill att samplen ska uppta så liten plats som möjligt. För att sedan kunna spela upp det inspelade använder TB3 ett rekonstruktionsfilter. Låt oss för enkelhets skull anta att rekonstruktionsfiltret är identiskt med lågpass-filtret h(t). x(t) h(t) sampling y(t) y[n] lagring h(t) z(t) analogt LP-filter mikrofon rekonstruktionsfilter högtalare a) Vilken samplingsfrekvens bör TB3 välja? (1p) b) Ett sampel upptar utrymmet byte. En CD-skiva rymmer ca 650 Mbyte byte. Hur lång tid kan man lagra på CD-skivan? (ej stereo) (p) c) Under ett test hemma i studentrummet kopplar TB3 bort filtret h(t). Samtidigt tränar en hundägare sin hund med en visselpipa strax utanför. Visselpipan ger tonen 33 khz. Då TB3 spelar upp sin inspelning hörs en störande ton. Vilken frekvens har denna ton? Motivera med resonemang i fourierdomänen! (3p) 8
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 207-04-9 Lokaler: G33, G35, TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.00 och 7.30 el 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 00-08-8 Lokaler: TER Ansvarig lärare: Klas Nordberg besöker lokalen kl. 5.00 och 7.00 el 8634 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
2 Ortogonala signaler. Fourierserier. Enkla filter.
Ortogonala signaler. Fourierserier. Enkla filter. ktuella ekvationer: Se formelsamlingen och förberedelsehäftet. För effektivvärdet av en summa av N ortogonala signaler gäller: ν rms = ν rms1 + ν rms +...
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
7. Sampling och rekonstruktion av signaler
Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid
7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
Signaler, information & bilder, föreläsning 15
Signaler, information & bilder, föreläsning 5 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering michael.felsberg@liu.se Översikt Histogram och tröskelsättning Histogramutjämning
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 23--8 Sal T Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Medicinska Bilder Institution ISY Antal uppgifter som
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 207-0-9 Sal (2) Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 202-0-25 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Signaler, information & bilder, föreläsning 15
Översikt Signaler, inormation & bilder, öreläsning 5 Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
Signal- och bildbehandling
1(9) Signal- och bildbehandling Programkurs 6 hp Signal and Image Processing TSBB14 Gäller från: 2018 VT Fastställd av Programnämnden för kemi, biologi och bioteknik, KB Fastställandedatum LINKÖPINGS UNIVERSITET
i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen
Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
Sammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler
Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler Anders Gustavsson 1997, Maria Magnusson 1998-2018 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
Tentamen i TSKS21 Signaler, information och bilder
1(12) Tentamen i TSKS21 Signaler, information och bilder Provkod: TEN1 Tid: 2017-06-09 Kl: 8:00 13:00 Lokal: G36 Lärare: Mikael Olofsson, tel: 281343 Besöker salen: 9 och 11 Administratör: Institution:
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Signal- och Bildbehandling, TSBB14 Lektionsuppgifter
Signal- och Bildbehandling, TSBB4 Lektionsuppgifter Innehåll Introduktion Tillkännagivande.................................. Lektionsplanering.................................. Signaler 3 Fourierserier.
Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering
Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer
Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB, -- Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande D signalbehandling Uppgift (p) a) Filtret
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 205-0-29 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (6p) a) 2 2 2 2 4 6 4 4 4 6 4 4 4 6 2
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Histogramberäkning på en liten bild
Signal- och Bildbehandling FÖRELÄSNING Histogram och tröskelsättning Binär bildbehandling Morfologiska operationer Dilation (Expansion) och Erosion () och kombinationer Avståndskartor Mäta avstånd i bilder
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Tentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
DT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 4 GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Signaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
TSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2017-10-19 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL 1: Grundläggande 2D signalbehandling Uppgift 1 (4p) a) f(x, y) = 30 Π(x/40, y/20)
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Elektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
Tentamen Bildanalys (TDBC30) 5p
Tentamen Bildanalys (TDBC30) 5p Skrivtid: 9-15 Hjälpmedel: kursboken Digital Image Processing Svara på alla frågor på nytt blad. Märk alla blad med namn och frågenummer. Disponera tiden mellan frågorna
TSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Audio & Videoteknik 2D2021, 2D1518
TENTAMEN Kurs: Kursnummer: Moment: Program: Åk: Examinator: Rättande lärare: Datum: Tid: Hjälpmedel: Audio & Videoteknik 2D2021, 2D1518 Tentamen Medieteknik 2 Trille Fellstenius Trille Fellstenius, Svante
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur
UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig: