7 Olika faltningkärnor. Omsampling. 2D Sampling.
|
|
- Charlotta Ström
- för 6 år sedan
- Visningar:
Transkript
1 7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y) A = - /, B = /5, - C = /, D = /, E = /5, F = -4 /8, G = -, H = 4 /6 Resultatet blir 8 stycken olika bilder. Para ihop bild-bild8 nedan med korrekt faltningskärna A H! bild bild bild bild 4
2 bild 5 bild 6 bild 7 bild D interpolation. Vid interpolationsuppgifterna nedan ska vi använda oss av fyra olika interpolationsfunktioner, närmsta granne interpolation n(), linjär interpolation l(), samt två olika cubic spline interpolationsfunktioner, c() och c(), där, för, n() =, för övrigt,, för, l() =, för övrigt, +, för, c() =, för övrigt,.5.5 +, för, c() = , för,, för övrigt. De olika funktionerna är också illustrerade nedan. närmsta granne interpolation, n() linjär interpolation, l() cubic spline, c() cubic spline, c()
3 Nedan syns en liten D figur med fyra kända sampelvärden och ett okänt, f(.75) =?, som ska interpoleras fram med de fyra olika interpolationsfunktionerna ovan..5 f()? D och D interpolation. Vid interpolationsuppgifterna nedan ska vi använda oss av två olika interpolationsmetoder, närmsta granne och linjär interpolation. Vid närmsta granne interpolation kan rektangel-funktionen Π() användas, och vid linjär interpolation kan triangelfunktionen Λ() användas,, för, Π() =, för övrigt,, för, Λ() =, för övrigt. a) Nedan till vänster syns två kända sampelvärden och ett okänt märkt med?. Interpolera fram detta värde dels med närmsta granne interpolation och dels med linjär interpolation. b) Nedan till höger syns fyra kända sampelvärden och ett okänt märkt med? och beläget på (, y) = (/, /). Interpolera fram detta värde dels med närmsta granne interpolation och dels med bilinjär interpolation.? 4/.5?.7 y (,y)=(/,/)
4 7.4. Uppsampling en faktor. Omsampling till högre samplingstäthet mha interpolation är en viktig operation inom bildbehandling. För en bild samplad med samplingsavståndet = är sinc() den ideala interpolationsfunktionen, se figur nedan. Spatial rymd sinc() Fourier rymd Π(u) u = /( )=/ a) Skissera den linjära interpolationsfunktionen, Λ() =, och dess fouriertransform ovanpå sinc() och Π(u) i figuren ovan. b) Vad gäller för funktionsvärdet i = och = ± för de båda funktionerna? c) På vilket sätt är fouriertransformen av Λ() sämre än Π(u)? d) Bilinjär interpolation är en D variant av linjär interpolation. Den bilinjära interpolationsfunktionen är Λ() Λ(y). Försök att skissa D-plottar av Dfunktionerna, Λ(), Λ(y) och Λ() Λ(y). Vilken basyta har Λ() Λ(y)? e) Nedan till vänster visas en liten -bild. Interpolera upp den till dubbelt så hög samplingstäthet, dvs. till 5 5-bilden som visas till höger. Omsamplingen ska ske med bilinjär interpolation, Λ() Λ(y). Det enklaste är dock att utföra omsamplingen i två endimensionella steg, dvs först med linjär interpolation med Λ() i -led följt av linjär interpolation med Λ(y) i y-led. y y y 4 4 Originalbild Efter uppsampling 4
5 7.5. Rotation och interpolation. Bilden f(, y ) ska roteras medurs. Uppgiften är att beräkna värdet på pieln markerad med?-tecken i utbilden g(, y) Inbild f(,y ) Utbild g(,y)? a) Pieln markerad med?-tecken är belägen på (, y) = (, ) i g(, y). Vilken position motsvarar detta i inbilden f(, y )? b) Beräkna värdet på pieln markerad med?-tecken med hjälp av närmaste granne interpolation. c) Använd nu bilinjär interpolation istället. Då är interpolationsfunktionen Λ() Λ(y) där, for, Λ() =, annars. d) LITE SVÅRARE. Använd nu interpolation med en liten -punkters cubic spline-funktion istället. Då är interpolationsfunktionen h() h(y) där +, for, h() =, annars D sampling med vikningsdistorsion, variant Funktionen f(, y) har en D fourier transform F (u, v) som visas i figuren nedan till vänster. F (u, v) i den skuggade arean och F (u, v) = utanför den skuggade arean. F(u,v) v G(u,v)? v u u. 5
6 Funktionen f(, y) samplas med ett D impuls-tåg till g(, y) = f(, y) δ( n) δ(y m), dvs samplingsavståndet är = i båda riktningarna. n a) Beräkna fouriertransformen av g(, y). Låt svaret innehålla ett faltningstecken! b) Skissa G(u, v) i (u, v)-planet ovan till höger! Fick du någon vikningsdistorsion? Markera i så fall ett sådant ställe med en pil! c) Vid vilket samplingsavstånd undviks vikningsdistorsion? d) Förenkla uttrycket för G(u, v) i a) så att det inte innehåller faltningstecken och dirac-pulser, men däremot summatecken och F ( ) LITE SVÅRARE. Nedsampling en faktor. Antag att sampelpunkterna i en bild har sampelavståndet och att bilden ska samplas ned så att sampelavståndet blir. Nedsamplingen kan göras en-dimensionellt, först i -led, sedan i y-led, se figur nedan. m ) falta horizontellt med h[n] ) falta vertikalt med h[n] ) sampla ner, dvs kasta bort varannan 6
7 Den ideala faltningskärnan för nedsampling är (/)sinc(/( )). Nackdelen med den ideala faltningskärnan är att den är oändligt lång. Konstruera en approimativ faltningskärna enligt följande metod: Tag den ideala faltningskärnan. Sampla den med avkänning i punkterna k där k är ett heltal. Trunkera den vid, dvs k =,,,,,,. Detta ger den diskreta faltningskärnan h[n] = [a,, b, c, b,, a]. a) Vad blir h[n]? Dvs ange värdena a, b, c. b) För lågpassfilter är det önskvärt att det lokala medelvärdet bevaras i bilden. h[n] bör därför divideras med ett värde. Vilket? c) En enklare faltningskärna för nedsampling en faktor är baserad på triangelfunktionen vars bredd överenstämmer med huvudloben på (/)sinc(/( )). Liksom faltningskärnan i b) ska den bevara den lokala medelnivån i bilden. Bestäm denna faltningskärna Rotation och beräkningshastighet. Ett (grovt) mått på snabbheten hos en metod är att mäta vilket antal multiplikationer som krävs per piel. Betrakta rotation med bakåtmappning (backward mapping). Antag att positionerna för alla pilarna är förberäknade. Hur många multiplikationer per piel åtgår vid följande operationer? a) Bilinjär interpolation (D variant av linjär interpolation). Ledning: Hur stor basyta har Λ() Λ(y) enligt uppgift 7.4d? b) Bicubic6 interpolation (D variant av 4-punkters cubic spline). c) D variant av 8-punkters trunkerad sinc ( super resolution ). d) Närmaste granne. 7
8 Svar och lösningsförslag 7. A: bild, B: bild, C: bild7, D: bild, E: bild4, F: bild6, G: bild8, H: bild5 7. Se figur nedan. Den aktuella interpolationsfunktionen är c() i figuren, men principen är densamma för de andra tre interpolationsfunktionerna. Interpolationsfunktionen förflyttas till det okända värdets position, =.75. Där multipliceras samplen med interpolationsfunktionens höjd. Nedan är a) närmsta granne, b) linjär, c) cubic spline variant, och d) cubic spline variant. Närmsta granne interpolation kan också erhållas genom att notera att f() =.5 är den närmaste grannen och därefter bara ta dess värde.5. Linjär interpolation också erhållas grafiskt genom att dra en rät linje mellan f() = och f() =.5. Då ser man att f(.75) =.5..5 f().75 a)? = n(.75) +.5 n(.5) = +.5 =.5 b)? = l(.75) +.5 l(.5) = =.5 c)? = c(.75) +.5 c(.5) = =.475 d)? = c(.75) + c(.75) +.5 c(.5) +.5 c(.5) = (.7) = a) Se figuren nedan. De aktuella interpolationsfunktionerna är inritade i rött och blått i figuren och har förflyttats till det okända värdets position, = 4/. Sedan multipliceras samplen med interpolationsfunktionens höjd.? 4/ / / 8
9 nearest neighbor :? = Π(/) + Π(/) = + = linear interpolation :? = Λ(/) + Λ(/) = / + / = 5/ Närmsta granne interpolation kan också erhållas genom att notera att f() = är den närmsta grannen. Linjär interpolation också erhållas grafiskt genom att dra en rät linje mellan f() = och f() =. Då ser man att f(4/) = 5/. Svar: För närmsta granne interpolation blir värdet och för linjär interpolation blir värdet 5/.67. b) Se figur nedan. Den närmsta grannen till (/, /) är (, ), där värdet är.7. (,) (,).5.7 (,) (,y )=(/,/) (,) Den tvådimensionella interpolationskärnan Λ() Λ(y) sträcker sig ut till den streckade kvadraten. Här väljer vi dock att utföra den bilinjära interpolationen först D i -led och sedan D i y-led. Interpolationsfunktionen placeras först horizontellt i punkten (/, ). Interpolationsresultatet blir Λ(/) +.7 Λ(/) = (/) +.7 (/) =.. Interpolationsfunktionen placeras sen horizontellt i punkten (/, ). Interpolationsresultatet blir.5 Λ(/) + Λ(/) =.5 (/) + (/) =.7. Interpolationsfunktionen placeras sen vertikalt i punkten (/, /). Interpolationsresultatet blir. Λ(/) +.7 Λ(/) =. (/) +.7 (/) =.4. Svar: För närmsta granne interpolation blir värdet.7 och för linjär interpolation blir värdet a) Skissen blir Spatial rymd Fourier rymd sinc() Λ() Π (u) sinc (u) u = /( )=/ 9
10 b) Funktionsvärdet i = är och funktionsvärdet i = ± är, precis som det ska vara för en interpolationsfunktion. c) Fouriertransformen av Λ(), sinc (u), ger som synes lågpassfiltrering, vilket kan göra den omsamplade bilden suddigare än originalet. Dessutom sträcker sig sinc (u) utanför bandgränsen, vilket kan ge distorsion. d) Se plottarna nedan. e) Basytan för Λ() Λ(y) är. y Efter uppsampling 7.5 a) Kalla inbilden f(, y ) och den roterade bilden g(, y). Då gäller: ( ) ( ) ( ) ( ) ( cos α sin α cos α sin α = = y sin α cos α y y sin α cos α ) ( y ). Punkten (, y) = (, ) och vinkeln α = insatta i formeln ovan ger (, y ) (.879,.684). b) Närmaste granne interpolation ger g(, ) = f(, ) =.
11 c) Se figuren nedan. Den ger.879 y (.879,) (,y )=(.879,.684) (.879,) Λ(.879) =., Λ(.) =.879, Λ(.684) =.6, Λ(.6) =.684, f(.879, ) = f(, ) Λ(.879) + f(, ) Λ(.) =, f(.879, ) = f(, ) Λ(.879) + f(, ) Λ(.) = 4, f(.879,.684) = f(.879, ) Λ(.684) + f(.879, ) Λ(.6), f(.879,.684) = =.6. d) Se figuren ovan. Den ger h(.879) =.4, h(.) =.96, h(.684) =.6, h(.6) =.764, f(.879, ) = f(, ) h(.879) + f(, ) h(.) =, f(.879, ) = f(, ) h(.879) + f(, ) h(.) = 4, f(.879,.684) = f(.879, ) h(.684) + f(.879, ) h(.6), f(.879,.684) = = a) G(u, v) = F (u, v) n δ(u n) m δ(v m) b) G(u,v) v vikningsdistorsion u Ja, det blev vikningsdistorsion på flera ställen. Pilen pekar på ett ställe. c) < /.6
12 d) G(u, v) = F (u, v) δ(u n) δ(v m) n m = F (u, v).5 δ(u n, v m) n m =.5 F (u n, v m) n m 7.7 a) ( ) sinc samplas i = [,,,,,, ] h[n] = [ /(π),, /π, /, /π,, /(π)]. b) /(π) + /π + / + /π /(π) =.944 Filtet h[n] ska divideras med.944. c) [,, ]/4 eller / Antag bildstorleken N N. Rotation kräver N N D-interpolationer, alltså en D-interpolation per piel. a) Bredden på en n = punkters linjär interpolationsfunktion är sampelavstånd. En bilinjär interpolationsfunktion har en basyta på n n =. Då denna placeras på den önskade interpolationspositionen täcker den n n = = 4 sampel, se figur. Dessa sampelvärden ska multipliceras med interpolationsfunktionen. Det krävs alltså 4 multiplikationer per piel. sampel avstånd sampel avstånd basyta önskad interpolationsposition b) Generalisera resonemanget i a) till att en n n punkters interpolationsfunktion kräver n n multiplikationer. Följdaktligen kräver bicubic6 interpolation 4 4 = 6 multiplikationer per piel. c) Generalisering av resonemanget i a) ger 8 8 = 64 multiplikationer per piel. d) Inga multiplikationer.
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 205-0-29 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (6p) a) 2 2 2 2 4 6 4 4 4 6 4 4 4 6 2
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB, -- Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande D signalbehandling Uppgift (p) a) Filtret
Signal- och Bildbehandling, TSBB14 Lektionsuppgifter
Signal- och Bildbehandling, TSBB4 Lektionsuppgifter Innehåll Introduktion Tillkännagivande.................................. Lektionsplanering.................................. Signaler 3 Fourierserier.
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Signaler, information & bilder, föreläsning 15
Översikt Signaler, inormation & bilder, öreläsning 5 Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Signal- och bildbehandling TSBB03 och TSEA70
Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Försättsblad till skriftlig tentamen vid Linköpings universitet G34
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 205-0-29 Sal () G34 Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter
Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 207-0-9 Sal (2) Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
TSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2017-10-19 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL 1: Grundläggande 2D signalbehandling Uppgift 1 (4p) a) f(x, y) = 30 Π(x/40, y/20)
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ Nyckelord: Sampling, kvantisering, upplösning, geometriska operationer, fotometriska operationer, målning, filtrering 'LJLWDOUHSUHVHQWDWLRQR KODJULQJDYELOGHU En
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007)
Laboration 1 Grafisk teknik (TNM059) Introduktion till Matlab R. Lenz och S. Gooran (VT2007) Introduktion: Denna laboration är en introduktion till Matlab. Efter denna laboration ska ni kunna följande:
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 202-0-25 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 22--25 Sal TER2 Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering
Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
2s + 3t + 5u = 1 5s + 3t + 2u = 1 3s 3u = 1
ATM-Matematik Mikael Forsberg 074-4 För studenter på distans och campus Linjär algebra ma04a 04 0 5 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja
Signaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler
Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
Tentamen IX1304 Matematik, Analys , lösningsidéer
Tentamen IX0 Matematik, Analys 0-05-0, lösningsidéer. Gör en linjär approximation till kurvan y x, kring den punkt på kurvan där lutningen är. Bestäm sedan för vilka x som det relativa felet för approximationen
KOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
8 Binär bildbehandling
8 Binär bildbehandling 8.. Man kan visa att en kontinuerlig liksidig triangel har formfaktorn P2A = P 2 4πA =.65, där P är omkretsen och A är arean. π Nedanstående diskreta triangel är en approximation
M = c c M = 1 3 1
N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)
ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)
Matematiska uppgifter
Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Bildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891
KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Explorativ övning 7 KOMPLEXA TAL
Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
MR-laboration: design av pulssekvenser
MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space
Veckoblad 1, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet
Exempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
Explorativ övning Vektorer
Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken
Det första du behöver göra är att ta reda på vilken storlek bilden har. Öppna en bild i Photoshop. Välj Bild; Bildstorlek i övre menyn
Ändra bildstorlek (Photoshop CS 3) Sid. 1 1. Minska en bild När man jobbar med bilder vill man ibland ändra storlek, eller minska antal pixlar, eftersom bildfilen blir för stor och för tung (i kb) om den
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Exempel :: Spegling i godtycklig linje.
INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som
Denna vattenmängd passerar också de 18 hålen med hastigheten v
FYSIKTÄVLINGEN KVLIFICERINGS- OCH LGTÄVLING 3 februari 000 LÖSNINGSFÖRSLG SVENSK FYSIKERSMFUNDET 1. a) Den vattenängd so passerar slangen per sekund åste också passera något av de 18 hålen. Den vattenängd
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför
2x + y + 3z = 4 x + y = 1 x 2y z = 3
ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 24--3 Sal (2) R4 U5 Tid 4-8 Kurskod Provkod Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Övningshäfte 2: Komplexa tal
LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet
TMV225 Kapitel 3. Övning 3.1
TMV225 Kapitel 3 Övning 3. Bestäm gränsvärdet och bestäm δ som funktion av ε. a) lim 3 [ 2 3 + 5] Vi har givet att 3, och då funktionen är kontinuerlig får vi gränsvärdet ȳ 5 genom att stoppa in. Per definition
KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y
KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och
Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö
Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa
Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:
Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Repetition inför kontrollskrivning 2
Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004
KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att
Lathund, geometri, åk 9
Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar
Veckoblad 3, Linjär algebra IT, VT2010
Veckoblad 3, Linjär algebra IT, VT Vi inleder den tredje veckan med att gå igenom begreppen determinant och invers matris som vi inte hann med i vecka, se veckoblad för övningar etc på dessa avsnitt. Därefter
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.
Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = x 8 6 4 2-3 -2-2 3-2 -4-6 -8 Figur : Vi konstaterar följande: Då
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.