MR-laboration: design av pulssekvenser
|
|
- Håkan Åberg
- för 6 år sedan
- Visningar:
Transkript
1 MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space med gradienter Rekonstruktion Artefakter Uppgift Uppgiften är att rekonstruera en 2D MR-bild genom att skapa pulssekvenser (gradienter i magnetfältet) som samplar ett simulerat k-space. Timkostnaden för en riktig MR-kamera är hög så det är viktig att samplingen i k- space görs så effektivt som möjligt, så att undersökningstiden blir kort. Det simulerade k-space initieras med hjälp av Matlab-funktionen kspaceinit och samplas sedan genom att anropa funktionen kspacesample med pulssekvensen ni skapar. Använd help kspacesample för att ta reda på hur funktionen fungerar. Vi vet att huvudet på patienten som vi ska avbilda har storleken W x = W y = 4. Precis som på en riktig MR-kamera så finns det begränsning på hur stora gradienter vi kan använda. Gradientens amplitud är begränsad enligt ḡ(t) = gx(t) 2 + gy(t) 2.2 t, dvs. om man vill förflytta sig längre i k-space än.2 så måste man göra det i flera tidssteg (sampel). Vi kommer att söka av k-space linje för linje med en ny excitering (RF-puls) för varje linje. Efter vare excitering förflyttas vi tillbaka till origo i k-space. Denna labb fokuserar på design av pulssekvenser, medan andra viktiga parametrar som repetitionstid (TR) och ekotid (TE) är bestämda i simulatorn. För att slippa kompensera för den gyromagnetiska konstanten γ antar vi att samplingstätheten i tidsled ges av t = γ 2π. Initialisering av k-space Definiera, N, antalet sampel per dimension i k-space. N är med fördel ett udda tal, så att vi får ett sampel i origo. Ett sampel på avståndet /W från origo i k-space (Fourierdomänen) motsvarar en våglängd med längden W i spatialdomänen, dvs vi kan återge objektet med denna storlek utan spatiell vikning (aliasing) om vi väljer samplingsavståndet
2 k W. Simulatorn initieras med funktionen kspaceinit som returnerar ett handle som vi senare använder för att generera k-space sampel. Skapa ett nytt Matlab-skript, t.ex. MR.m, och skriv in följande kod clear all close all clc W = 4; N = 255; deltak = /W; h = kspaceinit( none ); kspace = zeros(n); Spara MR.m i samma katalog som filerna ni laddade ner. Matlab-funktionerna kspacesample.m och kspaceinit.m ska inte ändras! Koordinater i k-space Vi vet antalet sampel, N, och samplingsavståndet k. Vi kan nu beräkna koordinaterna i k-space för våra sampelpunkter. Sambandet mellan k-space koordinater och motsvarande gradienter ges av: k x (t) = γ 2π t g x (τ)dτ k y (t) = γ 2π t g y (τ)dτ där vi för enkelhetens skull här sätter γ/2π = och approximerar koordinaten för ett sampel k(t n ) som en Riemann-summa av gradienterna, vilket kan göras med funktionen cumsum i Matlab. Navigering i k-space med gradienter Nästa steg är att definiera gradienterna så att när vi anropar Matlab-funktionen kspacesample erhåller sampel för våra önskade k-space koordinater. Vi gör en ny excitering (ett nytt anrop av kspacesample) för varje linje vi samplar och vid varje excitation förflyttas vi tillbaka till origo i k-space. Gradientvektorn består av två delar. Den första delen navigerar till början på linjen, vi gör en sk. readout. Vi är i detta läge bara intresserade av att ta oss dit så snabbt som möjligt. De k-space sampel vi erhåller på vägen är vi normalt inte intresserade av. Den andra delen av gradientvektorn tar oss utmed en linje i k-space med 2
3 sampelavståndet k i N sampel. Dessa sampel sparas på motsvarande rad i vår kspace matris. För att slippa hantera de k-space sampel som vi inte är intresserade av så kan vi vi ge kspacesample ytterligare ett argument, en indikator vektor v som har samma längd som g. kspacesample returnerar då bara de sampel där v. Observera att det är tillräckligt att sampla (N+)/2 linjer i k-space för att generera en bild av objektet. Skriv in följande kod i MR.m, efter koden ni redan har skrivit, och gör färdigt koden genom att fylla i alla ställen med.... N = (N-)/2; maxgrad =.2; % max gradient kmax = N*deltak; for p = :N+; % loop over (N+)/2 first lines i k-space ky_start = deltak*(n + - p); % start coordinates for line p kx_start =... N_readout =... % min number of readout samples gx_readout =... * ones(n_readout,); gy_readout =... * ones(n_readout,); g_readout = [gx_readout, gy_readout]; gx_line =... gy_line =... g_line = [gx_line, gy_line]; v =... g = [g_readout; g_line]; % gradients k = cumsum(g); % coordinates figure() plot( k(:,), k(:,2),.b ); axis([-.35,.35,-.35,.35]); grid on drawnow if p== hold on plot([kmax kmax -kmax -kmax],[kmax -kmax kmax -kmax], or ) hold off end kspace(p,:) = kspacesample(h,g,v); end 3
4 Koordinaterna för den första linjen bör se ut ungefär som i figuren ovan. För att försäkra sig om att pulssekvensen är korrekt kan det vara praktiskt att plotta hörnen - k-space, se nedanstående kod som också finns i den tidigare givna koden. kmax = N*deltak; kmin = -kmax; figure() plot([kmax kmax kmin kmin],[kmax kmin kmax kmin], or ) hold on plot(k(:,),k(:,2),.b ) grid on hold off Notera också att kspacesample returnerar det sampel som motsvarar positionen efter att gradienten har verkat. Om man t.ex vill att första samplet ska vara i origo måste första raden i gradientvektorn vara [, ]. 4
5 Matlab-vektorerna i koden är illustrerade i figuren nedan. g: v: g_readout deltak g_line Fråga: Varför är den första positionen i g line (deltak, )? Fråga: Varför består v av ett antal :or följt av ett antal :or? Fråga: Vilket är det minimala värdet på N readout? Motivera! 5
6 Magnituden av våra k-space sampel bör se ut som i figuren nedan. Vi använder här logaritmen av magnituden, eftersom magnituden i origo är mycket högre jämfört med resten av k-space (prova att ta bort log() för att se detta). figure(2) imagesc(log(abs(kspace))), axis image, colormap gray Använd nu den Hermitska egenskapen hos Fourierdomänen för att återskapa hela k-space. Utnyttja funktionerna flipud, fliplr och conj. Tänk på att nolllinjen bara ska vara med en gång. kspace2 = kspace; kspace2 = kspace = kspace + kspace2; imagesc(log(abs(kspace))), axis image, colormap gray Fråga: Vi utnyttjar här sambandet att k-space är Hermitisk. Under vilket villkor gäller detta antagande? 6
7 Rekonstruktion Eftersom k-space samplen nu ligger på en regelbunden grid kan rekonstruktionen utföras mha en invers 2D FFT (ifft2 i Matlab). Tänk på att Matlabs FFT har origo i övre vänstra hörnet. Använd funktionerna ifftshift och fftshift för att kasta om samplen före och efter själva Fourier-transformen. im =... figure(4) imagesc(abs(im)), colormap gray, axis image Fråga: Ser den rekonstruerade bilden ut som förväntat? Titta på realdelen och imaginärdelen för sig, för att försäkra er om att ni har samplat rätt (imaginärdelen kommer då att vara väldigt nära ). Hur stort är det största imaginära värdet? (max(imag(im(:)))) figure(5) imagesc(real(im)), colormap gray, axis image, title( Real part ) figure(6) imagesc(imag(im)), colormap gray, axis image, title( Imaginary part ) Fråga: Vad händer om ni ändrar W från 4 till 3? Förklara resultatet! Fråga: Vad händer om ni ändrar W från 4 till 5? Förklara resultatet! Här ska ni ignorera det som syns längs kanterna på bilden. Detta syns inte i verkligheten, utan är en effekt av att kspacesample inte är perfekt. Artefakter Genom att aktivera funktionen jitter h = kspaceinit( jitter ) kan vi simulera ett slumpmässigt tidsfel för våra k-space sampel. Hur ser denna artefakt ut? Titta på realdelen och imaginärdelen av den rekonstruerade bilden, med och utan artefakter. Lycka till! 7
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
Flerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
TSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
Fig. Exempel på en B-mode ultraljudsbild av ett hjärta.
Ultraljudslaboration TSBB3 Medicinska Bilder Utvecklad av: Mats Andersson (fd IMT) 4 Uppdaterad av: Maria Magnusson (CVL, ISY) 6 Contents Uppgiften Läsa in RF-data En RF skannstråle och dess fouriertransform
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 207-0-9 Sal (2) Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 3. Funktioner Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna laboration skall vi träna på att
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007)
Laboration 1 Grafisk teknik (TNM059) Introduktion till Matlab R. Lenz och S. Gooran (VT2007) Introduktion: Denna laboration är en introduktion till Matlab. Efter denna laboration ska ni kunna följande:
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
TEM Projekt Transformmetoder
TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
Datorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Beräkningsverktyg HT07
Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska
Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)
Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Geometriska transformationer
CTH/GU LABORATION 5 TMV6/MMGD - 7/8 Matematiska vetenskaper Inledning Geometriska transformationer Vi skall se på några geometriska transformationer; rotation, skalning, translation, spegling och projektion.
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2014-01-10 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL 1: Grundläggande 2D signalbehandling Uppgift
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler
Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
TSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Flerdimensionell signalbehandling SMS022
Luleå tekniska universitet Avd för signalbehandling Frank Sjöberg Flerdimensionell signalbehandling SMS022 Laboration 4 Array Processing Syfte: Syftet med den här laborationen är att få grundläggande förståelese
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Laboration 3 Sampling, samplingsteoremet och frekvensanalys
Laboration 3 Sampling, samplingsteoremet och frekvensanalys 1 1 Introduktion Syftet med laborationen är att ge kunskaper i att tolka de effekter (speglingar, svävningar) som uppkommer vid sampling av en
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e
Uppgift 1 ( Betyg 3 uppgift )
2008-03-25.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program (en funktion), my_plot_figure, som läser in ett antal sekvenser av koordinater från tangentbordet och ritar ut dessa till en
Lab 1: Operationer på gråskalebilder
Lab 1: Operationer på gråskalebilder Maria Magnusson, 2016, 2017 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet 1 Introduktion Läs igenom häftet innan laborationen.
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland
Matlab för Nybörjare Charlie Pelland Introduktion till Matlab Matlab (matrix laboratory) är ett datorprogram och ett programspråk som används av ingenjörer runt om i världen. Ni kommer att använda er av
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 24--3 Sal (2) R4 U5 Tid 4-8 Kurskod Provkod Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Matlabövning 1 Funktioner och grafer i Matlab
Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom PM:et. Gå sedan igenom exemplen
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...
Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»
Funktionsteori Datorlaboration 2
Funktionsteori Funktionsteori Datorlaboration 2 Fourierserier Inledning Största delen av denna laboration handlar om Fourierserier, men vi startar med seriesummation. Vissa filer kan du behöva hämta på
Matlabövning 1 Funktioner och grafer i Matlab
Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom hela PM:et. Gå sedan igenom
Datorlaborationer i matematiska metoder E1, del C, vt 2002
Matematiska metoder E del C, vt, datorlaborationer, Datorlaborationer i matematiska metoder E, del C, vt. Laborationerna är ej obligatoriska.. Laborationerna genomförs individuellt. Grupparbete godkänns
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
Parametriserade kurvor
CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
TSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 11 Juni, 2015 Provkod: TEN1 Hjälpmedel:
Signaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
TNM011 Grafisk teknik Laboration 3 - Färg
TNM011 Grafisk teknik Laboration 3 - Färg Martin Solli marso@itn.liu.se ITN, Linköpings Universitet HT 2006 Introduktion Laborationen handlar om sambandet mellan reflektansspektran, belysningar och den
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Transformationer i R 2 och R 3
Linjär algebra, I / Matematiska vetenskaper Inledning Transformationer i R och R 3 Vi skall se på några geometriska transformationer; rotation, skalning, translation och projektion. Rotation och skalning
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2017-10-19 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL 1: Grundläggande 2D signalbehandling Uppgift 1 (4p) a) f(x, y) = 30 Π(x/40, y/20)
Miniprojektuppgift i TSRT04: Mobiltelefontäckning
Miniprojektuppgift i TSRT04: Mobiltelefontäckning 19 augusti 2015 1 Uppgift Enligt undersökningen Svenskarna och internet 2013 (Stiftelsen för Internetinfrastruktur) har 99 % av alla svenskar i åldern
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
Objektorienterad programmering i Java I. Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6
Laboration 2 Objektorienterad programmering i Java I Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6 Syfte: Att kunna använda sig av olika villkors- och kontrollflödeskonstruktioner
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT)
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man
Matriser och linjära ekvationssystem
Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer
2 mars 2017 Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer Syftet med denna matlab-övning är att studera differentialekvationer och introducera hur man använder
Lösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 6-8-3. (a Korrekt hopparning: (-C: Uppgiften som beskrivs är en typisk användning av sensorfusion, där Kalmanfiltret är användbart. (-D: Vanlig användning av Lyapunovfunktioner.
Datorövning: Fouriertransform med Python
Datorövning i Elektromagnetism och vågor (FK5019) Övningsledare: bart.pelssers@fysik.su.se & ashraf@fysik.su.se Datorövning: Fouriertransform med Python Skicka in individuellt skrivna rapporter på engelska
Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 205-0-29 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (6p) a) 2 2 2 2 4 6 4 4 4 6 4 4 4 6 2
TNM059 Grafisk teknik Laboration 4 - Färg
TNM059 Grafisk teknik Laboration 4 - Färg Martin Solli Martin.Solli@itn.liu.se ITN, Linköpings Universitet Introduktion Laborationen handlar om sambandet mellan reflektansspektran, belysningar och den
Analys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Börja med att kopiera källkoden till din scheme-katalog (som du skapade i Laboration 1).
Laboration 3 Grafiska figurer I den här laborationen skall du konstruera ett schemeprogram som kan rita rektanglar, punkter, cirklar, linjer och bilder som består utav en eller flera av nyss nämnda figurer.
Mer om geometriska transformationer
CTH/GU LABORATION 4 TMV141-1/13 Matematiska vetenskaper 1 Inledning Mer om geometriska transformationer Vi fortsätter med geometriska transformationer och ser på ortogonal (vinkelrät) projektion samt spegling.
1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma
LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2: FÖRGRENINGSPROCESSER MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser Syftet med denna laboration är att du skall bli mer
Laboration 1. Grafisk teknik Rastrering. Sasan Gooran (HT 2004)
Laboration 1 Grafisk teknik ------------------------------------- Rastrering Sasan Gooran (HT 2004) Introduktion 1.0 Introduktion Den här laborationen måste förberedas innan laborationstillfället. Ett
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Laboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
Affina avbildningar Fraktala bilder Itererade funktionssystem. Affina avbildningar, itererade funktionssystem och fraktala bilde
Affina avbildningar, itererade funktionssstem och fraktala bilder En linjär funktion/avbildning F : R 2 R 2 kan skrivas F (ex ) = eax där A är en konstant 2 2 - matris. Vi använder standardbasen och skriver
Vad är spektralanalys? Spektralanalys. Frekvensinnehåll. Enkelt exempel
Vad är spektralanalys? Analys av frekvensinnehållet i en tidsserie/signal. Spektralanalys Erik Gudmundson Vad innebär Analys av frekvensinnehållet? Vad är en tidsserie/signal? Tidsserie: mätning av någon
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar: