STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.

Storlek: px
Starta visningen från sidan:

Download "STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER."

Transkript

1 MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av år registrerat bland annat medeltemperaturen för varje månad. Data för åren finns som tabseparerad text under länken Instruktioner och data i rutan för laborationsdagen på kursens hemsida. För att kunna analysera data i R gör du på samma vis som när du laddade ner data till laborationerna i Statistisk analys. Nämligen: Skapa först ett underbibliotek för den här laborationen, och kalla det förslagsvis för tsa1: $ mkdir tsa1 $ cd tsa1 Sedan går du in på Instruktioner och data och sparar filen TarfalaTab.txt i underbiblioteket tsa1 genom att högerklicka på filen på hemsidan och välja Save Link Target As...". (Filen finns även kommaseparerad, vilket kan fungera bättre på vissa plattformar, men från elevdatasalen är det den tabseparerade versionen du bör välja.) Starta sedan R, och läs in filen genom kommandona > Tarfala <- read.table("tarfalatab.txt",header=true) > Artal <- Tarfala$Artal > Manad <- Tarfala$Manad > Temp <- Tarfala$Temp (Alternativet header=true betyder att den inlästa textfilen har rubriker.) Öppna ett hjälpfönster i HTML-format genom kommandot > help.start() där man kan klicka sig fram till olika hjälpsidor. Man kan, precis som i Matlab, när som helst få information om hur ett visst kommando eller funktion fungerar genom kommandot help enligt mönstret > help(mean) som ger information om hur man beräknar medelvärde i R. När man sedan är klar med laborationen eller vill göra ett uppehåll skriver man bara > q() Då kommer programmet att fråga om man vill spara sin workspace image, det vill säga alla variabler som man har definierat under körningen. Svarar man ja (genom att skriva y) så kommer allting att sparas och laddas in i R - 1 -

2 när man startar det nästa gång. Uppgifterna 1 5 ska besvaras skriftligen. Bifoga den R-kod du skrivit, samt några grafer som visar vad du har gjort och som illustrerar ditt resonemang. UPPGIFT 1. Plotta temperaturen mot tid (=observationsnummer här). Beskriv grafen i ord! UPPGIFT 2. Skapa en ny variabel innehållande årsvisa medelvärden (se R-tips nedan för hur man gör detta), och gör en graf över dem. Verkar temperaturen ha ökat eller minskat under perioden? Spara grafen! UPPGIFT 3. a) Ange ett viktsystem för centrerade glidande medelvärden. Viktsystemet ska ha egenskapen att jämna ut den årsvisa säsongvariationen. Hur många värden innehåller viktsystemet? b) Hur många värden kommer serien av centrerade glidande medelvärden att ha? c) Beräkna serien av centrerade glidande medelvärden. Gör en graf över denna serie, och jämför den med grafen över årsvisa medelvärden du gjorde i Uppgift 2. Vilka skillnader och likheter ser du? UPPGIFT 4. Beräkna de justerade säsongkomponenterna. Vilken månad är varmast? Vilken är kallast? UPPGIFT 5. Genomför en säsongrensning av data. Gör en graf över den rensade serien. Lägg in rensad serie, trend och ursprunglig serie i en och samma graf. (Se R-tips I nedan.) - 2 -

3 R-TIPS. I. Grafisk framställning av tidsserier. I vårt fall har vi ingen variabel i datasetet som specifikt anger löpande tid, så vad vi vill göra är att plotta olika variabler mot radnummer. Om variabeln heter Y, så kan detta göras genom kommandot > plot(y,type="l") som ritar serien som en sammanhängande kurva. Vill man ha färg så kan man skriva exempelvis > plot(y,type="l", col= blue ) Bokstaven l ( ell, inte ett ) står för line. Om man vill lägga in två tidsserier Y och Z i samma graf, och färga grafen för Z röd, så kan man skriva > plot(y,type="l") > lines(z,col="red") Om de båda tidsserierna har olika längd och/eller ligger ur fas, så måste man komplettera den ena serien eller båda med NA (som är R:s beteckning för saknade värden) i början och/eller slutet. Med hjälp av rep (se nedan under IV) kan man åstadkomma så många NA som behövs, och sedan kombinera ihop dem med tidsserien med hjälp av c(,, ). (Se Lab 1, Statistisk analys GN, Enkla numeriska operationer.) II. Att spara figurer. Om man vill spara en figur exempelvis den som skapats av det första plot-kommandot ovan måste man först ange kommandona > jpeg("figur.jpg") > plot(y,type="l") > dev.off() som skapar filen figur.jpg i underbiblioteket tsa1. För att skriva ut filen, öppna först ett nytt terminalfönster, byt katalog till tsa1, och skriv $ lpr figur.jpg På liknande vis görs en bild i ps-format. III. Att sammanfatta data. Kommandot tapply kan användas för att beräkna medelvärden (och även andra statistikor) över undergrupper av datasetets observationer. Om Y är den variabel vi vill beräkna medelvärden av (exempelvis temperatur), och X för varje observation anger vilken undergrupp den tillhör (exempelvis månad eller år), så kan gruppvisa medelvärden beräknas genom > MedelY <- tapply(y,x,mean) - 3 -

4 Vektorn MedelY av medelvärden kan sedan användas i andra beräkningar. (Det verkar som om R automatiskt antar att så länge vektorerna X och Y har samma längd, så hör värden på motsvarande platser inom respektive vektor till samma observation.) Om man ska beräkna medelvärden med tapply, och det finns saknade värden som betecknas NA i R så ger tapply värdet NA som svar. Om man istället vill att kommandot ska bortse från saknade värden och beräkna medelvärden av de värden som faktiskt finns, så kan man skriva > MedelY <- tapply(y,x,mean,na.rm=true) IV. Upprepning av värden med mera. R har ett ganska smidigt sätt att upprepa värden via kommandot rep. Dess två vanligaste varianterna illustreras av följande exempel: betrakta vektorn u = (2, 7, 4): > u <- c(2,7,4) Då ger > v <- rep(u,times=4) > w <- rep(u,each=4) vektorerna v = (2, 7, 4, 2, 7, 4, 2, 7, 4, 2, 7, 4) respektive w = (2, 2, 2, 2, 7, 7, 7, 7, 4, 4, 4, 4). En vektor bestående av talen 1 till 10 (exempelvis) ges av > x <- 1:10 Om vi istället skriver > x <- 1:10+2 så blir resultatet inte som man kanske skulle kunna tro en vektor bestående av talen 1 till 12, utan istället en bestående av talen 3 till 12; vad R har gjort är att lägga 2 till samtliga komponenter i vektorn 1:10. Om man däremot hade skrivit 1:(10+2), så hade man fått talen 1 till 12. V. Hantering av matriser. R sammanfogar två matriser (åtminstone om dimensionerna passar ihop) genom att lägga dem sida vid sida, respektive lägga den ena under den andra, via kommandona cbind och rbind. Om vi exempelvis vill sammanfoga två kolonnvektorer u och v till en matris w med två kolumner, så gör vi det genom att skriva > w <- cbind(u,v) Matriser har ett attribut i R kallat dimension : om exempelvis M är en 2x3-matris, så ger > dim(m) svaret 2 3. En talsekvens kan även sakna dimension, i vilket fall vi istället får svaret NULL. Om vi nu har en sekvens av 6 tal utan dimension och vill få R att istället betrakta den som en 2x3-matris, så skriver vi > dim(m) <- c(2,3) - 4 -

5 På samma vis kan vi förvandla M till en 3x2-matris eller göra den dimensionslös igen genom att skriva, respektive, > dim(m) <- c(3,2) > dim(m) <- NULL Observera dock att det förstnämna kommandot inte ger samma resultat som att transponera M. (Prova!) Transponatet ges istället av t(m). Kommandot length ger antalet element i ett objekt, oavsett eventuell dimension. För en 2x3- matris får vi exempelvis 6. Matrisprodukten av två matriser A och B skrivs A%*%B. Om du får felmeddelandet Error in A %*% B : non-conformable arguments så betyder det att matrisernas dimensioner inte passar ihop. Kontrollera med hjälp av dim! VI. Glidande medelvärden. Börja med att definiera en vektor av vikter. Om vi exempelvis vill bilda ett vanligt glidande medelvärde av tre, så är vikterna (1/3, 1/3, 1/3), och vi kan skriva > vikt <- c(1/3,1/3,1/3) och på motsvarande sätt för andra uppsättningar av vikter. Vad vi nu vill är att en serie av på varandra följande värden i en vektor Y ska multipliceras med respektive vikter, och sedan adderas ihop, och dessutom ska serien av vikter förskjutas längs vektorn Y. Man kan betrakta varje glidande medelvärde som en skalärprodukt av viktvektorn och ett utsnitt ur vektorn Y, alternativt en matrisprodukt förutsatt att vi ser till att den första vektorna är en radvektor och den andra en kolonnvektor. Följande loop skapar en ny serie Glid av glidande medelvärden: > Glid <- c() > for (j in 1:n){Glid <- rbind(glid,y[j:(j+v )]%*%vikt)} Det första kommandot gör Glid till en tom vektor; det behövs för att inte R ska protestera att vektorn Glid inte finns. Utsnittet ur Y är Y[j:(j+v )], se nedan under VII: Övrigt. Observera parenteserna kring j+v. Om du glömmer dem så blir j:j+v det enda talet j+v, istället för vektor av v+1 stycken tal. Parametern n ska ersättas med antalet glidande medelvärden, som bekant lite färre än det ursprungliga antalet observationer. Vad v ska vara för att det hela ska ge önskat resultat får du fundera ut själv. VII. Diverse. Om man vill subtrahera (exempelvis) en variabel från en annan så är det väsentligt att motsvarande vektorer matchar varandra observation för observation. För att uppnå detta måste man ibland klippa av en vektor i början och/eller i slutet. Om exempelvis H är en vektor av längd 100 och vi vill klippa bort de 5 första och de 5 sista observationerna, så kan vi skriva: - 5 -

6 > H <- H[6:95,] vilket kan utläsas som ta med rad nummer 6 t o m 95, och ta med alla kolonner. Om du får ett felmeddelande, pröva istället utan kommatecken: > H <- H[6:95] Ibland händer det att man får ett felmeddelande vid subtraktion (eller addition) även när de båda vektorerna har samma längd. Detta kan bero på att den ena, men inte den andra har dimension, eller på att de har olika dimension. I så fall måste man justera dimensionen. För att ta reda på vilka objekt som finns i din nuvarande R-session, skriv > ls() Då får du en lista på de namn du har givit objekten

DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV.

DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2014 Avd. Matematisk statistik GB 2014-03-17 DATORLABORATION: JÄMFÖRELSE AV FLERA STICKPROV. Till den här datorlaborationen

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Laboration 1: Introduktion till R och Deskriptiv statistik

Laboration 1: Introduktion till R och Deskriptiv statistik STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 1: Introduktion till R och Deskriptiv statistik Denna första datorlaboration

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik ANL/TB SANNOLIKHETSTEORI I, HT07. Instruktion för laboration 1 De skrifliga laborationsrapporterna skall vara skrivna så att

Läs mer

Säsongrensning i tidsserier.

Säsongrensning i tidsserier. Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent

Läs mer

TSBB14 Laboration: Intro till Matlab 1D

TSBB14 Laboration: Intro till Matlab 1D TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

Laboration 2: Statistisk hypotesprövning

Laboration 2: Statistisk hypotesprövning STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 2: Statistisk hypotesprövning Huvudsyftet med denna andra datorlaboration är

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

15 september, Föreläsning 5. Tillämpad linjär algebra

15 september, Föreläsning 5. Tillämpad linjär algebra 5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera

Läs mer

At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor

At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor % Föreläsning 1 26/1 % Kommentarer efter %-tecken clear % Vi nollställer allting 1/2+1/3 % Matlab räknar numeriskt. Observera punkten som decimaltecken. sym(1/2+1/3) % Nu blev det symboliskt pi % Vissa

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Laboration 3: Enkel linjär regression och korrelationsanalys

Laboration 3: Enkel linjär regression och korrelationsanalys STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 3: Enkel linjär regression och korrelationsanalys I sista datorövningen kommer

Läs mer

SF1672, Linjär Algebra med Matlab för F1 Lab0

SF1672, Linjär Algebra med Matlab för F1 Lab0 SF1672, Linjär Algebra med Matlab för F1 Lab0 Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en hel del uppgifter så att alla kan få något att

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007)

Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007) Laboration 1 Grafisk teknik (TNM059) Introduktion till Matlab R. Lenz och S. Gooran (VT2007) Introduktion: Denna laboration är en introduktion till Matlab. Efter denna laboration ska ni kunna följande:

Läs mer

SF1546, Numeriska Metoder för O1 Lab0 - frivillig. (dvs uppgifterna behöver inte redovisas!)

SF1546, Numeriska Metoder för O1 Lab0 - frivillig. (dvs uppgifterna behöver inte redovisas!) SF1546, Numeriska Metoder för O1 Lab0 - frivillig. (dvs uppgifterna behöver inte redovisas!) Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns

Läs mer

14 september, Föreläsning 5. Tillämpad linjär algebra

14 september, Föreläsning 5. Tillämpad linjär algebra 14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Laboration 1: Linjär algebra

Laboration 1: Linjär algebra MALMÖ HÖGSKOLA Centrum för teknikstudier MA119A VT 2010, Yuanji Cheng Viktigt information om labb Vid laborationen gäller följande: 1. Labben görs i grupp av två studenter, och redovisningsuppgifterna

Läs mer

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt. "!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,

Läs mer

Beräkningsverktyg HT07

Beräkningsverktyg HT07 Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan

Läs mer

Matriser och Inbyggda funktioner i Matlab

Matriser och Inbyggda funktioner i Matlab Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland

Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland Matlab för Nybörjare Charlie Pelland Introduktion till Matlab Matlab (matrix laboratory) är ett datorprogram och ett programspråk som används av ingenjörer runt om i världen. Ni kommer att använda er av

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.

Läs mer

Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1

Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1 11 oktober 215 Miniprojekt 1 (5) Beräkningsvetenskap I/KF Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB eva@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Eempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas DN1212, Numeriska metoder & grundläggande programmering för P1. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas Introduktion till UNIX och MATLAB Del 1: UNIX och

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB DN1240, Numeriska metoder för O1. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB Del 1: UNIX och kontoadministration Uppgift 1.1 Ni bör jobba

Läs mer

Matriser och Inbyggda funktioner i Matlab

Matriser och Inbyggda funktioner i Matlab CTH/GU STUDIO 1 TMV036a - 2012/2013 Matematiska vetenskaper Matriser och Inbyggda funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1 Moore: 2.3, 3.1-3.4, 3..1-3.., 4.1, 7.4 1 Inledning Nu

Läs mer

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar

KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar KPP053, HT2016 MATLAB, Föreläsning 2 Vektorer Matriser Plotta i 2D Teckensträngar Vektorer För att skapa vektorn x = [ 0 1 1 2 3 5]: >> x = [0 1 1 2 3 5] x = 0 1 1 2 3 5 För att ändra (eller lägga till)

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 3. Funktioner Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna laboration skall vi träna på att

Läs mer

MAM283 Introduktion till Matlab

MAM283 Introduktion till Matlab Rum: A3446 E-post: ove.edlund@ltu.se Hemsida: www.math.ltu.se/ jove Översikt: Matlab i MAM283 Några fakta Introduktion till Matlab. Omfattning: 0,4 p En föreläsning och tre datorövningar Examineras genom

Läs mer

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab? Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde? Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07

Läs mer

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1.

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. Laboration 0 del 1-3 (frivilliga delar) Del 1-3 (dvs upg

Läs mer

TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26

TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26 TAIU07 Matematiska beräkningar med MATLAB för MI Fredrik Berntsson, Linköpings Universitet 15 januari 2016 Sida 1 / 26 TAIU07 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet i att

Läs mer

linjära ekvationssystem.

linjära ekvationssystem. CTH/GU LABORATION 2 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna laboration börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på

Läs mer

MATLAB övningar, del1 Inledande Matematik

MATLAB övningar, del1 Inledande Matematik MATLAB övningar, del1 Inledande Matematik Övningarna på de två första sidorna är avsedda att ge Dig en bild av hur miljön ser ut när Du arbetar med MATLAB. På de följande sidorna följer uppgifter som behandlar

Läs mer

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = = Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 27 oktober 2015 Sida 1 / 31 TANA17 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

Kort-kort om utdelade användarkonton och datormiljön på NADA

Kort-kort om utdelade användarkonton och datormiljön på NADA Kort-kort om utdelade användarkonton och datormiljön på NADA UNIX-konto, användaridentitet Namn Du har fått ett konto med ett användarnamn bestående av prefixet ip99_ och ytterligare tre bokstäver. Dessa

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Objektorienterad programmering i Java I. Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6

Objektorienterad programmering i Java I. Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6 Laboration 2 Objektorienterad programmering i Java I Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6 Syfte: Att kunna använda sig av olika villkors- och kontrollflödeskonstruktioner

Läs mer

3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt.

3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt. Kontrolluppgifter 1 Gör en funktion som anropas med där är den siffra i som står på plats 10 k Funktionen skall fungera även för negativa Glöm inte dokumentationen! Kontrollera genom att skriva!"#$ &%

Läs mer

ATT RITA GRAFER MED KOMMANDOT "PLOT"

ATT RITA GRAFER MED KOMMANDOT PLOT MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att

Läs mer

Alla filer som bearbetar PHP script ska avslutas med ändelsen.php, exempelvis ska en indexsida till en hemsida heta index.php

Alla filer som bearbetar PHP script ska avslutas med ändelsen.php, exempelvis ska en indexsida till en hemsida heta index.php Introlektion PHP är ett av de enklare språken att lära sig just pga. dess dynamiska struktur. Det används för att bygga upp båda stora och mindre system. Några vanliga system som använder sig av PHP är

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning läsvecka 4 Magnus oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/17 Denna föreläsning (läsvecka 4) Kursadministration (redovisning projekt 2,

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

Algebraiska egenskaper hos R n i)u + v = v + U

Algebraiska egenskaper hos R n i)u + v = v + U Underrum till R n, nollrum, kolonnrum av en matris, rank, bas, koordinater, dimension. Påminnelse om R n s egenskaper: Algebraiska egenskaper hos R n i)u + v = v + U v) c(u + v) = cu + cv ii) ( u + v)

Läs mer

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna

Läs mer

Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret

Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret Med ett kommandobaserat gränssnitt menas ett helt textbaserat gränssnitt. Istället för att klicka

Läs mer

MAPLE MIKAEL STENLUND

MAPLE MIKAEL STENLUND MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal

Läs mer

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv Datorlära 6 Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv 1 Arbeta med Strängar Strängar skapas med text inom citattecken, enkla eller dubbla.!>> str=

Läs mer