Säsongrensning i tidsserier.
|
|
- Ellen Håkansson
- för 9 år sedan
- Visningar:
Transkript
1 Senast ändrad Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent s t och en slumpkomponent ɛ t : x t = u t + s t + ɛ t, t =, 2,... T, där T = tidsseriens längd. Trenden är en långsiktig förändring i seriens nivå. Säsongkomponenten är en periodisk avvikelse från trenden. Den antas bero endast på säsongen. Om vi exempelvis har månadsvisa data antar vi att säsongkomponenten är densamma för alla februari, oavsett år. Om periodens längd är m kan vi uttrycka detta så här: s t = s t+m = s t+2m..., för alla index där vi har data. Slumpkomponenten, slutligen, är den slumpmässiga variationen utöver trend och säsongkomponent. Vi illustrerar med ett exempel. Det dataset vi använder är hämtat ur Andersson, Jorner och Ågren, Regressions- och tidsserieanalys. Exemplet handlar i likhet med det i Tamhane och Dunlop om försäljning av bilar, men i vårt exempel har vi data för varje kvartal, inte bara årsvis. Det kommer att visa sig att bilförsäljningen varierar en del med tiden på året. I denna tidsserie har vi således en säsongkomponent med periodlängd m =. Nedanstående tabell visar den totala försäljningen av bilar i Sverige under tioårsperioden 98:-990:, dvs fr o m kvartal år 98 t o m kvartal år 990. Försäljningen är uttryckt i 980 års priser (miljoner kronor) Kvartal Kvartal Kvartal Kvartal
2 Grafiskt ser försäljningssiffrorna ut så här. På den vågräta axeln har vi infört en variabel t för löpande tid: vi låter t = svara mot 98:, t = 2 mot 98:2,... t = 0 mot 990:. Bilar Milj kr Bilar t 2 Centrerade glidande medelvärden. I läroboken Tamhane och Dunlop beskrivs hur man kan använda glidande medelvärden (moving averages) för att. göra prediktioner, och 2. jämna ut en kurva (smoothing) så att en eventuell övergripande trend framträder tydligare. I det senare fallet får man, men de utjämningsmetoder som beskrivs i Tamhane och Dunlop, en utjämnad kurva som tenderar att vara förskjuten till höger i förhållande till den ursprungliga kurvan. Detta syns tydligt i Fig..20 på sidan 5. Orsaken är att exempelvis det utjämnade värdet för 993 (i Fig..20) är ett medelvärde av värdena för 99, 992 och 993 och således påverkas även av trenden under de båda tidigare åren, vars värden återfinns till vänster om den punkt på den streckade kurvan som svarar mot 993. Om vi vill beräkna en trend som ligger i fas med den ursprungliga tidsserien måste vi därför använda centrerade glidande medelvärden, som symmetriskt väger in värden före och efter den aktuella tidpunkten. Nära tidsseriens ändpunkter kommer dessa medelvärden att involvera observationer som inte finns. Vi betraktar då det utjämnade värdet som ett saknat värde, så att den utjämnade tidsserien blir något kortare än den ursprungliga. Det enklaste är att ta medelvärdet av ett udda antal w = 2k + observationer: MA t = x t k + x t k x t + x t + x t x t+k + x t+k 2k + för t = k +, k T k, där T betecknar tidsseriens längd., Mera allmänt kan man tänka sig vikter c 0, c,... c k : MA t = c k x t k c x t + c 0 x t + c x t c k x t+k. 2
3 Här måste vi kräva att c k i=0 c i =. I de flesta fall kräver man också att c i 0. 3 Utjämning av säsongvariation med glidande medelvärden. Det finns en tredje användning av glidande medelvärden: man kan använda dem för att jämna ut säsongvariation. Detta kräver emellertid att man ger lika vikt åt varje säsong, så att inte olika säsonger dominerar vid olika tidpunkter i det glidande medelvärdet. I vårt exempel måste alltså varje kvartal ha samma vikt. Om vi dessutom vill beräkna centrerade glidande medelvärden, kan vi således inte använda den enkla metoden att ta medelvärdet av ett udda antal observationer: perioden är ju, ett jämnt tal. Istället använder vi följande glidande medelvärde MA t = x t 2 + 2x t + 2x t + 2x t+ + x t+2 8 för t = 3, Ett liknande glidande medelvärde går naturligtvis att räkna ut för godtyckliga jämna perioder. I tabellform blir resultatet följande (avrundat till hela miljoner): Kvartal Kvartal Kvartal Kvartal , En graf över de glidande medelvärdena ser ut såhär: MA Milj kr MA t Uppenbarligen har proceduren även haft effekten att släta ut lokala variationer. Ibland kan man emellertid vilja ha dessa kvar, utan att förvillas av säsongvariation. Det är detta som är syftet med säsongrensning. 3
4 Säsongrensning. När man genomför en säsongrensning, räknar man först ut trenden. Denna är förstås inte någon objektiv storhet; distinktionen mellan vad som är lokala variationer ( slump ) och vad som är trend beror i mångt och mycket på vad man vet om datas uppkomst, och kanske också på vad man vill använda data till. Det finns därför ett antal olika sätt att räkna ut trend, och de ger inte samma resultat. En möjlighet är att anpassa en regressionslinje till data. En annan är att använda glidande medelvärden, och det är detta vi ska göra här. (I Andersson, Jorner och Ågren utförs dock en mera komplicerad form av säsongrensning på detta dataset.) Vi använder härvid ett glidande medelvärde som inte bara jämnar ut lokala variationer, utan också tar bort säsongvariationen. Se ovan! För att återgå till exemplet, så har vi således just räknat ur trenden u t. Hur får vi tag i säsongkomponenten? Den borde vara den medelmåttiga avvikelsen från trenden för varje kvartal. Vi sätter därför s j = 9 t j mod (x t u t ), j =, 2, 3,. Vi har nämligen 9 observationer av trenden, och därmed av x t u t, för varje kvartal. (I början av tidsserien går kvartal och 2 bort, och i slutet 3 och.) Vi får följande värden på säsongkomponenten för de fyra kvartalen: s = 2.9, s 2 = 52.8, s 3 = 793.0, s = 55.. Nu skulle man kunna tro att säsongkomponenten över en period skulle ha medelvärdet noll, eftersom den representerar avvikelse från trenden, men detta stämmer inte exakt beroende på att observationerna i början och slutet av serien inte ingår med samma vikt som de andra vid beräkning av trenden u t. I vårt fall får vi i själva verket s = s j = 5.6. j= Vi subtraherar därför detta medelvärde från säsongkomponenten och definierar den justerade säsongkomponenten s j = s j s, j =, 2, 3,. Detta ger s = 37.5, s 2 = 506.3, s 3 = 808.6, s = Av dessa värden (eller för all del av de ojusterade) ser man att om man bortser från trend och lokala variationer så tenderar folk att köpa minst bilar under kvartal 3, alltså under månaderna juli, augusti och september, dvs under semestern och strax efter. Flest bilar köper de under kvartal 2, alltså under månaderna april, maj och juni. Kanske vill man ha en ny bil att åka på semester i? Den säsongrensade serien r t fås nu genom att man subtraherar säsongkomponenterna från den ursprungliga tidsserien: r t = x t s t,
5 där vi definierat s t för alla t =, 2,... T genom att sätta s t = s j om t j mod. Vi har alltså r = x , r 2 = x , r 3 = x , r = x 39.8, r 5 = x etc. Vi får tabellen Kvartal Kvartal Kvartal Kvartal Notera att den rensade serien har värden även i början och slutet av serien. Vi har att r t = x t s j = u t + ɛ t för t = 3, dvs bortsett från början och slutet är den rensade serien trend plus slumpkomponent. De lokala variationerna finns alltså kvar, för den händelse man vill kunna studera dem utan att störas av säsongvariation. I exemplet har den rensade serien följande utseende: Rensad 7000,0 6000,0 5000,0 Milj kr 000,0 3000,0 2000,0 000,0 0,0 Rensad t 5
6 5 Övningsuppgift. I tabellen nedan står angiven elenergiförbrukningen per kvartal (enhet: GWh) i ett litet samhälle: År Kvartal Kvartal 2 Kvartal 3 Kvartal a) Beskriv hur man uppskattar tidsseriens trend med hjälp av centrerade glidande medelvärden. b) Räkna ut det första glidande medelvärdet. c) Övriga trendvärden ges av nedanstående tabell; symbolen står för det värde som du har räknat ut i i b). Uppskatta säsongkomponenten! År Kvartal Kvartal 2 Kvartal 3 Kvartal , , ,875 50, ,25 9, d) Gör en tabell över den säsongrensade serien. 6
Regressions- och Tidsserieanalys - F8
Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning
Tidsserier, forts från F16 F17. Tidsserier Säsongrensning
Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje
732G71 Statistik B. Föreläsning 8. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 23
732G71 Statistik B Föreläsning 8 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 23 Klassisk komponentuppdelning Klassisk komponentuppdelning bygger på en intuitiv
Tidsserier. Data. Vi har tittat på två typer av data
F9 Tidsserier Data Vi har tittat på två typer av data Tvärsnittsdata: data som härrör från en bestämd tidpunkt eller tidsperiod Tidsseriedata: data som insamlats under en följd av tidpunkter eller tidsperioder
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av
ÖVNINGSUPPGIFTER KAPITEL 7
ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer
Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Vad Betyder måtten MAPE, MAD och MSD?
Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016
Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
Tidsserier. Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden.
Tidsserier Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden. Den allmänna formeln för den additiva modellen:, och för den multiplikativa modellen:, där T står för trend,
En typisk medianmorot
Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt
Repetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18
Repetition kapitel,, 5 inför prov Ma NA7 vt8 Prov tisdag 5/6 8.00-0.00 Algebra När man adderar eller subtraherar uttryck, så räknar man ihop ensamma siffror för sig, x-termer för sig, och eventuella x
Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III
Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Sebastian Andersson Statistiska institutionen Senast uppdaterad: 16 december 2015 är en prognosmetod vi kan använda för serier med en
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Prognoser. ekonomisk-teoretisk synvinkel. Sunt förnuft i kombination med effektiv matematik ger i regel de bästa prognoserna.
Prognoser Prognoser i tidsserier: Gissa ett framtida värde i tidsserien killnad gentemot prognoser i regression: Det framtida värdet tillhör inte dataområdet. ftet med en prognosmodell är att göra prognos,
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och
Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Prognostisering med exponentiell utjämning
Handbok i materialstyrning - Del F Prognostisering F 23 Prognostisering med exponentiell utjämning Det som karakteriserar lagerstyrda verksamheter är att leveranstiden till kund är kortare än leveranstiden
Statistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Finansiell statistik
Finansiell statistik Föreläsning 5 Tidsserier 4 maj 2011 14:26 Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs
F11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS,
TENTAMEN I REGRESSIONS- OCH TIDSSERIEANALYS, 204-0-3 Skrivtid: kl 8-2 Hjälpmedel: Räknedosa. Bowerman, B.J., O'Connell, R, Koehler, A.: Forecasting, Time Series and Regression. 4th ed. Duxbury, 2005 som
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och
Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.
Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 2c GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Prognostisering med glidande medelvärde
Handbok i materialstyrning - Del F Prognostisering F 21 Prognostisering med glidande medelvärde Det som karakteriserar lagerstyrda verksamheter är att leveranstiden till kund är kortare än leveranstiden
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
vux GeoGebraexempel 2b/2c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker vux 2b/2c GeoGebraexempel Till läsaren i elevböckerna i serien matematik origo finns uppgifter där vi rekommenderar användning
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
STATISTIKUNDERLAG för befolkningsprognoser
STATISTIKUNDERLAG för befolkningsprognoser Statistiska centralbyrån (SCB) är en statlig myndighet. Vår uppgift är att framställa och sprida statistik till bland andra beslutsfattare, forskare och allmänhet.
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,
Hantera andragradskurvor del 2
Hantera andragradskurvor del I den första aktiviteten om andragradsfunktioner tittade vi på hur utseendet på kurvorna när vi hade olika värden på k, a och b i ut- trcket k ( x a) b. Se nedan. Vi ser att
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och
Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl.
LINKÖPINGS UNIVERSITET 73G71 Statistik B, 8 hp Institutionen för datavetenskap Civilekonomprogrammet, t 3 Avdelningen för Statistik/ANd HT 009 Justeringar och tillägg till Svar till numeriska uppgifter
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 2b GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Tisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Vägledning till statistisk redovisning i NFTS försöksdokumentation
1(5) Fältforsk 2013-12-09 Vägledning till statistisk redovisning i NFTS försöksdokumentation Inledning Det här dokumentet beskriver hur de statisiska resultat som redovisas i NFTS försöksdokumentation
Sänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Beskrivande statistik
Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005
Checklista för funktionsundersökning
Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara
Arbeta med normalfördelningar
Arbeta med normalfördelningar I en större undersökning om hur kvinnors längd gjorde man undersökning hos kvinnor i ett viss åldersintervall. Man drog sedan ett slumpmässigt urval på 2000 kvinnor och resultatet
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-08-23 Skrivtid 0900 1400 Tentamen i: Statistik 1, Undersökningsmetodik 7.5 hp Antal uppgifter: 6 Krav för G: 14 Lärare:
Lösa ekvationer på olika sätt
Lösa ekvationer på olika sätt I denna aktivitet ska titta närmare på hur man kan lösa ekvationer på olika sätt. I kurserna lär du dig att lösa första- och andragradsekvationer exakt med algebraiska metoder.
Kort om mätosäkerhet
Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan
Hur länge ska fisken vara i dammen?
Hur länge ska fisken vara i dammen? Frågeställning Uppgift 10 fiskodling Uppgiften går ut på att ta reda på hur länge ett stim fisk ska växa upp i en fiskodling för att få den maximala vikten tillsammans.
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat
2301 OBS! x används som beteckning för både vinkeln x och som x-koordinat A Punkten P har koordinaterna x och y P = (x, y) i enhetscirkeln gäller att { x = cos x y = sin x P = (cos x, sin x) För vinkeln
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Föreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
InStat Exempel 4 Korrelation och Regression
InStat Exempel 4 Korrelation och Regression Vi ska analysera ett datamaterial som innehåller information om kön, längd och vikt för 2000 personer. Materialet är jämnt fördelat mellan könen (1000 män och
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Korrelation och autokorrelation
Korrelation och autokorrelation Låt oss begrunda uttrycket r = i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva.
Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel
matematik Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker 4 GeoGebraexempel Till läsaren I elevböckerna i serien Matematik Origo finns uppgifter där vi rekommenderar användning
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007)
Statistiska Institutionen Gebrenegus Ghilagaber & Nicklas Pettersson 007-1-06 Anvisningar till del av den obligatoriska inlämningsuppgiften (HT 007) Den obligatoriska inlämningsuppgiften består av två
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera
Kapitel 4. Funktioner. 4.1 Definitioner
Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet
Föreläsning 7. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 7 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Fortsättning envägs-anova Scheffes test (kap 11.4) o Tvåvägs-ANOVA Korsade faktorer (kap 12.1, 12.3) Randomiserade blockförsök
Datoraritmetik. Från labben. Från labben. Några exempel
Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Välja prognosmetod En översikt
Handbok i materialstyrning - Del F Prognostisering F 01 Välja prognosmetod En översikt All materialstyrning med avseende på att bestämma när nya inleveranser till lager skall planeras in och hur stora
Lösningar och kommentarer till uppgifter i 2.2
Lösningar och kommentarer till uppgifter i 2.2 2202 Beräkna Detta ger f(3 + h) f(3) då f(x) x 2 (3 + h) 2 3 2 h 2 + 6h 6 + h 6 h 0 Vi har därmed bestämt riktningskoefficienten (k-värdet) för tangenten
Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING
Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
f(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Planering av flygplatser
Fö 2: Prognostisering Tobias Andersson Källor Delar av materialet till denna föreläsning är hämtat från: Kap 7 av Airport Planning av Lynn S. Bezilla Edlund, Högberg, Leonardz: Beslutsmodeller redskap
2320 a. Svar: C = 25. Svar: C = 90
2320 a Utgå ifrån y = sin x Om vi subtraherar 25 från vinkeln x, så kommer den att "senareläggas" med 25 och således förskjuts grafen åt höger y = sin(x 25 ) Svar: C = 25 b Utgå ifrån y = sin x Om vi adderar
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
6-2 Medelvärde och median. Namn:
6-2 Medelvärde och median. Namn: Inledning Du har nu lärt dig en hel del om datainsamling och presentation av data i olika sorters diagram. I det här kapitlet skall du studera hur man kan karaktärisera
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 2
Kapitel.1 101, 10 Exempel som löses i boken. 103 Testa genom att lägga linjalen lodrätt och föra den över grafen. Om den på något ställe skär grafen i mer än en punkt så visar grafen inte en funktion.
f(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Forskningsmetodik 2006 Lektion 3
Forskningsmetodik 6 Lektion Att tänka på i en mätsituation Per Olof Hulth Längden hos studenterna på forskningsmetodik : 76 8 6 6 7 6 7 67 7 8 7 7 7 6 6 77 8 6 6 7 Det blir litet överskådligare om vi ordnar
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Regressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2008-12-22 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Jour: Robert Lundqvist,
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram
Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1
Facit till Extra övningsuppgifter
LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en
Kapitel Ekvationsräkning
Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning
Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
Bearbetning och Presentation
Bearbetning och Presentation Vid en bottenfaunaundersökning i Nydalasjön räknade man antalet ringmaskar i 5 vattenprover. Följande värden erhölls:,,,4,,,5,,8,4,,,0,3, Det verkar vara diskreta observationer.
Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I
Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Sebastian Andersson Statistiska institutionen Senast uppdaterad: 15 december 2015 Data kan generellt sett delas in i tre kategorier: 1 Tvärsnittsdata:
ÖVNINGSUPPGIFTER KAPITEL 2
ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?