Tidsserier. Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden.
|
|
- Peter Ekström
- för 8 år sedan
- Visningar:
Transkript
1 Tidsserier Tre modeller för tidsserier är den multiplikativa, additiva och säsongdummymetoden. Den allmänna formeln för den additiva modellen:, och för den multiplikativa modellen:, där T står för trend, C för cykel (tex konjuktur), S för säsongsvariation (tex kvartalsvariation eller veckodagsvariation) och I står för slumpvariation. (Notera att även säsongsvariationen S egentligen är en cykel, men att den är kortare än C. ) Vi ska betrakta två exempel som inte har någon konjuktur, utan bara trend, säsongsvariation och slump. Om det inte finns någon konjuktur (eller annan cykel C) så är den additativa modellen och säsongdummymetoden ungefär likadana, fast den additiva har trendlinjen som referens medan säsongdummymetoden har den utelämnade säsongen som referens. Ex 1. Nedan syns försäljningen av klyptor under åren 3 8 för företaget Klypto (datamaterial finns i filen Ex 1. Försäljning av klyptor ). Då spridningen från trendlinjen är ungefär konstant över tid, förutom säsongsvariationerna, så är den additiva eller säsongdummymetoden lämpliga modeller. 5 Försäljning av klyptor kvartalsvis Det finns fyra säsonger och det är de fyra kvartalen 1,, 3 och 4. Den högsta försäljningen sker under kvartal 3 och den lägsta under kvartal. Vi börjar med den additiva modellen. Då det bara finns trend, säsong och slump blir modellen:. Trendlinjen är (där 1 vid kvartal 1 år 3, vid kvartal 3, osv). Notera att trendlinjen är samma som minsta kvadrat metodens skattning, dvs regressionslinjen.
2 5 Försäljning av klyptor kvaralsvis Säsongsindex ( 1,,3,4) räknar man ut genom formeln: ä " ä ä " ä ä ä Tex säsongsindex 3: = ä /6 ä /6 =( / /6 7.9 Notera att är positivt, ty den ligger över trendlinjen. Även säsongsindex för kvartal 1 är positivt, men säsongsindex för kvartal och 4 är däremot negativa. (Om ett säsongsindex är så ligger den på linjen.) Prediktion för försäljning beräknas genom att beräkna trendlinjens värde vid aktuell tidpunkt samt addera till rätt säsongsindex. Tex för att prediktera försäljningen år 9 kvartal 3, då är 7: , se grafen nedan.
3 Nu modellerar vi säsongdummymetoden istället. Om vi låter kvartal 1 vara referenskvartal blir modellen, där 1 vid säsong och annars (för,3,4. Det är alltså den utelämnade säsongen som är referens. Tolkningen av i säsongdummymetoden är alltså inte samma som vid den additiva modellen (som ju har trendlinjen som referens). Den skattade regressionsekvationen är Nu gör vi en prediktion för försäljningen år 9 kvartal 3. Då är 7 och, 1 och : Vi ser att denna skattningen är nästan samma som den additiva prediktionen 54,8. Avslutningsvis så visar vi bara en tidsserie som är lik den i vårt exempel fast med en konjuktur tillagd.
4 Denna tidsserien modelleras med den additiva modellen. (Det går också att först rensa bort konjukturen och sedan använda säsongdummymetoden.) Ex. Nu ska vi studera en produktion (data i filen Ex. Prod ) av en viss elektrisk komponent kvartalsvis under åren 5 8. Här ökar spridningen med tiden (till skillnad från ex 1) och då är den multiplikativa modellen lämplig. Den lägsta produktionen är vid kvartal 1 och den högsta vid kvartal 4. 5 Produktion 175 Produktion t 15 5 Då det bara finns trend, säsong och slump blir modellen:. Trendlinjen är (där 1 vid kvartal 1 år 5, vid kvartal 5, osv). Säsongsindex ( 1,,3,4) räknar man ut genom formeln: " ä ä "/ ä ä (Man kan ta medelvärdet istället för summan i formeln också, det ger samma sak vid den multiplikativa modellen.) Tex säsongsindex 1: = ä / ä
5 =(( / /689. =.83 Notera att är mindre än 1, ty den ligger under trendlinjen. Säsongsindex för kvartal 4 är däremot större än 1 då den ligger över trendlinjen. (Om ett säsongsindex är 1 så ligger den på linjen.) Prediktion för produktionen beräknas genom att beräkna trendlinjens värde vid aktuell tidpunkt samt multiplicera med rätt säsongsindex. Tex för att prediktera försäljningen år 9 kvartal 1, då är 5: , se grafen nedan.
732G71 Statistik B. Föreläsning 8. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 23
732G71 Statistik B Föreläsning 8 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 23 Klassisk komponentuppdelning Klassisk komponentuppdelning bygger på en intuitiv
Regressions- och Tidsserieanalys - F8
Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning
732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Tidsserier. Data. Vi har tittat på två typer av data
F9 Tidsserier Data Vi har tittat på två typer av data Tvärsnittsdata: data som härrör från en bestämd tidpunkt eller tidsperiod Tidsseriedata: data som insamlats under en följd av tidpunkter eller tidsperioder
ÖVNINGSUPPGIFTER KAPITEL 7
ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Tidsserier, forts från F16 F17. Tidsserier Säsongrensning
Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje
Vad Betyder måtten MAPE, MAD och MSD?
Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.
Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I
Tillämpad statistik (A5), HT15 Föreläsning 22: Tidsserieanalys I Sebastian Andersson Statistiska institutionen Senast uppdaterad: 15 december 2015 Data kan generellt sett delas in i tre kategorier: 1 Tvärsnittsdata:
Säsongrensning i tidsserier.
Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent
Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III
Tillämpad statistik (A5), HT15 Föreläsning 24: Tidsserieanalys III Sebastian Andersson Statistiska institutionen Senast uppdaterad: 16 december 2015 är en prognosmetod vi kan använda för serier med en
Föreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
Räkneövning 5. Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari För Uppgift 2 kan man med fördel ta hjälp av Minitab.
Räkneövning 5 Sebastian Andersson Statistiska institutionen Uppsala universitet 7 januari 016 1 Om uppgifterna För Uppgift kan man med fördel ta hjälp av Minitab. I de fall en figur för tidsserien efterfrågas
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2017-12-08, 8-12 Bertil Wegmann
F11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och
TAMS65 - Seminarium 4 Regressionsanalys
TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet
Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Räkneövning 4. Om uppgifterna. 1 Uppgift 1. Statistiska institutionen Uppsala universitet. 14 december 2016
Räkneövning 4 Statistiska institutionen Uppsala universitet 14 december 2016 Om uppgifterna Uppgift 2 kan med fördel göras med Minitab. I de fall en gur för tidsserien efterfrågas kan du antingen göra
Prognoser. ekonomisk-teoretisk synvinkel. Sunt förnuft i kombination med effektiv matematik ger i regel de bästa prognoserna.
Prognoser Prognoser i tidsserier: Gissa ett framtida värde i tidsserien killnad gentemot prognoser i regression: Det framtida värdet tillhör inte dataområdet. ftet med en prognosmodell är att göra prognos,
Facit till Extra övningsuppgifter
LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Statistik, ANd 732G71 STATISTIK B, 8hp Civilekonomprogrammet, t3, Ht 09 Extra övningsuppgifter Facit till Extra övningsuppgifter 1. Modellen är en
Summakonsistent säsongrensning
Summakonsistent säsongrensning Presentation av projektarbete på SCB av Suad Elezović Statistiska institutionen,stockholms universitet 14 Oktober 2009 2009-10-14 Suad Elezović PCA/MFFM-S 1 Säsongrensning
Sänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann
a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)
5:1 Studien ifråga, High School and beyond, går ut på att hitta ett samband mellan vilken typ av program generellt, praktiskt eller akademiskt som studenter väljer baserat på olika faktorer kön, ras, socioekonomisk
Läs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Utvärdering av Transportstyrelsens flygtrafiksmodeller
Kandidatuppsats i Statistik Utvärdering av Transportstyrelsens flygtrafiksmodeller Arvid Odencrants & Dennis Dahl Abstract The Swedish Transport Agency has for a long time collected data on a monthly
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
Linjär algebra förel. 10 Minsta kvadratmetoden
Linjär algebra förel. 10 Minsta kvadratmetoden Niels Chr. Overgaard 015-09- c N. Chr. Overgaard Förel. 9 015-09- logoonly 1 / 17 Data från 1 vuxna män vikt (kg) längd (m) 58 1,69 83 1,77 80 1,79 77 1,80
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
MALLAR PÅ NÅGRA FRÅGOR I TENTAMEN (OBS! EJ KVALITETSÄKRADE)
MALLAR PÅ NÅGRA FRÅGOR I TENTAMEN 160318 (OBS! EJ KVALITETSÄKRADE) FRÅGA 1 (2p) Ett sätt att bedöma en prognos lämplighet är att beräkna hur väl en presterar relativt en naiv prognos, d.v.s. om man gör
Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.
Tentamen Linköpings universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2016-12-13, 8-12 Bertil Wegmann
Analys av egen tidsserie
Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta
Armin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett
Dekomponering av löneskillnader
Lönebildningsrapporten 2013 133 FÖRDJUPNING Dekomponering av löneskillnader Den här fördjupningen ger en detaljerad beskrivning av dekomponeringen av skillnader i genomsnittlig lön. Först beskrivs metoden
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson (examinator) VT2017 TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2017-04-20 LÖSNINGSFÖRSLAG Första version, med reservation för tryck-
Person Antal månader som utrustningen ägts. Antal timmar utrustningen användes föregående vecka.
y Uppgift 1 (18p) I syfte för att se om antalet månader som man ägt en viss träningsutrustning påverkar träningsintensiteten har tio personer som har köpt träningsutrustningen fått ange hur många månader
Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..
TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad
Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU
Statistikens grunder (an, 7,5 hsp) Tatjana Nahtman Statistiska institutionen, SU KURSENS INNEHÅLL Statistiken ger en empirisk grund för ekonomin. I denna kurs betonas statistikens idémässiga bakgrund och
Föreläsning 3. Prognostisering: Prognosprocess, efterfrågemodeller, prognosmodeller och prognosverktyg
Föreläsning 3 Prognostisering: Prognosprocess, efterfrågemodeller, prognosmodeller och prognosverktyg Kursstruktur Innehåll Föreläsning Lektion Laboration Introduktion, produktionsekonomiska Fö 1 grunder,
Statistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
Den offentliga sektorns inkomster och utgifter kvartalsvis
Offentlig ekonomi 2011 Den offentliga sektorns inkomster och utgifter kvartalsvis 2011, 2:a kvartalet Den officiella sektorns finansiella ställning förbättrades Den offentliga sektorns inkomster ökade
DEN FRAMTIDA VERKSAMHETSVOLYMEN I RÄTTSKEDJAN - CENTRALA PROGNOSER FÖR PERIODEN : RESULTATBILAGA
DEN FRAMTIDA VERKSAMHETSVOLYMEN I RÄTTSKEDJAN - CENTRALA PROGNOSER FÖR PERIODEN 2016-2019: RESULTATBILAGA I denna bilaga beskrivs de prognosmodeller som ligger till grund för prognoserna. Tanken är att
Tentamen Tillämpad statistik A5 (15hp)
Tentamen Tillämpad statistik A5 (15hp) 2016-05-31 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik
STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistiska metoder SDA III, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik
Modellskattningen har gjorts med hjälp av minsta kvadratmetoden (OLS).
MODELLSKATTNINGAR Modeller med bäst anpassning ger inte alltid de bästa prognoserna. Grundantaganden, till exempel vilka modeller som testas, påverkar i viss grad prognosutfallet. Modellerna har, i de
Armin Halilovic: EXTRA ÖVNINGAR
ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt
Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Extramaterial till Matematik X
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ ETT Sannolikhet ELEV Du kommer nu att få bekanta dig med Google Kalkylark. I den här uppgiften får du öva dig i att skriva
Så fungerar moms. en guide
Så fungerar moms en guide Så fungerar moms Moms, eller mervärdesskatt, är en statlig skatt som de flesta företag är skyldiga att redovisa. Tanken är att varje led i värdekedjan ska betala en skatt på det
Kort sammanfattning av de funktioner som används för att Skapa en smart Dashboard!
Funktioner Kort sammanfattning av de funktioner som används för att Skapa en smart Dashboard! Infoga kalkylbladsfunktioner genom att; Markera cellen där du vill att resultatet ska hamna Aktivera funktionsguiden
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och
H1009, Introduktionskurs i matematik Armin Halilovic
H009, Introduktionskurs i matematik Armin Halilovic ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) b) 0 =0 c) 5 5 Alltså x Absolutbeloppet av ett tal x är lika med själva talet x om
1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att
STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström
1 STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III) 3 högskolepoäng, ingående i kursen Undersökningsmetodik och
Medelvärde, median och standardavvikelse
Medelvärde, median och standardavvikelse Detta är en enkel aktivitet där vi på ett dynamiskt sätt ska titta på hur de statistiska måtten, t.ex. median och medelvärde ändras när man ändar ett värde i en
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
NMCC Sigma 8. Täby Friskola 8 Spets
NMCC Sigma 8 Täby Friskola 8 Spets Sverige 2016 1 Innehållsförteckning Innehållsförteckning... 1 Inledning... 2 Sambandet mellan figurens nummer och antalet små kuber... 3 Metod 1... 3 Metod 2... 4 Metod
STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson
1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik
Rapport 2014:3. Nationella trygghetsundersökningen Regionala resultat
Rapport 2014:3 Nationella trygghetsundersökningen 2006 2013 Regionala resultat Nationella trygghetsundersökningen 2006 2013 Regionala resultat Rapport 2014:3 Brå centrum för kunskap om brott och åtgärder
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?
Föreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Den offentliga sektorns inkomster och utgifter kvartalsvis
Offentlig ekonomi 2011 Den offentliga sektorns inkomster och utgifter kvartalsvis 2011, 3:e kvartalet Den offentliga sektorns finansiella ställning förbättrades under juli september Den offentliga sektorns
v, Va -och Trafik- Pa:58101 Linköping. Tel Telex50125 VTISGIS. Telefax [ St/.tulet Besök: OlausMagnus väg37linköping VZfnotat
VZfnotat Nummer: T 14 - Datum: 1987-05-05 Titel: HUR PÅVERKAS KORRIGERINGAR AV OBSERVERAT ANTAL OLYCKOR OM MAN BEAKTAR SKILLNAÄDER I RAPPORTERINGSGRAD/SKAÄDEFÖLJD MELLAN OLIKA REGIONER? Författare: Ulf
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
= 0.044±
Lösningsförslag TMSB18 Matematisk statistik IL 100815 Tid: 12.00-17.00 Telefon: 0707-463397, Examinator: F Abrahamsson 1. Om ett visst företags inkomster en månad är fördelade enligt N(7000, 300) och samma
Den offentliga sektorns inkomster och utgifter kvartalsvis
Offentlig ekonomi 2010 Den offentliga sektorns inkomster och utgifter kvartalsvis 2010 2:a kvartalet Den offentliga sektorns finansiella ställning förbättrades något Den offentliga sektorns inkomster ökade
Perspektiv på den låga inflationen
Perspektiv på den låga inflationen PENNINGPOLITISK RAPPORT FEBRUARI 7 Inflationen blev under fjolåret oväntat låg. Priserna i de flesta undergrupper i KPI ökade långsammare än normalt och inflationen blev
Västsvenska paketet Skattning av trafikarbete
Västsvenska paketet Skattning av trafikarbete Rapport Dokumenttitel: Skattning av trafikarbete Västsvenska paketet rapport Utförande part: WSP Kontaktperson: Tobias Thorsson Innehåll 1 Introduktion Fel!
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
Binomialfördelning, två stickprov
Diskreta data Binomialfördelning, två stickprov Hypotesprövning måste inte grunda sig på normalfördelning 1948 visste man inte om streptomycin var effektivt mot tuberkulos, men man misstänkte det. För
732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
TENTAMEN I STATISTIK B,
732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen
Modellutveckling 2018: UCM Unobserved Component Model En ny modell för inrikes inflyttning på kommunnivå
Modellutveckling 218: UCM Unobserved Component Model En ny modell för inrikes inflyttning på kommunnivå BEFOLKNINGSPROGNOS 218 227/6 STOCKHOLMS LÄN DEMOGRAFIRAPPORT 218:2 2(38) Arbetet med projektet Befolkningsprognos
När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 9. Analys av Tidsserier (LLL kap 18) Tidsserie data
Finansiell Saisik (GN, 7,5 hp,, HT 008) Föreläsning 9 Analys av Tidsserier (LLL kap 8) Deparmen of Saisics (Gebrenegus Ghilagaber, PhD, Associae Professor) Financial Saisics (Basic-level course, 7,5 ECTS,
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144
Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på
Stockholms Universitet Statistiska institutionen Patrik Zetterberg
Stockholms Universitet Statistiska institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, VT2012 2012-05-31 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan
Metod för beräkning av potentiella variabler
Promemoria 2017-09-20 Finansdepartementet Ekonomiska avdelningen Metod för beräkning av potentiella variabler Potentiell BNP definieras som den produktionsnivå som kan upprätthållas vid ett balanserat
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna