Finansiell statistik
|
|
- Kjell Isak Jonasson
- för 6 år sedan
- Visningar:
Transkript
1 Finansiell statistik Föreläsning 5 Tidsserier 4 maj :26
2 Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan dem. T ex en gång i veckan, månaden eller året. Låt oss se på några exempel.
3 Sveriges bruttonationalprodukt Årsdata. En kraftig trend.
4 Procentuella förändringar i BNP Årsdata. Varför var det ca 6% tillväxttakt i ekonomin 1970 och ca 0% året efter? Förändringar p g a konjunktur.
5 Dödsorsak: olycksfall. USA Månadsdata. Ett tydligt säsongsmönster.
6 Orsakerna till variationen i en tidsserie Byggstenarna eller komponenterna (med olika analogier) i en tidsserie är: 1 TREND Den allmänna utveckling som föreligger under en längre period. 2 KONJUNKTUR Kring den trend vi i stora drag kan urskilja finner vi kanske att värdena fluktuerar mer eller mindre regelbundet. 3 SÄSONG Periodiska mönster som återkommer varje år. 4 SLUMP De variationer som inte kan förklaras av ovan utan snarare av tillfälligheter.
7 Vad är prognoser? En förutsägelse angående framtida händelser eller tillstånd kallas en prognos (forecast). Olika metoder: kvalitativa och kvantitativa. Behövs dem? Människan måste göra prognoser. Prognoserna kan vara punktskattningar eller intervallskattningar.
8 Vad är prognoser?-kvalitativa metoder Experters åsikter. Historiska data saknas. Subjektiv kurvanpassning. S-kurvor. Delfi-metoden: (oraklet i Delfi) Rand Corporation; en grupp experter samlas; använts för att bedöma utvecklingen inom olika teknologiska områden. Teknologiska jämförelser.
9 Vad är prognoser?-kvantitativa metoder Univariata prognosmodeller använder uteslutande tidigare värden. Kausala prognosmodeller söker finna andra variabler som påverkar den variabel som skall prognosticeras.
10 När man gör en prognos kommer framtiden troligen visa att det inte var rätt tänkt Det observerade värdet i period t betecknas y t. Prognosen betecknas ŷ t. Prognosfelet(forecast error) för prognosen ŷ t definieras som e t = y t ŷ t. Utseendet kan avslöja brister i modellvalet.
11 Mått på prognosernas noggrannhet Vi definierar även det absoluta felet(absolute deviations) Absoluta felet = e t = y t ŷ t. Genom att bilda det aritmetiska medelvärdet av de absoluta felen erhåller vi den genomsnittliga absoluta avvikelsen(mean absolute deviation (MAD)) Genomsnittliga absoluta avvikelsen = 1 n n e t = 1 n t=1 n y t ŷ t. t=1
12 Mått på prognosernas noggrannhet Vi kvadrerar prognosfelen e 2 t = (y t ŷ t ) 2 och bildar det aritmetiska medelvärdet av de kvadrerade felen. Då erhåller vi medelkvadratavvikelsen(mean squared error(mse)) Medelkvadratavvikelsen = 1 n n et 2 = 1 n t=1 n (y t ŷ t ) 2. t=1
13 Mått på prognosernas noggrannhet Absoluta procentuella felet ges som APT t = e t y t (100) = y t ŷ t y t (100). Bildar aritmetiska medelvärdet. Då erhåller vi den genomsnittliga absoluta procentavvikelsen(mean absolute percentage error(mape)) Genomsnittliga absoluta procentavvikelsen = 1 n n t=1 y t ŷ t y t (100).
14 Korrelation och autokorrelation Låt oss begrunda uttrycket r = n i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva. I nämnaren har vi alltså ett positivt tal. Vilket tecken som r antar beror således på täljaren (x 1 x) (y 1 y) + (x 2 x) (y 2 y) + + (x n x) (y n y). Om denna summa av produkter skall bli positiv eller negativ beror på om de ingående termerna är positiva eller negativa, samt förstås på deras storlek. Följande figur är oftast till hjälp för att gissa storlek och tecken på korrelationskoefficienten.
15 Korrelation och autokorrelation Y (y i y) > 0 (y i y) > 0 (x i x) < 0 (x i x) > 0 y (x i x) (y i y) < 0 (x i x) (y i y) > 0 (y i y) < 0 (y i y) < 0 (x i x) < 0 (x i x) > 0 (x i x) (y i y) > 0 (x i x) (y i y) < 0 x X
16 Korrelation och autokorrelation För 8 individer har ålder och längd uppmätts: Barn A B C D E F G H x y Vi bildar de ordnade paren och plottar dem: (1, 68), (2, 91),..., (6, 127)
17 Korrelation och autokorrelation Korrelationen är r =
18 Korrelation och autokorrelation Nu vet vi hur två variabler korrelerar med varandra. Nu påstår jag att en tidsserie y t kan korrelera med sig själv! Hur då? Vi skapar en ny variabel utav den gamla så att vi uppfyller tanken om två variabler som korrelerar med varandra. I varje tidpunkt låter vi den nya variabeln vara lika med y t :s värde i den förra tidpunkten. t y t y t
19 Korrelation och autokorrelation Vi har tio observationer på denna tidsserie. t y t y t Summa 100 Korrelerar variablerna y t och y t 1? Vi börjar med ett spridningsdiagram.
20 Korrelation och autokorrelation Vi har den laggade variabeln y t 1 på y-axeln och den ursprungliga y t på x-axeln. Alltså är det första paret i tabellen är (8, 13). Längst till vänster ser vi de två paren (4, 4) och (4, 15). (y = 10)
21 Korrelation och autokorrelation Med inspiration av definitionen ovan av korrelation mellan två variabler, söker vi nu något liknande mellan y t och y t 1. Om vi har en tidsserie y 1, y 2,..., y n, så definieras stickprovets autokorrelationsfunktion i laggen 1 som r 1 = n t=2 (y t y) (y t 1 y) n t=1 (y t y) 2. (1) Vi har n = 10 observationer. Summan av observationerna är etthundra, så medelvärdet för y t är tio.
22 Korrelation och autokorrelation För att beräkna täljaren i (1) fyller vi på tabellen nedan t y t y t 1 y t 10 y t 1 10 (y t 10)(y t 1 10) Summa -27
23 Korrelation och autokorrelation Ur kolumn 4 i tabellen kan vi även beräkna nämnaren i (1). Den blir ( 2) = 144. Alltså blir r 1 = = Med detta värde är vi inte så långt från att y t och y t 1 är okorrelerade. Tecknet kunde anas utav plotten ovan. Storleken mycket svår att se.
24 Korrelation och autokorrelation Allt som sagts ovan om korrelationen hos en tidserie mellan observationerna på ett stegs tidsavstånd kan generaliseras till två stegs avstånd, tre steg o s v. För att kunna gissa vad korrelationen är på två stegs avstånd, så kan man plotta y t mot y t 2. Genom formeln n t=3 r 2 = (y t y) (y t 2 y) n t=1 (y t y) 2. definieras stickprovets autokorrelationsfunktion i laggen 2. I vårt exempel kan man visa att r 2 = Ämnet återkommer i samband med ARIMA-modeller.
25 Om minstakvadratmetodens förutsättningar Feltermerna skall vara oberoende stokastiska variabler. Residualerna y t ŷ skattar feltermerna. Residualerna skall bevara oberoendet. Tyvärr är detta ett för kraftigt antagande när vi använder regressionsmetoder på tidsseriedata. Vi tittar på några exempel för feltermerna.
26 Vi måste ha en specifik typ av korrelation mellan feltermerna! Föreställ er att på ett stegs avstånd mellan feltermerna ε t och ε t 1 så har vi korrelationen φ. två stegs avstånd mellan feltermerna ε t och ε t 2 så har vi korrelationen φ 2. tre stegs avstånd mellan feltermerna ε t och ε t 3 så har vi korrelationen φ 3. till slut på k stegs avstånd mellan feltermerna ε t och ε t k så har vi korrelationen φ k. Korrelationerna på de olika tidsavstånden utgör alltså en talföljd φ, φ 2, φ 3,..., φ k.
27 AR(1)-modellen En modell med en sådan korrelationsstruktur är ε t = φε t 1 + a t, 1 < φ < 1, (2) där de stokastiska variablerna a t är nya feltermer med vanligt beteende. (E(a t ) = 0; Var(a t ) = σ 2 a och Cov(a t, a t+k ) = 0. Ibland även normalfördelning med dessa moment.) Modellen (2) kallas för en autoregressiv modell av första ordningen, vanligen förkortad AR(1). Studiet av sådana modeller återkommer i den senare delen av kursen.
28 Durbin-Watsons test: nollhypotesen Om φ = 0 i ekvation (2) ovan, så blir ε t = a t och feltermerna är som vanligt igen. Om φ > 0, så har vi en geometriskt fallande talföljd av uttrycket φ k vars samtliga medlemmar är positiva. (Se Sydsæter/Hammond, sidan 248 för talföljder). Låt oss därför testa H 0 : φ = 0 mot alternativet H a : φ > 0. Vi kan även uttrycka dessa hypoteser som mot alternativet H 0 : feltermerna är ej autokorrelerade H a : feltermerna är positivt autokorrelerade.
29 Durbin-Watsons test: testvariabeln Durbin-Watsons testvariabel ges som d = n t=2 (e t e t 1 ) 2 n, t=1 e2 t där e 1, e 2,..., e n är residualerna. Om vi använder den andra kvadreringsregeln i täljaren får vi n (e t e t 1 ) 2 = t=2 n et 2 + t=2 n et t=2 n e t e t 1. Summan i mitten skriver vi från 1 till n 1 istället för som den står nu från 2 till n. t=2
30 Durbin-Watsons test: testvariabeln Då kan vi skriva Durbin-Watsons testvariabel som d n t=2 e2 t n t=1 e2 t + n 1 t=1 e2 t n t=1 e2 t 2 n t=2 e te t 1 n. t=1 e2 t De första två termerna torde bli mycket nära ett om antalet observationer n inte är för litet, så då har vi n t=2 d e te t 1 n. (3) t=1 e2 t
31 Durbin-Watsons test: testvariabeln Lår oss skriva upp stickprovets autokorrelationsfunktion i laggen 1 för residualerna e 1, e 2,..., e n. Då har vi r 1 = n t=2 (e t e) (e t 1 e) n t=1 (e t e) 2. Nu är ju summan av residualerna noll, så e = 0, vilket ger r 1 = n t=2 e te t 1 n. t=1 e2 t Detta känner vi igen från (3) ovan, som alltså kan skrivas d r 1 = 2 2r 1 = 2(1 r 1 ).
32 Durbin-Watsons test: testvariabeln En approximation av testvariabeln är alltså d 2(1 r 1 ). Om nollhypotesen (ingen autokorrelation) är sann, så bör r 1 bli mycket nära noll och således d 2. Om vi har allvarlig positiv autokorrelation i feltermerna, blir r 1 > 0, så 1 r 1 < 1 och d < 2.
33 Durbin-Watsons test: testvariabeln För alla korrelationer gäller att 1 korrelationen 1. Då kan vi bestämma variationsområdet för d. Vi har att 1 r 1 1 r r 0 4 2(1 r) 0. Alltså ligger d approximativt mellan 0 och 4.
34 Durbin-Watsons test: gränserna Låt d α vara det tal sådant att, om nollhypotesen är sann, så P (d < d α ) = α. Alltså är α sannolikheten att begå ett fel av första slaget, d v s att förkasta en sann nollhypotes. Testvariabelns fördelning är utomordentligt komplicerad. Den beror av de oberoende variablerna X i regressionen. Omöjligt att åstadkomma en tabell som tar hänsyn till alla möjliga värden som de oberoende variablerna kan anta. För att rädda situationen åstadkom Durbin och Watson två tal sådana att d L,α < d α < d U,α.
35 Durbin-Watsons test: gränserna De bägge gränserna d L,α och d U,α finns i tabell 12 på sidorna i sjunde upplagan ( i sjätte). Tabellerna ger rätt värden på d L,α och d U,α för olika värden på den valda signifikansnivån α; antalet oberoende variabler i modellen som betecknas k; stickprovsstorleken n. Sidan 872 behandlar fallet då α = 0.05 och sidan 873 fallet då α = Stickprovsstorleken går n = 15 till n = 100. Antalet oberoende variabler går från k = 1 till k = 5.
36 Durbin-Watsons test Ställ upp hypoteserna mot alternativet H 0 : feltermerna är ej autokorrelerade H a : feltermerna är positivt autokorrelerade (eller H 0 : φ = 0 mot alternativet H a : φ > 0 i modellen ε t = φε t 1 + a t för feltermerna) Testet är då följande: 1 Om d < d L,α, så förkastar vi H 0. 2 Om d > d U,α, så förkastar vi inte H 0. 3 Om d L,α d d U,α, så kan ingen slutsats dragas.
37 Durbin-Watsons test:alternativ mothypotes Sätt upp hypoteserna mot alternativet H 0 : feltermerna är ej autokorrelerade H a : feltermerna är negativt autokorrelerade (eller H 0 : φ = 0 mot alternativet H a : φ < 0 i modellen ε t = φε t 1 + a t för feltermerna) Testet är då följande: 1 Om 4 d < d L,α, så förkastar vi H 0. (Detta händer om d är stor, större än 3) 2 Om 4 d > d U,α, så förkastar vi inte H 0. 3 Om d L,α 4 d d U,α, så kan ingen slutsats dragas.
Korrelation och autokorrelation
Korrelation och autokorrelation Låt oss begrunda uttrycket r = i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva.
Läs merSveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Läs merAutokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov
Läs merSveriges bruttonationalprodukt Årsdata. En kraftig trend.
Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs merStokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
Läs mer732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Läs merRegressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Läs merStokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merF19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Läs merStokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Läs merMatematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Läs merSkriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012
Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Läs merFöreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Läs merFÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 6 Statistiska metoder 1 Dagens föreläsning o Kort om projektet o Hypotesprövning Populationsandel Populationsmedelvärde p-värdet 2 Kort om projektet Syftet med projektet i denna kurs är att
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs merStockholms Universitet Statistiska institutionen Patrik Zetterberg
Stockholms Universitet Statistiska institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, VT2012 2012-05-31 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan
Läs merFinansiell statistik. Multipel regression. 4 maj 2011
Finansiell statistik Föreläsning 4 Multipel regression Jörgen Säve-Söderbergh 4 maj 2011 Samband mellan variabler Vi människor misstänker ofta att det finns många variabler som påverkar den variabel vi
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merFöreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merHypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Läs merSF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 12 HYPOTESPRÖVNING. Tatjana Pavlenko 4 oktober 2016 PLAN FÖR DAGENS FÖRELÄSNING Intervallskattning med normalfördelade data: två stickprov (rep.) Intervallskattning
Läs merStatistik 1 för biologer, logopeder och psykologer
Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad
Läs merFöreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merSF1915 Sannolikhetsteori och statistik 6 hp. χ 2 -test
SF1915 Sannolikhetsteori och statistik 6 hp Föreläsning 12 χ 2 -test Jörgen Säve-Söderbergh Anpassningstest test av given fördelning n oberoende försök med r möjliga olika utfall Händelse A 1 A 2... A
Läs merTentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.
Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merSpridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
Läs merStatistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
Läs merSyfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen
Uwe Menzel, 2017 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Syfte: o statistiska test om parametrar för en fördelning o förkasta eller acceptera hypotesen hypotes: = 20 (väntevärdet är 20)
Läs merHur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Läs merTentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Läs merTvå innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Läs merLektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Läs merTentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Läs merAnalytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens
Analytisk statistik Tony Pansell, Leg optiker Docent, Universitetslektor Analytisk statistik Att dra slutsatser från den insamlade datan. Två metoder:. att generalisera från en mindre grupp mot en större
Läs merSF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska
Läs merFöreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Läs merTillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2
Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-23 Faktum är att vi i praktiken nästan alltid har en blandning
Läs merKapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Läs mer8 Inferens om väntevärdet (och variansen) av en fördelning
8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
Läs merF11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
Läs merMatematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Läs merLinjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Läs merPreliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Läs mer2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Läs merFöreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test
Läs merMatematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 6 Johan Lindström 13 september 2017 Johan Lindström - johanl@maths.lth.se FMSF70/MASB02 F6 1/22 : Rattonykterhet Johan Lindström - johanl@maths.lth.se
Läs mer732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merSF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det
Läs merFöreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs merFöreläsning 8. Kapitel 9 och 10 sid Samband mellan kvalitativa och kvantitativa variabler
Föreläsning 8 Kapitel 9 och 10 sid 230-284 Samband mellan kvalitativa och kvantitativa variabler 2 Agenda Samband mellan kvalitativa variabler Chitvåtest för analys av frekvenstabell och korstabell Samband
Läs merLaboration 4: Hypotesprövning och styrkefunktion
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration
Läs merF22, Icke-parametriska metoder.
Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall
Läs merπ = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.
Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting
Läs merÖVNINGSUPPGIFTER KAPITEL 7
ÖVNINGSUPPGIFTER KAPITEL 7 TIDSSERIEDIAGRAM OCH UTJÄMNING 1. En omdebatterad utveckling under 90-talet gäller den snabba ökningen i VDlöner. Tabellen nedan visar genomsnittlig kompensation för direktörer
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merFöreläsningsanteckningar till kapitel 9, del 2
Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0
Läs merFöreläsning 5: Hypotesprövningar
Föreläsning 5: Hypotesprövningar Johan Thim (johan.thim@liu.se) 24 november 2018 Vi har nu studerat metoder för hur man hittar lämpliga skattningar av okända parametrar och även stängt in dessa skattningar
Läs merEnvägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Läs merFinansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant
Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merSF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merFöreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
Läs merSTATISTISK POWER OCH STICKPROVSDIMENSIONERING
STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel
Läs mer732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 9 Bertil Wegmann IDA, Linköpings universitet December 1, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B December 1, 2016 1 / 20 Metoder för att analysera tidsserier Tidsserieregression
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Läs merTentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.
Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merGör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad
Läs mer1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)
1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna
Läs merLösningsförslag till Matematisk statistik LKT325 Tentamen
Lösningsförslag till Matematisk statistik LKT325 Tentamen 20190115 Kursansvarig: Reimond Emanuelsson Betygsgränser: för betyg 3 krävs minst 20 poäng, för betyg 4 krävs minst 30 poäng, för betyg 5 krävs
Läs merHur man tolkar statistiska resultat
Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?
Läs merLaboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Läs merKapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
Läs merTentamen i Dataanalys och statistik för I den 28 okt 2015
Tentamen i Dataanalys och statistik för I den 8 okt Tentamen består av åtta uppgifter om totalt poäng. Det krävs minst poäng för betyg, minst poäng för och minst för. Eaminator: Ulla lomqvist Hjälpmedel:
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
Läs merSänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Läs mer