Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Storlek: px
Starta visningen från sidan:

Download "Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset."

Transkript

1 Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT Skrivtid: Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade tabeller och formelblad. Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Tentamen består av sex uppgifter som kan ge totalt 60 poäng. Använd endast institutionens papper för dina svar och lösningar. Betygskriterier: A: poäng B: poäng C: poäng D: poäng E: poäng F: 0-29 poäng LYCKA TILL! 1

2 Uppgift 1 (6 poäng) Använd högst ett A4 för att beskriva hur olika plottar kan användas för att upptäcka brott mot antaganden som används vid linjär regression (t.ex. normalitet, heteroskedasticitet, autokorrelation, linjäritet/specifikationsfel). Histogram/täthetsskattning/qq-plot - normalitet Skattade värden mot residualer - linjäritet/specifikationsfel x-variabler mot residualer/kvadrerade residualer - heteroscedasticitet Tid mot residualer - autokorrelation Residual mot laggad residual - autokorrelation (skattad autokorrelationsfunktionen) Se föreläsning... samt NCT. Uppgift 2 (8 poäng) Vi har erhållit nedanstående tidsserie med försäljningssiffror i miljoner. År Tertial a. Beskriv trenden på lämpligt sätt (3 poäng) Använd 3-punkts glidande medelvärde för att erhålla År Tertial **** 12+1/ / /3 12+1/3 13+2/ / **** b. Beräkna säsongseffekten på lämpligt sätt (3 poäng) Med säsongsindexmetoden tar vi först kvoten mellan observation och trend, dvs År Tertial **** **** Sedan beräknas medianen för varje tertial vilken justeras för genomsnittet (3.031/3) så att säsongsindex erhålls:.973/1.01= /1.01= /1.01=1.237 c. Säsongsrensa år 2012 på lämpligt sätt (2 poäng) 2

3 Dela observerade värden med säsongsindex för att säsongsrensa 11/.963= /.800= /1.237=12.93 Uppgift 3 (10 poäng) Denna fråga är uppdelad i fem delfrågor. I varje delfråga är ett (och endast ett) av alternativen rätt. Skriv tydligt i ditt svar vilket alternativ som är rätt. Rätt svar ger 2 poäng på delfrågan. Motivering behövs inte och ger inte pluspoäng. Om du angett fler än ett alternativ på en delfråga ger det 0 poäng på delfrågan. Delfråga 1 (2 poäng) Ett tillstånd (E) i en Markovkedja kallas absorberande om processen för alltid förblir i detta ( tillstånd ) när den en gång har kommit dit. Vilket av följande påståenden stämmer?.8.2 a. innehåller två absorberande tillstånd b. Om man börjar i tillstånd E 2 i kommer man aldrig att hamna i ett ab sorberande tillstånd. c. Om en Markovkedja innehåller absorberande tillstånd går den asymptotiska fördelningen inte att beräkna d. I Markovkedjan är det endast möjligt att nå ett absorberande tillstånd om man börjar i tillstånd E Rätt svar: b. Delfråga 2 (2 poäng) Vad gäller för följande två ARIMA-processer? Y t = φ 0 + φ 1 Y t 1 + φ 2 Y t 2 + φ 3 Y t 3 + ɛ t + θ 1 ɛ t 1 X t = Φ 0 + ε t + Θ 1 ε t 1 + Φ 1 X t 1 + Φ 2 X t 2 + Φ 3 X t 3 a. Y t är en ARIMA(p=3,d=1,q=1) b. Processerna kan inte vara exakt lika c. X t är en ARIMA(p=1,d=0,q=3) d. Oavsett parametervärdena kommer differentiering behövas för att erhålla stationäritet Rätt svar: e. Delfråga 3 (2 poäng) 3

4 Ett företag använder sig av en enkel exponentiell utjämningsmodell ŷ t,t+1 = αy t + (1 α)ŷ t 1,t för att prognosticera volatilitet. Man avser nu att byta utjämningskonstant från α =.8 till α =.7. Vilket av följande påståenden stämmer då? a. Prognosen kommer att reagera långsammare på den senast tillförda informationen än tidigare. b. Långsiktiga prognoser (flera än en tidsperiod framåt) kommer tendera att vara lägre än tidigare. c. Prognoserna kommer att uppvisa större variation än tidigare. d. Vikten som ges till de äldsta observationerna kommer att minska. Rätt svar: a. Delfråga 4 (2 poäng) Vad stämmer om linjär regression som skattas med minsta-kvadrat-metoden (eng. OLS)? a. Väntevärdet av residualerna är noll. b. Det är möjligt att skatta modellen med en förklarande X-variabel som är konstant. c. Det krävs fler parametrar än observationer för att kunna skatta en linjär regressionsmodell d. Om residualerna är heteroskedastiska kan vi ändå dra korrekta slutsatser om skattade parametrar utifrån test och konfidensintervall som baseras på t-fördelningen. Rätt svar: a. Delfråga 5 (2 poäng) Att en process är svagt stationär innebär att a. den alltid följer en normalfördelning. b. den kan vara en random walk. c. om processen är diskret så bestäms den av 2 t parametrar, där t är tiden i heltal. d. variansen beror endast av tiden. Rätt svar: e. Uppgift 4 (17 poäng) a. (4 poäng) Beskriv varför Laspeyres prisindex tenderar att överskatta prisinflation. Nedan finns exempeldata över kvantitet och pris för två varor som skulle kunna refereras till i beskrivningen. Biobesök Köpfilm År Pris Kvantitet Pris Kvantitet

5 se exempel i L10, p6. b. (3 poäng) I slutet av varje år beräknar en butikskedja sambandet mellan omsättningen (Y ) och en uppsättning av variabler med hjälp av linjär regression; X 1 genomsnittlig öppetid per butik X 2 förändring av konsumentprisindex X 3 genomsnittlig inkomstnivå inom kommunen X 4 antal konkurrenter inom närområdet Parameterskattningarna i modellen brukar vara relativt stabila över åren, bortsett från β 2 för förändring av konsumentprisindex som är mest variabel. I år blev det dock en stor överraskning, då skattningen för genomsnittlig öppettid per butik β 1 kraftigt reducerades, se tabellen nedan. Dock var den enligt p-värdet ungefär lika signifikant som tidigare år, och övriga parameterskattningar var relativt oförändrade. Försök att ge en rimlig förklaring till varför detta resultatet erhållits. År β p-värde Det verkar vara en faktor 60 som skiljer skattningen 2013 från de tidigare årens. En faktor 60 när något mäts i tid antyder att man har använt sig av olika tidsenhet, gissningsvis timmar tidigare och minuter Vi förväntar oss då just denna effekt, att parameterskattningen sjunker med en faktor 60 men att effekten är oförändrad då denna är oberoende av vilken skala som mäts på. c. (6 poäng) Din chef visar stolt upp resultatet från sin skattade regressionsmodell, vilken uppvisar en förklaringsgrad på R 2 adj =.59; y = x 1 + e där y är kapitalbehov och x är genomsnittligt antal (heltids)anställda. Du misstänker dock att sambandet inte är helt så enkelt och gräver lite i bakgrundsmaterialet där du hittar följande plottar; 5

6 Föreslå hur modellen skulle kunna förbättras genom att skriva upp ett nytt förslag på en linjär regressionmodell att skatta, förklara vilka variabler som ingår och varför de ingår. I figurerna finns det tre saker att lägga märke till. 1. Histogrammet antyder att fördelningen av kvoten är skev, och tittar vi i spridningsdiagrammet så ser vi varför, sambandet verkar vara exponentiellt snarare än linjärt. 2. Nystartade respektive äldre företag verkar ha olika stark exponentiell utveckling. 3. Startpunkten för nystartade respektive äldre företag verkar vara olika (dvs om vi extrapolerar till 0 antal genomsnittligt anställda). Av dessa skäl torde modellen log(y) = β 0 + β 1 x 1 + β 2 d 1 + β 3 x 1 d 1 + ε { 1 om nystartat passa bättre, där d 1 =. 0 om äldre d. (4 poäng) Följande linjära regressionmodell är skattad baserad på 5 års månadsdata. y t = β 0 + β 1 x 1,t + β 2 x 2,t + β 3 x 3,t + e I plotten ses den skattade autokorrelationsfunktion (ACF) för residualerna. 6

7 Du misstänker att residualerna är autokorrelerade. Testa därför hypotesen H 0 : φ = 0 mot H 1 : φ > 0 med ett lämpligt test på α =.05 signifikansnivå. Vi gör ett Durbin-Watson test utifrån givna hypoteser. Antag signifikansnivå α =.05 (enda som är given i tabellen). För K=3 variabler har vi i tabellen för 60 observationer d L = 1.48 och d U = Läser av skattat autokorrelation r 1.6 i figuren. Vi utnyttjar approximation d obs = 2 (1 r 1 ) =.8. Förkasta således nollhypotesen om ingen autokorrelation. Uppgift 5 (13 poäng) Två variabler X t och Y t kan båda antas vara genererade från samma typ av Wienerprocess N(δt, σ 2 t), där driften δ =.05, variansen σ 2 = 4, och tiden t mäts i dagar. a. (3 poäng) Vad är sannolikheten att X t ökat med minst 1 efter en dag? Vi har E[X 1 ] = δ t =.05 1 =.05, V [X 1 ] = 4 1 = 4. Då blir P (X 1 > 1) = P ( X > ) = P (Z >.475) = = 1 P (Z <.475) = om vi interpolerar i tabellen mellan.47 och.48 dvs ca 31.7 % sannolikhet. (1 P (Z <.47)) + (1 P (Z <.48)) 2 = =

8 b. (3 poäng) Vilken fördelning följer X t + X t? Vi har E[X t + X t ] = E[2X t ] = 2 E[X t ] =.10t, och V [2X t ] = 2 2 V [X t ] = 4 4 t = 16t. dvs N(2δt, 4σ 2 t) c. (3 poäng) Vilken fördelning följer X t + Y t om korrelationen ρ X,Y =.4? Vi har E[X t + Y t ] = E[2X t ] = 2 E[X t ] =.10t, V [X t + Y t ] = V [X t ] + V [Y t ] + 2Cov[X t, Y t ] = = V [X t ] + V [Y t ] + 2ρ V [X t ] V [Y t ] = ( ) t = 11.2t. dvs N(2 δ t, 11.2 t). d. (4 poäng) Vad är sannolikheten att X t + Y t ökat med minst 1 efter en halv dag, om korrelationen ρ X,Y =.4? Kalla W t = X t + Y t Notera att t =.5 Vi har då E[W.5 ] =.10.5 =.05, V [W.5 ] = = 5.6. Då blir P (W.5 > 1) = P 1 P (Z <.40) = =.3446 dvs ca 34 % sannolikhet. ( W > ) = = P (Z >.4014) Uppgift 6 (6 poäng) En undersökning studerar risken att ett aktiebolag lägger ner sin verksamhet i Sverige om en majoritet av aktierna i företaget ägs av utländska juridiska personer (utlandsägda företag), och jämför med risken att det läggs ner om en majoritet av aktierna i företaget ägs av svenska juridiska personer (svenskägda företag). Undersökningen, som omfattar 425 företag, redovisar följande tabell. Företaget är utlandsägt Företaget är svenskägt Företaget har lagts ner Företaget har ej lagts ner

9 a) Hur stor är risken att ett företag läggs ner helt oavsett om det är svenskägt eller utlandsägt? (1 poäng) 150/425 = 6/ dvs ca 35 %. b) I logistisk regression modelleras logaritmen av oddset för den intressanta händelsen som en linjär funktion. Hur stor är oddskvoten, dvs oddset att ett företag läggs ner om det är utlandsägt dividerat med oddset att ett företag läggs ner om det är svenskägt? (2 poäng) 25/25 125/250 = 2 dvs 2 gånger högre odds om det är utländskt än svenskt c) Följande logistiska regressionsmodell anpassas till data i tabellen: eβ 0+β 1 x π(x) = 1 + e β 0+β 1 x { 1 om företaget är svenskägt där x = 0 om företaget är utlandsägt. så att π(x) = P (Y = 1 X = x) är sannolikheten att ett slumpvis utvalt företag med värdet x läggs ner. Hur tolkas koefficienten β 1 i den logistiska modellen? (3 poäng) Förväntad förändring av logaritmerad oddskvot för händelse y (dvs nedläggning), vid förändring av en enhet x (dvs om vi byter till svenskt (x=1) från utlandsägt (x=0)). 9

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, HT2013 2014-02-07 Skrivtid: 13.00-18.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012

Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 Statistiska Institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012 2013-01-18 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Stockholms Universitet Statistiska institutionen Patrik Zetterberg

Stockholms Universitet Statistiska institutionen Patrik Zetterberg Stockholms Universitet Statistiska institutionen Patrik Zetterberg Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, VT2012 2012-05-31 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann

STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann STOCKHOLMS UNIVERSITET HT 2011 Statistiska institutionen Bertil Wegmann KURSBESKRIVNING FÖR FINANSIELL STATISTIK, 7.5 HÖGSKOLEPOÄNG. KURSEN BESTÅR AV TVÅ MOMENT: Teori, skriftlig tentamen, 6 högskolepoäng

Läs mer

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER STOCKHOLMS UNIVERSITET Statistiska institutionen Termeh Shafie OMTENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-04-16 Skrivtid: 15.00-20.00 Hjälpmedel: Miniräknare utan lagrade formler eller text,

Läs mer

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009 Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh 1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik

Läs mer

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012 Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov

Läs mer

Preliminärt lösningsförslag - omtentamen i Finansiell statistik,

Preliminärt lösningsförslag - omtentamen i Finansiell statistik, Preliminärt lösningsförslag - omtentamen i Finansiell statistik, 2012-08-22 Uppgift 1a) y x -1 0 1 P(Y = y) -1 1/16 3/16 1/16 5/16 0 3/16 0 3/16 6/16 1 1/16 3/16 1/16 5/16 P(X = y) 5/16 6/16 5/16 1 E[X]

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består

Läs mer

TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS

TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2012-03-16 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistiska metoder SDA III, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och

Läs mer

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh

STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh 1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Tentamen för kursen. Linjära statistiska modeller. 22 augusti STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistiska metoder SDA III, 2 poäng ingående i kurserna Grundkurs i statistik 20 p samt Undersökningsmetodik

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik och

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys III (SDA III, statistiska metoder) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-06-07 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 15 hp, HT07. Fredagen 18 januari 2008

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 15 hp, HT07. Fredagen 18 januari 2008 Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 15 hp, HT07. Fredagen 18 januari 2008 Skrivtid: 5 timmar (14-19) Hjälpmedel: Miniräknare,

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

Sveriges bruttonationalprodukt Årsdata. En kraftig trend.

Sveriges bruttonationalprodukt Årsdata. En kraftig trend. Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan

Läs mer

Finansiell statistik

Finansiell statistik Finansiell statistik Föreläsning 5 Tidsserier 4 maj 2011 14:26 Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare

Läs mer

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14

Läs mer

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp

TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp UMEÅ UNIVERSITET Tentamen 2016-08-24 Sid 1 TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp Skrivtid: 16-22 Tillåtna hjälpmedel: Miniräknare. Formelblad och tabeller bifogas till tentamen. Studenterna

Läs mer

Matematisk statistik, Föreläsning 5

Matematisk statistik, Föreläsning 5 Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk

Läs mer

STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson (examinator) VT2017 TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2017-04-20 LÖSNINGSFÖRSLAG Första version, med reservation för tryck-

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 17 februari

Tentamen för kursen. Linjära statistiska modeller. 17 februari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-06-02 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mikael Stenlund Examinator:

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-06-03 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4

Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4 MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas

Läs mer

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl

Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Sänkningen av parasitnivåerna i blodet

Sänkningen av parasitnivåerna i blodet 4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.

Läs mer

Korrelation och autokorrelation

Korrelation och autokorrelation Korrelation och autokorrelation Låt oss begrunda uttrycket r = i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva.

Läs mer

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET HT 2007 Statistiska institutionen Johan Andersson Skriftlig omtentamen på momentet Statistisk dataanalys I (SDA l, beskrivande statistik) 3 högskolepoäng, ingående i kursen Undersökningsmetodik

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2015-08-25 Tentamen Tillämpad statistik A5 (15hp) 2015-08-25 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström 1 STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III) 3 högskolepoäng, ingående i kursen Undersökningsmetodik och

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007)

Anvisningar till del 2 av den obligatoriska inlämningsuppgiften (HT 2007) Statistiska Institutionen Gebrenegus Ghilagaber & Nicklas Pettersson 007-1-06 Anvisningar till del av den obligatoriska inlämningsuppgiften (HT 007) Den obligatoriska inlämningsuppgiften består av två

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden

Läs mer

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression Anna Lindgren 14 december, 2015 Anna Lindgren anna@maths.lth.se FMSF20 F13 1/22 Linjär regression Vi har n st par av

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2

Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2 MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 10 e januari 2017 Ten 1, 9 hp Tillåtna hjälpmedel:

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Tentamen Tillämpad statistik A5 (15hp) 2016-05-31 Statistiska institutionen, Uppsala universitet Upplysningar 1. Tillåtna hjälpmedel: Miniräknare, A4/A8 Tabell- och formelsamling (alternativ Statistik

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2

Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2 MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 7 Mars 2014 Disposition r Kondensintervall och hypotestest Kondensintervall Statistika Z (eller T) har fördelning F (Z en funktion av ˆθ och θ) q 1 α/2

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2019-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Mykola

Läs mer

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression

Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Analys av lägenhetspriser i Hammarby Sjöstad med multipel linjär regression Christian Aguirre Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2015:17 Matematisk

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Skrivning i ekonometri torsdagen den 8 februari 2007

Skrivning i ekonometri torsdagen den 8 februari 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)

Läs mer

P =

P = Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:

Läs mer