Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007)
|
|
- Stig Falk
- för 5 år sedan
- Visningar:
Transkript
1 Laboration 1 Grafisk teknik (TNM059) Introduktion till Matlab R. Lenz och S. Gooran (VT2007)
2 Introduktion: Denna laboration är en introduktion till Matlab. Efter denna laboration ska ni kunna följande: Olika variabeltyper Punktvis operation, skalärprodukt och numerisk integral Förstå hur bilder representeras i Matlab Olika bildvisningsfunktioner och colormap Skriva funktioner i Matlab Slippa onödiga for-loopar i Matlab Nedsampling och uppsampling av bilder och hur olika interpolationsfunktioner påverkar resultatet Alla bilder som ni kommer att behöva finns under S:/TN/M/TNM059/Lab1. 1. Variabeltyper: 1.1 Skapa variabeln a genom a=5. Kolla vad a har för variabeltyp med hjälp av kommandot whos. Vad är resultatet av a/4? Skriv b=uint8(a) och kolla vad b har för variabeltyp. Vad är nu resultatet av b/4? Beskriv skillnaderna! 1.2 Läs in bilden kvarn.tif med hjälp av imread och kalla den för myimage1. Visa bilden med imshow. Normalisera bilden genom att dela bilden med 255 och kalla resultatet för myimage2. Varför 255? Visa myimage2 med imshow(myimage2) och imshow(double(myimage2)) i två olika fönster! Vad händer? 1
3 Normalisera nu bilden genom följande, myimage3=double(myimage1)/255, och visa myimage3 i ett nytt fönster. Beskriv vad som hände genom att studera variabeltyperna för dessa bilder. 2. Bildvisning och colormap 2.1 Skriv följande, >> imshow(myimage3/3) där myimage3 är bilden från föregående uppgift. Vad händer? Varför? 2.2 Kör nu, >> figure; >> imagesc(myimage3/3) >> colormap gray Vad händer nu? Vad gör colormap gray? 2.3 Olika färger kan beskrivas med hjälp av deras RGB värden i en vektor. T.ex. [0 0 0] är svart, [1 1 1] är vit, [1 0 0] är ren röd, och [ ] är grå. Kör följande: >> map=([1 0 0; 0 1 1; ; ]) >> image([1, 2 ; 3, 4]) >> colormap(map) 2
4 Kör nu enligt: >> map=([1 0 1; ; ; ]) >> image([1, 2 ; 3, 4]) >> colormap(map) Och >> map=([1 0 1; ; ; ]) >> image([1, 2, 3, 4]) >> colormap(map) Och >> map=([1 0 1; ; ; ]) >> image([1, 2]) >> colormap(map) Försök nu med dessa exempel att förstå hur map, image och colormap fungerar. Visa nu följande fyra färger som ett 2 x 2 rutmönster i ett fönster. 1. Gult (Röd + Grön), upp till vänster 2. Cyan (Grön + Blå), upp till höger 3. Mörkgrå, ner till vänster 4. Ljusgrå, ner till höger 2.4 Visa nu bilder med hjälp av funktionen imtool. Försök att förstå hur funktionen fungerar. Zooma in och ut din bild! 3. Punktvis operation, skalär produkt och numerisk integral 3.1 Definiera två vektorer v1 och v2 enligt nedan. >> v1=[ ]; Detta kommando kan även skrivas som >> v1=1:5; >> v2=[ ]; Detta kommando kan även skrivas som >> v2=5:-1:1; Begrunda nu var och ett av följande kommandon och beskriv vad de gör. >> v= v1*v2; Varför får du ett felmeddelande? >> s1=v1*v2 ; 3
5 Beskriv varför kommandot är korrekt nu? Varför är s1 en skalär och försök övertyga dig om att s1 är skalärprodukten mellan v1 och v2. Prova gärna v1 *v2 också! Kommentarer? Kör nu: >> v=v1.*v2; Vad är v? >> s2=sum(v); Som ni säkert har noterat är s1 och s2 lika. D.v.s. vi har beräknat skalärprodukten på två olika sätt. 3.2 Följande integral kan beräknas analytiskt enligt följande. π / 2 1 sin( x )cos( x) dx = 2 0 π / sin(2x) dx = 4 π / 2 [ cos(2x) ] = 0. 5 Kör nu enligt följande för att beräkna samma integral med en av de enklaste numeriska metoderna. >> x=0:0.01:pi/2; >>p=sin(x).*cos(x); >>I1=sum(p); Begrunda nu vad varje rad gör i ovanstående kommandon. Med vilken faktor måste I1 multipliceras för att resultatet ska representera integralen? Varför? 0 Kör nu enligt följande: >> x=0:0.001:pi/2; >>p=sin(x).*cos(x); >I2=sum(p); Med vilken faktor ska I2 multipliceras? Är det I1 eller I2 som approximerar integralen bättre? Varför? 4
6 Beräkna nu följande integral numeriskt. Använd ett steg av x sin( x) dx 2 x + 1 Svaret är Försök att hitta felet om ert resultat inte stämmer överens med detta tills ni lyckas hitta det rätta svaret. Några kommentarer? 4. Vektorer, bilder och funktioner 4.1 Skapa vektorn v enligt, >> v= 1:10 och studera hur följande kommandon fungerar. >> v(1:4) >> v(1:2:4) >> v(1:2:end) >> v(1:3:end) >> v(3:3:end) >> v(:) Observera att i de flesta programmeringsspråk måste man skriva funktioner med t.ex. forloopar för att göra ovanstående kommandon. I Matlab slipper man oftast detta. 4.2 I denna uppgift ska du anta att ovanstående kommandon inte existerar i Matlab. Nu med hjälp av for- loop skriv en funktion myvector som tar in fyra parametrar v, a, b och n där v är en vektor och a, b och n är heltal. Funktionen ska returnera följande: v(a:b:n) T.ex. myvector([ ],2,2,6) ska returnera [3 5 8]. När du har säkerställt att din funktion fungerar prova nu följande, >> myvector([ ],2,2,8) Och >> myvector([ ],0,2,6) Vad händer? 5
7 Modifiera ditt program så att de två ovanstående kommandon fungerar t.ex. genom följande: Om a är icke positivt heltal då ska den sättas till 1 och om n är större än vektorns längd ska den sättas till vektorns längd. Se t.ex. size eller length. 4.3 Kör följande, >> myimage=imread( kvarn.tif ); >> myimage=double(myimage)/255; >> myimage1=myimage(1:2:end, 1:2:end); >> imshow(myimage1) >>figure; >> imshow(myimage1(:)) >>myimage2=myimage; >>myimage2(:,100)=1; >>figure; >>imshow(myimage2) Hur stor (pixel x pixel) är myimage och myimage1? Kör nu, >> myimage2=myimage(1:3:end, 1:4:end); >> imshow(myimage2) I mån av tid: skriv en Matlab funktion (med hjälp av for- loopar) som utför ovanstående kommandon, se uppgift 3.2 ovan. 5. Nedsampling och uppsampling 5.1 Läs in färgbilden Butterfl.tif och visa dess tre RGB kanaler i tre olika fönster. Glöm inte att konvertera bilden till double och sedan normalisera. Konvertera sedan RGB bilden till gråskalebild, genom t.ex. (R+G+B)/3 och döp den till mygray. 5.2 Sampla ner mygray från föregående uppgift på två olika sätt: 1. Genom att ta varannan rad och kolumn. 2. Genom att ta medelvärdet av varje 2x2 område i bilden och spara värdet som pixelvärdet i den nedsamplade bilden. (Lämpligast är att skriva en funktion som gör det) 6
8 Sampla upp nu den nersamplade bilden till dess ursprungliga storlek med funktionen, imresize. När det gäller interpolationen använd alla tre möjliga alternativen och diskutera skillnaderna. De tre möjliga interpolationerna är 'nearest' (default), bilinear och bicubic. 5.3 Läs in färgbilden Butterfl.tif och döp den till mycolorimage. Sampla ner och upp bilden med följande kommando: >> imresize(imresize(mycolorimage,0.5),2); Visa bilden! Jämför denna bild med originalbilden. Vad gjorde ovanstående kommando och hur ser resultatbilden ut? 5.4 Separera nu färgbilden till följande tre bilder R+G+B, R-G och R+G-2B, där R, G och B är färgbildens tre kanaler. Sampla ner R-G och R+G-2B och sampla upp dem igen med nearest och döp dem till bild2 respektive bild3, men behåll R+G+B som den var och döp den till bild1. Återskapa nu den nya bildens RGB kanaler med hjälp av bild1, bild2 och bild3. Visa nu den nya färgbilden och jämför med originalbilden samt bilden från 5.3. Diskutera resultatet. Ledning: Observera att följande gäller, R + G + B = bild1 R G = bild 2 R + G 2B = bild3 Att återskapa R, G och B med hjälp av bild1, bild2 och bild3 innebär att uttrycka R, G och B med hjälp av bild1, bild2 och bild3 genom att lösa ovanstående ekvationssystem. 7
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...
Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av
Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007)
Laboration 1 Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått S. Gooran (VT2007) Syfte: Denna laboration är till för att öka förståelsen för olika rastreringstekniker
MMA132: Laboration 1 Introduktion till MATLAB
MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e
Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Laboration 2. Grafisk teknik (TNM059) Digital Rastrering. S. Gooran (VT2007)
Laboration 2 Grafisk teknik (TNM059) Digital Rastrering S. Gooran (VT2007) Introduktion Denna laboration handlar om rastrering och är tänkt att fungera som komplement till rastreringsföreläsningar och
Datorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar
KPP053, HT2016 MATLAB, Föreläsning 2 Vektorer Matriser Plotta i 2D Teckensträngar Vektorer För att skapa vektorn x = [ 0 1 1 2 3 5]: >> x = [0 1 1 2 3 5] x = 0 1 1 2 3 5 För att ändra (eller lägga till)
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.
Beräkningsvetenskap föreläsning 2
Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
Matematisk Modellering
Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk
Obligatoriska uppgifter i MATLAB
Obligatoriska uppgifter i MATLAB Introduktion Följande uppgifter är en obligatorisk del av kursen och lösningarna ska redovisas för labhandledare. Om ni inte använt MATLAB tidigare är det starkt rekommenderat
TSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Parametriserade kurvor
CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs
% Föreläsning 4 22/2. clear hold off. % Vi repeterar en liten del av förra föreläsningen:
% Föreläsning 4 22/2 clear hold off % Vi repeterar en liten del av förra föreläsningen: % Vi kan definiera en egen funktion på följande sätt: f = @(x) 2*exp(-x/4) + x.^2-7*sin(x) f(2) % Detta ger nu funktionsvärdet
MMA132: Laboration 1 & 2 Introduktion till MATLAB
MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
Flervariabelanalys, inriktning bildbehandling, datorövning 1
Matematiska institutionen, LTH, 20 november 2003 Flervariabelanalys, inriktning bildbehandling, datorövning 1 Laborationen består av två delar. I den första använder vi det numeriska beräkningsprogrammet
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att
Studio 6: Dubbelintegral.
Studio 6: Dubbelintegral. Analys och Linjär Algebra, del C, K1/Kf1/Bt1, vt09 20 februari 2009 1 Repetition av enkelintegral I ALA B skrev du en MATLAB-funktion minintegral som beräknar integralen av en
Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.
INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:
Flerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6
Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen
MAM283 Introduktion till Matlab
Rum: A3446 E-post: ove.edlund@ltu.se Hemsida: www.math.ltu.se/ jove Översikt: Matlab i MAM283 Några fakta Introduktion till Matlab. Omfattning: 0,4 p En föreläsning och tre datorövningar Examineras genom
Mer om funktioner och grafik i Matlab
CTH/GU 2017/2018 Matematiska vetenskaper Mer om funktioner och grafik i Matlab 1 Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och
Introduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
Linjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26
TAIU07 Matematiska beräkningar med MATLAB för MI Fredrik Berntsson, Linköpings Universitet 15 januari 2016 Sida 1 / 26 TAIU07 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet i att
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 27 oktober 2015 Sida 1 / 31 TANA17 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet
Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)
Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade
Matematisk Modellering
Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk
Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)
Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2
Mer om funktioner och grafik i Matlab
CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter.
TAIU07 Föreläsning 3 Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter. 27 januari 2016 Sida 1 / 21 Logiska variabler
MR-laboration: design av pulssekvenser
MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space
Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter
Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.
MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.
Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk
Laboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB
TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande
Matematisk Modellering
Matematisk Modellering Föreläsning läsvecka 3 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/39 Denna föreläsning (läsvecka 3) Matematisk modellering - fördjupning Modelleringsexempel
Matriser och linjära ekvationssystem
Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
Kravspecifikation Fredrik Berntsson Version 1.3
Kravspecifikation Fredrik Berntsson Version 1.3 Status Granskad FB 2017-01-27 Godkänd FB 2017-02-27 Dokumenthistorik Version Datum Utförda ändringar Utförda av Granskad 1.0 2014-01-15 Första versionen
Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?
Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664
LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där
Grafisk Teknik. Färg. Övningar med lösningar/svar. Sasan Gooran (HT 2013)
Grafisk Teknik Färg Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar De här uppgifterna täcker en del av kursen
Laboration 1: Elementära bildoperationer
Skolan för Datavetenskap och Kommunikation, KTH Danica Kragic, Tony Lindeberg 2D1421 Bildbehandling och Datorseende Laboration 1: Elementära bildoperationer Syftet med denna laboration är att du ska bekanta
En introduktion till MatLab
Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se
Introduktion & MATLABrepetition. (Kap. 1 2 i MATLAB Programming for Engineers, S. Chapman)
Numeriska Metoder och Grundläggande Programmering för P1, VT2014 Föreläsning 1, Introduktion & MATLABrepetition. (Kap. 1 2 i MATLAB Programming for Engineers, S. Chapman) January 20, 2014 Kursansvarig
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Matriser och linjära ekvationssystem
Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1
11 oktober 215 Miniprojekt 1 (5) Beräkningsvetenskap I/KF Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751
Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2004)
Grafisk Teknik Rastrering Övningar med lösningar/svar Sasan Gooran (HT 24) Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är
3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt.
Kontrolluppgifter 1 Gör en funktion som anropas med där är den siffra i som står på plats 10 k Funktionen skall fungera även för negativa Glöm inte dokumentationen! Kontrollera genom att skriva!"#$ &%
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Newtons metod och arsenik på lekplatser
Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare
Laboration 1: Introduktion till R och Deskriptiv statistik
STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 1: Introduktion till R och Deskriptiv statistik Denna första datorlaboration
Laboration 4: Integration på olika sätt
Laboration 4: Integration på olika sätt I detta arbetsblad finns dels ett antal exempel på hur man kan använda Mathematica för att beräkna integraler och sedan ett exempel på Monte-Carlo integration. Exempel
Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper
CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna
Laboration 0: Del 2. Benjamin Kjellson Introduktion till matriser, vektorer, och ekvationssystem
Laboration 0: Del 2 Benjamin Kjellson 2016 03 21 Introduktion till matriser, vektorer, och ekvationssystem I den här filen får ni en kort introduktion till hur man hanterar och räknar med matriser i R,
Enklast att skriva variabelnamn utan ; innehåll och variabelnamn skrivs ut
F5: Filhantering in- och utmatning (kap. 2 och 8) 1 Utskrift på skärm, inläsning från tangentbord (kap. 2) Spara och hämta variabler med save och load (kap. 2) Kommandot textread Mer avancerad filhantering:
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:
Lägg märke till skillnaden, man ser det tydligare om man ritar kurvorna.
Matlabövningar 1 Börja med att läsa igenom kapitel 2.1 2 i läroboken och lär dig att starta och avsluta Matlab. Starta sedan Matlab. Vi övar inte på de olika fönstren nu utan återkommer till det senare.
GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola
GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola 1 1 Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion
Datalogi, grundkurs 1
Datalogi, grundkurs 1 Tentamen 9 dec 2014 Tillåtna hjälpmedel: Revised 6 Report on the Algorithmic Language Scheme och Tre olika s.k. Cheat Sheets för Scheme Sex olika s.k. Cheat Sheets för Python Tänk
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland
Matlab för Nybörjare Charlie Pelland Introduktion till Matlab Matlab (matrix laboratory) är ett datorprogram och ett programspråk som används av ingenjörer runt om i världen. Ni kommer att använda er av
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2
DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 1. Laborationsregler Läs detta dokument, lös uppgifterna i slutet, och lämna in en individuell laborationsrapport senast måndag 14 januari i pdf-format via
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-11-19 Plot och rekursion I denna laboration skall du lära dig lite om hur plot i MatLab fungerar samt använda
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara
Laboration 2, M0043M, HT14 Python
Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna
SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design
1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Flervariabelanalys och Matlab Kapitel 3
Flervariabelanalys och Matlab Kapitel 3 Thomas Wernstål Matematiska Vetenskaper 28 september 2012 3 Multipelintegraler 3.1 ubbelintegraler I detta kapitel skall vi studera olika sätt på vilket man kan
Simulering med ModelSim En kort introduktion
Linköpings universitet Institutionen för systemteknik Laborationer i digitalteknik Datorteknik 2017 Simulering med ModelSim En kort introduktion TSEA22 Digitalteknik D Linköpings universitet SE-581 83
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion