Flerdimensionella signaler och system

Storlek: px
Starta visningen från sidan:

Download "Flerdimensionella signaler och system"

Transkript

1 Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här laborationen är en dels introduktion till MATLAB, som kommer att användas till alla laborationer i kursen, och dels en introduktion till flerdimensionella signaler, system och Fouriertransform. Grundläggande egenskaper hos och operationer på flerdimensionella signaler gås igenom. För alla övningar som innefattar MATLAB så ska de kommandon och parametrar ni använder redovisas. För mer information om MATLAB-kommandon, skriv help <kommando>. Till laborationerna i den här kursen behövs några specialla filer. Dessa filer finns att hämta på hemsidan. Bilda grupper om max två personerochlämna in laborationsredovisningen innan

2 1. Flerdimensionell faltning Betrakta det 2-dimensionella linjära, skiftinvarianta systemet H med impulssvaret h [m, n] där h [0, 0] = 2 h [0, 1] = 4 h [1, 0] = 1 h [1, 1] = 2 h [2, 0] = 2 h [2, 1] = 4 och 0 för övrigt. Insignalen till systemet är f [m, n], och 0 för övrigt. f [0, 0] = 1 f [0, 1] = 1 f [1, 0] = 1 f [1, 1] = 2 Uppgift 1. Bestäm stödområdet för impulssvaret, insignalen och utsignalen. Uppgift 2. Bestäm utsignalen g [m, n] =h [m, n] f [m, n] i MATLAB genom att använda kommandot conv2. Om man studerar impulssvaret litet noggrannare ser man att det är separabelt. Uppgift 3. Bestäm utsignalen genom att formulera den separabla faltningen som två 1-dimensionella faltningsmatriser. Verifiera i MATLAB att detta ger korrekt utsignal (använd conv2). 2. Flerdimensionell Fouriertransform Uppgift 4. Bestäm frekvenssvaret H (ξ 1,ξ 2 ) till systemet, dvs den 2-dimensionella Fouriertransformen av impulssvaret h [m, n]. Plotta H (ξ 1,ξ 2 ) in punkter mha MATLABs kommando mesh. Verkar systemet ha högpass eller lågpass karraktär i x- respektive y-led? Uppgift 5. Bestäm den 2-dimensionella DFT:n av impulssvaret h [m, n] mha MAT- LABs kommando ( fft2. ) Verfieraföregående uppgift genom att bestämma H (ξ 1,ξ 2 ) k i punkterna 1 N 1, k 2 N 2,k 1 =0,,N 1 1, k 2 =0,,N 2 1, där N 1 och N 2 är storleken på systemets stödområde. Uppgift 6. Eftersom den flerdimensionella DFT:n är separabel kan man transformera varje dimension för sig. Visa detta genom att använda 1-dimensionell DFT i MATLAB (fft). Det går också att beskriva den 1-dimensionella DFT:n som en matrismultiplikation och via den bestämma den 2-dimensionella DFT:n. För den sistnämnda metoden, beskriv hur man gör det (i MATLAB) och ange även hur DFT-matriserna ser ut. Tänk på att transponering i MATLAB ( ) även konjugerar! 2

3 Som bekant från den 1-dimensionella signalbehandlingen kan DFT användas för faltning, dvs DFT {h [n] f [n]} =DFT{h [n]} DFT {f [n]} där är cirkulär faltning. Detta innebär att signalen betraktas som periodisk. För att göra om cirkulär faltning till linjär faltning kan man använda sig av zero padding, dvs man fyller på signalen med nollor så vikning inte sker. Uppgift 7. Bestäm utsignalen g [m, n] i MATLAB genom att använda 2-dimensionell DFT. Bestäm hur många nollor som måste läggas in. Zero padding kan utföras mha kommandot fft2. Verifiera att detta stämmer resultatet från de tidigare uppgifterna. När man tittar på frekvenssvaret för ett system brukar man oftast studera amplituden. Fasen kan dock i många fall vara väl så intressant och viktig. Ladda bilden baboon256 i MATLAB genom att använda kommandot imread. För att visa den på skärmen, använd t.ex kommandot imview. Uppgift 8. Bestäm DFT:n av bilden i MATLAB och presentera dess amplitud (abs) och fas (angle) itvå figurer. Amplituden har en väldigt stor dynamik så här bör man använda logaritmisk skala (plotta t.ex log (1 + x ) ). Uppgift 9. Modifiera bilden genom att ta bort fasen, dvs sätt den till 0. Inverstransformera och plotta bilden mha imview. Kommentarer? Uppgift 10. Modifiera bilden genom att ta bort amplituden, dvs sätt den till 1. Inverstransformera och plotta bilden mha imview. Kommentarer? Vad är viktigast hos en bild; amplituden eller fasen? Uppgift 11. *Extrauppgift: Prova att filtrera bilden med filtret med systemet H. Var resultet det väntade? 3

4 3. Tvådimensionella filter Ett enkelt sätt att göra 2-dimensionella filter är att använda 1-dimensionella filter och sedan antingen göra ett separabelt eller ett rotationssymmetriskt filter. Antag att man vill göra ett 2-dimensionellt filter enligt nedanstående specifikation. Uppgift 12. Konstruera ett separabelt 2-dimensionellt filter med storleken Skapa det 1-dimensionella filtret genom att använda antingen least squarekriteriet (kommandot firls) eller minimax-kriteriet (kommandot remez). Plotta i logaritmisk skala det 1-dimensionella filter du valt (med specifikationen inlagt) och gör en tre-dimensionell plot (kommandot mesh) samt en konturplot (kommandot contour) med 1 db steg (med specifikationen inlagt) för det 2-dimensionella filtret. Uppgift 13. Ladda bilden baboon256 och filtrera den med det separabla filter. Ser bilden ut som du hade förväntat dig? Uppgift 14. *Extrauppgift: Konstruera ett högpassfilter enligt samma specifikation, men med omkastade dämpningar (0 db i ljusgrått område och 30 db i det mörka området). Hur gör du? Prova filtret på baboon256. 4

5 4. Invers- och Wienerfilter Uppgift 15. Laddababoon256-bilden och filtrera den med det separabla lågpassfilter du skapade i förra uppgiften. Hur stort är stödområdet för den filtrerade bilden? För att i fortsättningen få en bild som är en två-potens stor (detta snabbar upp FFT:n), beskär orginalbilden så att den faltade bilden får storleken Addera vitt Gaussiskt brus till den filtrerade bilden så att signal-to-noise (SNR) blir 50 db. SNR definieras som SNR E {f 2 [n 1,n 2 ]} E {v 2 [n 1,n 2 ]} där f är signalen och v är bruset. Effekten hos signalen kan skattas mha kommandot mean. Bruset v kan genereras med kommandot randn. Uppgift 16. Bestäm invers- och pseudoinversfiltren (pröva er fram till ett bra ε- värde) till systemet och försök återskapa bilden. Implementera filtren i frekvensplanet och tänk på storleken! Eftersom distorsionsfiltret är separabelt kan man försöka att rekonstruera signalen en dimension i taget. Uppgift 17. Bestäm Wienerfiltret W i frekvensplanet. Den (endimensionella) korrelationen för signalen kan estimeras mha kommandot xcorr. Man kan medelvärdesbilda över alla rader (och kolonner) när man skattar korrelationen. Återskapa bilden med det separabla filtret. Tänk på storlekarna på vektorerna och matriserna samt normaliseringskonstanter (t.ex. effekten hos orginalbilden)! Uppgift 18. Jämför de olika rekonstruerade bilderna. Vilken blev bäst? Uppgift 19. *Extrauppgift: Prova att rekonstruera bilden om man har beskurit det efter filtrering istället för före. Hur blir resultatet? Uppgift 20. **Extrauppgift: Designa ett ändligt separabelt Wienerfilter (ca 15 15) i spatialplanet, dvs gör det inte i frekvensdomänen. 5

6 5. Matlabkommandon Här är en lista på några MATLAB-kommandon som kan vara användbara: image imagesc imshow imread imwrite mesh surf contour shading colorbar colormap fftshift meshgrid title xlabel ylabel legend axis subplot 6

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas

Läs mer

Bildbehandling i spatialdomänen och frekvensdomänen

Bildbehandling i spatialdomänen och frekvensdomänen Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys

Läs mer

TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering

TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att

Läs mer

TEM Projekt Transformmetoder

TEM Projekt Transformmetoder TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering

Läs mer

Flerdimensionell signalbehandling SMS022

Flerdimensionell signalbehandling SMS022 Luleå tekniska universitet Avd för signalbehandling Frank Sjöberg Flerdimensionell signalbehandling SMS022 Laboration 4 Array Processing Syfte: Syftet med den här laborationen är att få grundläggande förståelese

Läs mer

Bildbehandling i frekvensdomänen. Erik Vidholm

Bildbehandling i frekvensdomänen. Erik Vidholm Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras

Läs mer

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab3: Mätvärden på Medicinska Bilder Maria Magnusson, Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet Introduktion I denna laboration ska vi göra

Läs mer

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW

Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW Institutionen för data- och elektroteknik 004-03-15 Signalbehandling i Matlab och LabVIEW 1 Introduktion Vi skall i denna laboration bekanta oss med hur vi kan använda programmen Matlab och LabVIEW för

Läs mer

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter Digitala filter Digitala filter FIR Finit Impulse Response Digitala filter förekommer t.ex.: I Matlab, Photoshop oh andra PCprogramvaror som filtrerar. I apparater med signalproessorer, t.ex. mobiltelefoner,

Läs mer

Optimal Signalbehandling Datorövning 1 och 2

Optimal Signalbehandling Datorövning 1 och 2 Institutionen för Elektro- och Informationsteknik Lunds Universitet Lunds Tekniska Högskola Optimal Signalbehandling Datorövning 1 och 2 Leif Sörnmo Martin Stridh 2011 Department of Electrical and Information

Läs mer

Inledning. Initiering av miljön. Att köra MatLab. Labrapporten

Inledning. Initiering av miljön. Att köra MatLab. Labrapporten Inledning Initiering av miljön För att få rätt miljö är det enklast att aktivera kursen TSDT06 Signalteori i programmet kurstool. Kurstool kan man starta i bakgrundsmenyn. Alternativt räcker det med att

Läs mer

Laboration i tidsdiskreta system

Laboration i tidsdiskreta system Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt

Läs mer

MR-laboration: design av pulssekvenser

MR-laboration: design av pulssekvenser MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information

Läs mer

Signalanalys med snabb Fouriertransform

Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör

Läs mer

Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab

Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab Eddie Alestedt Vt-2002 Digitala filter Digitala filter appliceras på samplade signaler och uppvisar helt andra egenskaper än

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform

Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att

Läs mer

Frekvensplanet och Bode-diagram. Frekvensanalys

Frekvensplanet och Bode-diagram. Frekvensanalys Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,

Läs mer

Spektrala Transformer för Media

Spektrala Transformer för Media Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)

Läs mer

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt

Läs mer

Spektrala Transformer för Media

Spektrala Transformer för Media Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler

Läs mer

Projekt 3: Diskret fouriertransform

Projekt 3: Diskret fouriertransform Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.

Läs mer

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera

Läs mer

Innehåll. Innehåll. sida i

Innehåll. Innehåll. sida i 1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4

Läs mer

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.

Läs mer

Beräkningsverktyg HT07

Beräkningsverktyg HT07 Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion

Läs mer

Digital Signalbehandling i Audio/Video

Digital Signalbehandling i Audio/Video Digital Signalbehandling i Audio/Video Institutionen för Elektrovetenskap Laboration 1 (del 2) Stefan Dinges Lund 25 2 Kapitel 1 Digitala audioeffekter Den här delen av laborationen handlar om olika digitala

Läs mer

Laplace, Fourier och resten varför alla dessa transformer?

Laplace, Fourier och resten varför alla dessa transformer? Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra

Läs mer

Laplace, Fourier och resten varför alla dessa transformer?

Laplace, Fourier och resten varför alla dessa transformer? Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets

Läs mer

Lab 1: Operationer på gråskalebilder

Lab 1: Operationer på gråskalebilder Lab 1: Operationer på gråskalebilder Maria Magnusson, 2016, 2017 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet 1 Introduktion Läs igenom häftet innan laborationen.

Läs mer

TSBB16 Datorövning A Samplade signaler Faltning

TSBB16 Datorövning A Samplade signaler Faltning Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna

Läs mer

Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.

Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT. Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser

Läs mer

Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT)

Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man

Läs mer

Laboration 2. Grafisk teknik (TNM059) Digital Rastrering. S. Gooran (VT2007)

Laboration 2. Grafisk teknik (TNM059) Digital Rastrering. S. Gooran (VT2007) Laboration 2 Grafisk teknik (TNM059) Digital Rastrering S. Gooran (VT2007) Introduktion Denna laboration handlar om rastrering och är tänkt att fungera som komplement till rastreringsföreläsningar och

Läs mer

GNU Octave 2.1.50 Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola

GNU Octave 2.1.50 Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola GNU Octave..5 Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som både kan visa grafiken

Läs mer

Bildbehandling En introduktion. Mediasignaler

Bildbehandling En introduktion. Mediasignaler Bildbehandling En introdktion Mediasignaler Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän Vad är bildbehandling? Förbättring Image enhancement Återställning

Läs mer

Funktionsteori Datorlaboration 2

Funktionsteori Datorlaboration 2 Funktionsteori Funktionsteori Datorlaboration 2 Fourierserier Inledning Största delen av denna laboration handlar om Fourierserier, men vi startar med seriesummation. Vissa filer kan du behöva hämta på

Läs mer

Elektronik 2018 EITA35

Elektronik 2018 EITA35 Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan

Läs mer

Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen. Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT)

Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen. Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT) Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT) Vad är spektralanalys? Analys av frekvensinnehållet i en tidsserie/signal.

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström

Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen

Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT) Översikt Kort om projektet Vad är spektralanalys? Koppling till Transformmetoder

Läs mer

Liten MATLAB introduktion

Liten MATLAB introduktion Liten MATLAB introduktion Denna manual ger en kort sammanfattning av de viktigaste Matlab kommandon som behövs för att definiera överföringsfunktioner, bygga komplexa system och analysera dessa. Det förutsätts

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola

GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola 1 1 Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1

M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007)

Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007) Laboration 1 Grafisk teknik (TNM059) Introduktion till Matlab R. Lenz och S. Gooran (VT2007) Introduktion: Denna laboration är en introduktion till Matlab. Efter denna laboration ska ni kunna följande:

Läs mer

RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2

RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2 t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system

Läs mer

Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007)

Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007) Laboration 1 Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått S. Gooran (VT2007) Syfte: Denna laboration är till för att öka förståelsen för olika rastreringstekniker

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler

Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler Anders Gustavsson 1997, Maria Magnusson 1998-2018 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

System, Modeller och Metoder

System, Modeller och Metoder SMS27 Laboration 2 System, Modeller och Metoder Seriekopplade, parallellkopplade och återkopplade system Due Date: February 7 För att bli godkänd krävs: att samtliga figurer är korrekt ifyllda att figurerna

Läs mer

Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser

Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser Elektronik för D ETIA01 Andrés Alayon Glasunov Palmi Thor Thorbergsson Anders J Johansson Lund Mars 2009 Laboration

Läs mer

Datorlaborationer i matematiska metoder E1, del C, vt 2002

Datorlaborationer i matematiska metoder E1, del C, vt 2002 Matematiska metoder E del C, vt, datorlaborationer, Datorlaborationer i matematiska metoder E, del C, vt. Laborationerna är ej obligatoriska.. Laborationerna genomförs individuellt. Grupparbete godkänns

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

TSBB14 Laboration: Intro till Matlab 1D

TSBB14 Laboration: Intro till Matlab 1D TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen

Läs mer

Lab Tema 2 Ingenjörens verktyg

Lab Tema 2 Ingenjörens verktyg Lab Tema 2 Ingenjörens verktyg Agneta Bränberg, Ville Jalkanen Syftet med denna laboration är att alla i gruppen ska kunna handskas med de instrument som finns på labbet på ett professionellt sätt. Och

Läs mer

Fig. Exempel på en B-mode ultraljudsbild av ett hjärta.

Fig. Exempel på en B-mode ultraljudsbild av ett hjärta. Ultraljudslaboration TSBB3 Medicinska Bilder Utvecklad av: Mats Andersson (fd IMT) 4 Uppdaterad av: Maria Magnusson (CVL, ISY) 6 Contents Uppgiften Läsa in RF-data En RF skannstråle och dess fouriertransform

Läs mer

TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1

TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1 TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,

Läs mer

Tillämpning av komplext kommunikationssystem i MATLAB

Tillämpning av komplext kommunikationssystem i MATLAB (Eller: Vilken koppling har Henrik Larsson och Carl Bildt?) 1(5) - Joel Nilsson joelni at kth.se Martin Axelsson maxels at kth.se Sammanfattning Kommunikationssystem används för att överföra information,

Läs mer

CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning

CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning CTH/GU LABORATION 1 MVE16-1/13 Matematiska vetenskaper 1 Inledning Mer om grafritning Vi fortsätter att arbeta med Matlab i matematikkurserna. Denna laboration är i stor utsträckning en repetition och

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Laboration 1. Grafisk teknik Rastrering. Sasan Gooran (HT 2004)

Laboration 1. Grafisk teknik Rastrering. Sasan Gooran (HT 2004) Laboration 1 Grafisk teknik ------------------------------------- Rastrering Sasan Gooran (HT 2004) Introduktion 1.0 Introduktion Den här laborationen måste förberedas innan laborationstillfället. Ett

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

Medicinska Bilder, TSBB31. Lab6: Mätningar på SPECT/CT-volymer

Medicinska Bilder, TSBB31. Lab6: Mätningar på SPECT/CT-volymer Medicinska Bilder, TSBB31 Lab6: Mätningar på SPECT/CT-volymer Maria Magnusson, 2012-2016 Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet 1 Introduktion I denna laboration

Läs mer

Exercises Matlab/simulink V

Exercises Matlab/simulink V 817/Thomas Munther IDE-sektionen Exercises Matlab/simulink V MA-filter ( Moving Average ) Detta är ju egentligen inget annat än ett FIR-filter fast där vi använder samma vikter på alla insignaltermer och

Läs mer

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum 1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)

Läs mer

Grafritning och Matriser

Grafritning och Matriser Grafritning och Matriser Analys och Linjär Algebra, del B, K1/Kf1/Bt1, ht11 1 Inledning Vi fortsätter under läsperiod och 3 att arbete med Matlab i matematikkurserna Dessutom kommer vi göra projektuppgifter

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare

Läs mer

Digital Signalbehandling i Audio/Video

Digital Signalbehandling i Audio/Video Digital Signalbehandling i Audio/Video Institutionen för Elektrovetenskap Laboration 1 (del 1) Martin Stridh Lund 2005 2 Kapitel 1 Musikkompression Denna laboration handlar om kompression av ljud och musik

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

Innehνall 1 Introduktion Processbeskrivning Inloggning och uppstart

Innehνall 1 Introduktion Processbeskrivning Inloggning och uppstart UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA, 2002 Dynamiska System (STS) Modellering av en DC-motor Sammanfattning Dynamiken för en dc-motor bestäms utifrνan en s k icke-parametrisk modellering, i detta

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

Vad är spektralanalys? Spektralanalys. Frekvensinnehåll. Enkelt exempel

Vad är spektralanalys? Spektralanalys. Frekvensinnehåll. Enkelt exempel Vad är spektralanalys? Analys av frekvensinnehållet i en tidsserie/signal. Spektralanalys Erik Gudmundson Vad innebär Analys av frekvensinnehållet? Vad är en tidsserie/signal? Tidsserie: mätning av någon

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

Lab 1 Analog modulation

Lab 1 Analog modulation 2 Lab-PM för TSEI67 Telekommunikation Lab 1 Analog modulation Med Simulink kan man som sagt bygga upp ett kommunikationssystem som ett blockschema, och simulera det. Ni ska i denna laboration inledningsvis

Läs mer

Fouriermetoder MVE295 - bonusuppgifter

Fouriermetoder MVE295 - bonusuppgifter Fouriermetoder MVE295 - bonusuppgifter Edvin Listo Zec 920625-2976 edvinli@student.chalmers.se Sofia Toivonen 910917-4566 sofiato@student.chalmers.se Emma Ekberg 930729-0867 emmaek@student.chalmers.se

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Lösningsförslag TSRT09 Reglerteori

Lösningsförslag TSRT09 Reglerteori Lösningsförslag TSRT9 Reglerteori 6-8-3. (a Korrekt hopparning: (-C: Uppgiften som beskrivs är en typisk användning av sensorfusion, där Kalmanfiltret är användbart. (-D: Vanlig användning av Lyapunovfunktioner.

Läs mer

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ] TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift

Läs mer