Grafritning och Matriser
|
|
- Erik Sundqvist
- för 7 år sedan
- Visningar:
Transkript
1 Grafritning och Matriser Analys och Linjär Algebra, del B, K1/Kf1/Bt1, ht11 1 Inledning Vi fortsätter under läsperiod och 3 att arbete med Matlab i matematikkurserna Dessutom kommer vi göra projektuppgifter tillsammans med kemikursen som går samtidigt För att handledning och redovisning skall fungera effektivt kräver vi att all redovisning görs via sammanhållande skriptfil tillsammans med nödvändiga funktionsfiler Vi kräver också att ni har en Matlab desktop layout av det slag vi använde förra läsperioden Denna studio-övning är i viss utsträckning en repetition och består av två skilda delar, dels grafritning där vi skall göra lite snyggare/bättre grafer än tidigare, dels matriser där vi skall påminna oss matriser i Matlab samtidigt som vi börjar se på matriser i matematiken Nästa veckas studio-övning kommer vi helt ägna åt linjär algebra, dvs linjära ekvationssystem och liknande Grafritning För att konstruera en bra (användbar) graf som beskriver både kvalitativa och kvantitativa egenskaper så måste man i möjligaste mån först bestämma maxima, minima och både sneda och lodräta asymptoter och kanske till och med inflexionspunkter I Adams beskrivs detta på ett utförligt sätt i kapitel 46 Som exempel skall vi rita grafen till funktionen y = x +x+4, se exempel 466 i Adams (sid 48) I x det här exemplet så är y = x +1 en sned asymptot och x = 0 (y-axeln) utgör en lodrät asymptot Vidare är punkterna (, 1) och (, 3) är lokala maximum respektive minimum Planen är nu att rita en graf i Matlab som innehåller funktionskurvan i lämplig färg och lagom tjock lämplig skala (här får man ofta prova sig fram en del) asymptoterna markerade som röda streckade linjer och angivna med ekvationer extrempunkterna markerade och angivna med värden De kommandon som behövs för att klara av detta, axis, axis equal, figure, grid on/off, hold on/off, legend, linspace, pause, subplot, text, title, xlabel, ylabel, finns beskrivna främst i avsnitt 51-5 i Moore Dessutom behöver egenskapsparametrar bestämmas för tex plot som val av linje-typ, färg och tjocklek ( LineWidth ) 1
2 Nedan följer ett förslag på hur det skulle kunna se ut %% Graf och axlar xa=-8; xb=8; s=001; ya=-6; yb=6; % Med s>0 undviker vi singulariteten i x=0 xv=linspace(xa,-s); xh=linspace(s,xb); f=@(x)(x^+*x+4)/(*x); plot(xv,f(xv), blue,xh,f(xh), blue, LineWidth,) axis([xa xb ya yb]), axis equal, grid on xlabel( x ), ylabel( y ), title( y = (x^ +x +4) / x ) hold on %% Asymptoter x=[xv xh]; y=x/+1; plot(x,y, --red,[0 0],[ya yb], --red ) text(3,17, y = x/ + 1 ), text(-17,3, x = 0 ) %% Max och min plot(-,-1, oblack,,3, oblack ) text(-18,-07, (-,-1) ), text(18,36, (, 3) ) hold off Uppgift 1 Skriv en skriptfil av liknande slag som i exemplet ovan och återskapa figurerna i Adams (sid 49)
3 Uppgift Konstruera figur 444 (sid 51) med hjälp av kommandot subplot i Matlab Lös uppgift 463 i Adams genom att titta på din egen figur har du rätt skalning? 3 Snygga formler med L A TEX Detta avsnitt handlar om hur man i Matlab med ett visst besvär kan göra snygga formler i figurer med L A TEX Vi ser detta som överkurs så lägg inte för mycket tid på det L A TEX kan kännas lite primitivt att använda, men det blir snyggt Många som skriver vetenskapliga texter inom matematik och fysik använder L A TEX, detta gäller även en del teknikområden Samma gäller även många läroböcker, liksom alla studio-texterna Man kan söka på nätet och finna mycket om L A TEX vid behov eller gå till den officiella hemsidan Här är några exempel som fås med respektive 5 i, i=1 45, 7, 0 π e x dx = $$\sum_{i=1}^5 i^$$, $$\sqrt{45}$$, $$\frac{}{7}$$, $$\int_{0}^{\infty} e^{-x^} dx = \frac{\sqrt{\pi}}{}$$ Svenska bokstäver å, ä, ö skrivs med \aa, \"a, \"o och Å, Ä, Ö med \AA, \"A, \"O Vi placerar ut formlerna med text eller gtext Som exempel ser vi på följande bild 3 sin(ax) lim = a x 0 x som vi får med >> a=3; x=linspace(-pi,pi); y=sin(a*x)/x; plot(x,y, r ) >> axis equal, axis([-pi pi -1 3]) >> text(1,, $$\lim_{x \rightarrow 0}\frac{\sin(ax)}{x}=a$$, color, blue, fontsize,14, interpreter, latex ) Utelämnar vi color, blue så blir texten svart istället, med fontsize,14 får vi större text och interpreter, latex behövs för att det inom de dubbla dollartecknena skall tolkas som en formel Det finns en funktion glatex på studiohemsidan, som kan användas för att placera ut text och formler (skrivna i L A TEX) i grafikfönstret 3
4 4 Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = (1) a m1 a mn Matrisen ovan har m rader och n kolonner, vi säger att den är av typ m n Ett matriselement i rad nr i, kolonn nr j tecknas a ij, där i är radindex och j är kolonnindex I Matlab skrivs detta A(i,j) och [m,n]=size(a) ger matrisens typ Indexeringen i Matlab är alltid som i (1), dvs rad- och kolonnindex börjar alltid på ett och vi kan inte ändra på det En matris av typ m 1 kallas kolonnmatris (kolonnvektor) och en matris av typ 1 n kallas radmatris (radvektor): a 1 a = a m, b = [ ] b 1 b n Du kommer att se att vi använder oftast kolonnvektorer för att representera kvantiteter som vi beräknar Element nr i ges i Matlab av a(i) och antalet element ges av m=length(a) Även för vektorer gäller att indexeringen alltid börjar på ett Motsvarande gäller för radvektorn b Som exempel tar vi Vi skriver in detta i Matlab enligt >> A=[ ; ; ] >> a=[1; 3; 5] >> b=[0 4] A = , a = 3, b = [ 0 4 ] Uppgift 3 Skriv in följande matriser i Matlab A = , B = 3 1, x = 1, a = [ ] Skriv ut matriselementen a 3, b 3, x Prova size och length Ändra b 3 genom att skriva B(,3)=5 En matris kan betraktas som en kollektion av kolonner: a 11 a 1j a 1n A = = [ ] a 1 a j a n a m1 a mj a mn () 4
5 med kolonnerna a 1 = a 11 a m1, a j = a 1j a mj, a n = Man kan även betrakta den som en kollektion av rader, men vi använder oftast kolonnrepresentationen I Matlab plockar man ut kolonn nr j med A(:,j) Här är j kolonnindex medan radindex i = 1,,m representeras av tecknet kolon : På liknande vis ges rad nr i av A(i,:) Det är läge att repetera Moore avsnitt 41 nu! Uppgift 4 Skriv ut kolonn nr 1, och 3 ur matrisen A i uppgift 3 Sätt in kolonnvektorn x som första kolonn i B genom att skriva B(:,1)=x Uppgift 5 Radera matrisen B (clear B) och skriv in den igen genom att först bilda kolonnerna 4 b 1 = 3, 5 b =, 6 b 3 = och sedan sätta in dem i matrisen B = [b 1 b b 3 ] a 1n a mn 5 Redovisning Denna vecka skall uppgifterna 1-5 redovisas för handledaren 6 Inför nästa veckas studio-övning Inför nästa veckas studio-övning är det viktigt att man i förväg läser igenom texten för studioövningen Kommande veckor kommer studio-övningarna behandla matematik som har förelästs nära det att vi skall göra studio-övningen Det gör att ni vid genomläsning av texten kanske inte känner till all matematik, men det är ändå nyttigt och viktigt att läsa vidare Förståelse kommer alltid gradvis och vi måste alltid möta det okända någon gång Det är också mycket viktigt att vi blir klara med studio-övningarna under respektive vecka eftersom vi i läsvecka 5 skall göra ett kemiprojekt Projektet bygger på den matematik och de studio-övningar vi gjort fram tom läsvecka 4 I läsvecka 5 kommer kemister till studion och då skall ni kunna prata med dem om kemin i projektet 5
CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning
CTH/GU LABORATION 1 MVE16-1/13 Matematiska vetenskaper 1 Inledning Mer om grafritning Vi fortsätter att arbeta med Matlab i matematikkurserna. Denna laboration är i stor utsträckning en repetition och
Läs merLinjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper
CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna
Läs merMatriser och linjära ekvationssystem
Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
Läs merMatriser och Inbyggda funktioner i Matlab
CTH/GU STUDIO 1 TMV036a - 2012/2013 Matematiska vetenskaper Matriser och Inbyggda funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1 Moore: 2.3, 3.1-3.4, 3..1-3.., 4.1, 7.4 1 Inledning Nu
Läs merlinjära ekvationssystem.
CTH/GU LABORATION 2 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna laboration börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på
Läs merMatriser och Inbyggda funktioner i Matlab
Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner
Läs merMatriser och linjära ekvationssystem
Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
Läs merLinjära ekvationssystem
CTH/GU STUDIO 1 LMA515c - 2016/2017 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna studioövning börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på matriser
Läs merFunktioner och grafritning i Matlab
CTH/GU STUDIO 1b MVE350-2014/2015 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab. Sedan ser vi
Läs merGrafik och Egna funktioner i Matlab
Grafik och Egna funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht11 Moore: 5.1-5.2 och 6.1.1-6.1.3 1 Inledning Vi fortsätter med läroboken Matlab for Engineers av Holly Moore. Först
Läs merMatriser och vektorer i Matlab
CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Läs merIntroduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
Läs merLinjära ekvationssystem i Matlab
CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Läs merIntroduktion till Matlab
CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt
Läs merIntroduktion till Matlab
Inledande matematik, I1 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor
Läs merMer om funktioner och grafik i Matlab
CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus
Läs merIntroduktion till Matlab
CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor runt om i världen,
Läs merFunktioner och grafritning i Matlab
CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.
Läs merIntroduktion till Matlab
CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Version för IT-programmet Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska
Läs merMer om linjära ekvationssystem
CTH/GU STUDIO 4 MVE465-2016/2017 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna studioövning fortsätter med linjära ekvationssystem och matriser, som vi först tittade på i studioövning
Läs merMatriser och vektorer i Matlab
CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En
Läs merMer om funktioner och grafik i Matlab
CTH/GU 2017/2018 Matematiska vetenskaper Mer om funktioner och grafik i Matlab 1 Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och
Läs merMer om linjära ekvationssystem
CTH/GU LABORATION 2 TMV141-212/213 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna laboration fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad
Läs merM0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e
Läs merMinsta-kvadratmetoden
CTH/GU STUDIO b TMV036c - 01/013 Matematiska vetenskaper Minsta-kvadratmetoden Analys och Linjär Algebra, del C, K1/Kf1/Bt1 1 Inledning Ett ofta förekommande problem inom teknik och vetenskap är att koppla
Läs merTransformationer i R 2 och R 3
Linjär algebra, I / Matematiska vetenskaper Inledning Transformationer i R och R 3 Vi skall se på några geometriska transformationer; rotation, skalning, translation och projektion. Rotation och skalning
Läs merLinjära ekvationssystem
CTH/GU LABORATION MVE0-0/0 Matematiska vetenskaper Inledning Linjära ekvationssystem Redan i första läsperioden löste vi linjära ekvationssystem Ax = b med Matlab. Vi satte ihop koefficentmatrisen A med
Läs merParametriserade kurvor
CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs
Läs merLinjära system av differentialekvationer
CTH/GU STUDIO TMV036c - 0/03 Matematiska vetenskaper Linjära system av differentialekvationer Analys och Linjär Algebra, del C, K/Kf/Bt Inledning Vi har i tidigare studioövningar sett på allmäna system
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.
Läs merIndex. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna
Läs merDatorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
Läs merAt=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor
% Föreläsning 1 26/1 % Kommentarer efter %-tecken clear % Vi nollställer allting 1/2+1/3 % Matlab räknar numeriskt. Observera punkten som decimaltecken. sym(1/2+1/3) % Nu blev det symboliskt pi % Vissa
Läs merIntroduktion till Matlab
CTH/GU LABORATION 1 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska
Läs merLaborationstillfälle 1 Lite mer om Matlab och matematik
Laborationstillfälle Lite mer om Matlab och matematik En första introduktion till Matlab har ni fått under kursen i inledande matematik. Vid behov av repetition kan materialet till de övningar som gjordes
Läs mer1.1 MATLABs kommandon för matriser
MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion
Läs merMer om funktioner och grafik i Python
CTH/GU mmgl50-2018 Matematiska vetenskaper Mer om funktioner och grafik i Python 1 Inledning Först skall vi se litepå matriser ochdärefter på några funktioner somfinns i det paket vi använder ihop med
Läs merKPP053, HT2016 MATLAB, Föreläsning 3. Plotter och diagram Läsa och skriva data till fil
KPP053, HT2016 MATLAB, Föreläsning 3 Plotter och diagram Läsa och skriva data till fil 2D-plott (igen) x = linspace(-10,10); %godtyckligt intervall % punkt framför * och ^ ger elmentvis operation y = x.^2
Läs merIntroduktion till Matlab
CTH/GU LABORATION 1 TMV206-2018/2019 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor
Läs merBeräkningsverktyg HT07
Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. Starta Matlab genom att
Läs merTMV156 Inledande matematik E, 2010 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING
TMV156 Inledande matematik E, 2010 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING 1. Syfte och mål I den här laborationen skall du lära dig att definera och använda anononyma funktioner
Läs merMer om linjära ekvationssystem
CTH/GU TMV151-213/21 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna övning fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad av matriser samt
Läs merIntroduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Läs merIntroduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
Läs merDatorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Läs merTSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
Läs merMer om geometriska transformationer
CTH/GU LABORATION 4 TMV141-1/13 Matematiska vetenskaper 1 Inledning Mer om geometriska transformationer Vi fortsätter med geometriska transformationer och ser på ortogonal (vinkelrät) projektion samt spegling.
Läs merGeometriska transformationer
CTH/GU LABORATION 5 TMV6/MMGD - 7/8 Matematiska vetenskaper Inledning Geometriska transformationer Vi skall se på några geometriska transformationer; rotation, skalning, translation, spegling och projektion.
Läs merOptimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper
CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)
Läs merLinjär algebra med MATLAB
INGENJÖRSHÖGSKOLAN Matematik Fredrik Abrahamsson, Anders Andersson Innehåll Linjär algebra med MATLAB 1 Grundläggande begrepp 1 1.1 Introduktion...................................... 1 1.2 Genomförande
Läs merMer om funktioner och grafik i Matlab
CTH/GU TIF7/MVE3-7/8 Matematiska vetenskaper Mer om funktioner och grafik i Matlab Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus
Läs merSystem av ordinära differentialekvationer
CTH/GU LABORATION 5 MVE16-1/13 Matematiska vetenskaper 1 Inledning System av ordinära differentialekvationer Vi skall se lite på system av ordinära differentialekvationer av typen u (t) = f(t, u(t)) och
Läs merLaboration 2 Ordinära differentialekvationer
Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =
Läs merIntroduktion till Matlab
CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor
Läs merMatlab övningsuppgifter
CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till
Läs merOrdinära differentialekvationer fortsättning
CTH/GU STUDIO 6 TMV36b - /3 Matematiska vetenskaper Ordinära differentialekvationer fortsättning Analys och Linjär Algebra, del B, K/Kf/Bt Inledning Vi skall se lite mer på system av ordinära differentialekvationer
Läs merLaboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
Läs merLinjärisering, Jacobimatris och Newtons metod.
Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system
Läs mer4.4. Mera om grafiken i MATLAB
4.4. Mera om grafiken i MATLAB Larry Smarr, ledare för NCSA (National Center for Supercomputing Applications i University of Illinois, brukar i sina föredrag betona betydelsen av visualisering inom den
Läs merInledning. CTH/GU LABORATION 4 MVE /2017 Matematiska vetenskaper
CTH/GU LABORATION 4 MVE3-6/7 Matematiska vetenskaper Inledning I denna laboration skall vi se på några geometriska transformationer i R och R 3 som ges av linjära eller affina avbildningar. En avbildning
Läs merDu kan söka hjälp efter innehåll eller efter namn
Du kan söka hjälp efter innehåll eller efter namn Skalärer x = 2 y = 1.234 pi, inf Ex: Skriver du >> x+100*pi Så blir svaret ans = 316.1593 (observera decimalpunkt.) Vektorer v = [1 2 3 4] radvektor u
Läs merProgrammeringsuppgift Game of Life
CTH/GU STUDIO TMV06a - 0/0 Matematiska vetenskaper Programmeringsuppgift Game of Life Analys och Linär Algebra, del A, K/Kf/Bt Inledning En cellulär automat är en dynamisk metod som beskriver hur komplicerade
Läs merATT RITA GRAFER MED KOMMANDOT "PLOT"
MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att
Läs merUppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Läs merMatlabövning 1 Funktioner och grafer i Matlab
Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom PM:et. Gå sedan igenom exemplen
Läs merMatlabföreläsningen. Lite mer och lite mindre!
Inmatning: Här är lite exempel på inmatning i Matlab: >> pi 3.1416 >> format long >> ans 3.141592653589793 Matlabföreläsningen Lite mer och lite mindre! >> format %återställer format (%- tecknet gör att
Läs mer4 Numerisk integration och av differentialekvationer
Matematik med Matlab M1 och TD1 1999/2000 sid. 27 av 47 4 Numerisk integration och av differentialekvationer Redovisning redovisas som tidigare med en utdatafil skapad med diary 4.1 Numerisk av ekvationer.
Läs merDatorövning 1 Introduktion till Matlab Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först
Läs merFrågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Läs merTentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid:
Tentamen i Matematik HF9 (6H9) 4 juni 8 Tid: 85 5 Lärare: Agneta Ivarson, Armin Halilovic, Bengt Mattiasson, Taras Kentrschynskyj, Ulf Djupedal Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat
Läs merMATLAB övningar, del1 Inledande Matematik
MATLAB övningar, del1 Inledande Matematik Övningarna på de två första sidorna är avsedda att ge Dig en bild av hur miljön ser ut när Du arbetar med MATLAB. På de följande sidorna följer uppgifter som behandlar
Läs merEn introduktion till MatLab
Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se
Läs merIntroduktion till Matlab
CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Läs merIntroduktion till Matlab
CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Läs merFunktionsytor och nivåkurvor
CTH/GU STUDIO MVE47-8/9 Matematiska vetenskaper Inledning Funktionstor och nivåkurvor En graf till en funktion i en variabel f : R R är mängden {(,) : = f()}, dvs. en kurva i planet. En graf till en funktion
Läs merMatlabövning 1 Funktioner och grafer i Matlab
Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom hela PM:et. Gå sedan igenom
Läs merVariabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Läs merFöreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
Läs merMATLAB. Vad är MATLAB? En kalkylator för linlär algebra. Ett programspråk liknande t.ex Java. Ett grafiskt verktyg.
MATLAB Vad är MATLAB? En kalkylator för linlär algebra. Ett programspråk liknande t.ex Java. Ett grafiskt verktyg. 1 När används MATLAB? Några exempel: För små beräkningar när en räknedosa inte riktigt
Läs merTMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning
MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den
Läs mer1 Grundläggande kalkyler med vektorer och matriser
Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just
Läs mer% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
Läs merMATLAB. Introduktion. Syfte. Tips. Oktober 2009
UMEÅ UNIVERSITET Datavetenskap Marie Nordström/Per Lindström Oktober 2009 MATLAB Introduktion MATLAB är en integrerad miljö, med matriser som grundkomponent. Här finns avancerade möjligheter att göra beräkningar
Läs merMatematisk Modellering
Matematisk Modellering Föreläsning läsvecka 3 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/33 Denna föreläsning (läsvecka 3) Kursadministration (hur går projektarbetet?)
Läs merLab 1, Funktioner, funktionsfiler och grafer.
Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna
Läs merNewtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
Läs merInnehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.
Grunderna i MATLAB stefan@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Exempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat
Läs mer( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3.
Envariabelanalys med Matlab Under denna kurs kommer vi framförallt att använda Matlab som verktyg i Envariabelanalys. Bl.a skall vi se hur man mha Matlab kan vi rita kurvor i xy-planet, rita grafer till
Läs merGNU Octave 2.1.50 Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola
GNU Octave..5 Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som både kan visa grafiken
Läs merTENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
Läs merGrafritning kurvor och ytor
CTH/GU STUDIO TMV6c - / Matematiska vetenskaper Grafritning kurvor och tor Anals och Linjär Algebra, del C, K/Kf/Bt Inledning En graf till en funktion i en variabel f : R R är mängden {(, ) : = f()}, dvs.
Läs merMATRISTEORI. Pelle Pettersson MATRISER. En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens
MATRISTEORI Pelle Pettersson ALLMÄN MATRISKUNSKAP MATRISER En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens element Exempel Matrisen 2 3 4 5 6 har två rader och
Läs merGrunderna i MATLAB. Beräkningsvetenskap och Matlab
Grunderna i MATLAB Beräkningsvetenskap I Beräkningsvetenskap och Matlab n Matlab är ett matematiskt verktyg och programmeringsmiljö som används inom beräkningsvetenskap men även inom andra områden (matematik,
Läs merPlatonska kroppar med Matlab
CTH/GU LABORATION 1 MVE400-2014/2015 Matematiska vetenskaper Platonska kroppar med Matlab Inledning Platonska kroppar är tre-dimensionella konvexa polyedrar som har likformiga polygoner som sidor. Lika
Läs merTentamen i Matematik 1 HF1901 (6H2901) 22 aug 2011 Tid: :15 Lärare:Armin Halilovic
Tentamen i Matematik HF90 (6H90) aug 0 Tid: 8. : Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
Läs merMoment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6
Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.
Läs mer