Mer om linjära ekvationssystem
|
|
- Lisbeth Engström
- för 6 år sedan
- Visningar:
Transkript
1 CTH/GU STUDIO 4 MVE /2017 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna studioövning fortsätter med linjära ekvationssystem och matriser, som vi först tittade på i studioövning 7 i förra läsperioden Vi ser på hantering och uppbyggnad av matriser samt operationer på matriser Därefter ser vi på linjära ekvationssystem, dels med små koefficientmatriser men också med stora och glesa koefficientmatriser som ofta uppstår i tekniska tillämpningar Men allra först lite repetition från förra läsperioden En matris av storleken m n är ett rektangulärt talschema med m rader och n kolonner, a 11 a 1n a m1 a mn Ett matriselement a ij (rad nr i, kolonn nr j) skrivs A(i,j) i Matlab Med [m,n]=size(a) får vi matrisens storlek, medan m=size(a,1) ger ast antal rader och n=size(a,2) ger ast antal kolonner En matris av storleken m 1 kallas kolonnvektor och en matris av storleken 1 n kallas radvektor, b 1 b = b m, c = [ ] c 1 c n Element nr i ges i Matlab av b(i) och antalet element ges av m=length(b) Motsvarande gäller för radvektorn c 2 Hantering av matriser En matris kan betraktas som en samling av kolonner: a 11 a 1j a 1n = [ ] a 1 a j a n a m1 a mj a mn med kolonnerna a 1 = a 11 a m1, a j = a 1j a mj, a n = På motsvarande sätt kan man även betrakta den som en samling av rader a 1n a mn 1
2 I Matlab plockar man ut kolonn nr j med A(:,j) Här är j kolonnindex medan radindex i = 1,,m representeras av tecknet kolon (:) Man kan även skriva A(1:m,j) På motsvarande sätt ges rad nr i av A(i,:) eller A(i,1:n) Vi kan ta ut ett block ur en matris med A(iv,jv) där iv är en vektor med radindex och jv är en vektor med kolonnindex Resultatet blir en matris med length(iv) rader och length(jv) kolonner >> A=[1 3 5; ; 2 4 6] >> B=A([2 3],[1 3]) B = Transponatet A T av en matris A ges av apostrof ( ) >> A=[1 3 5; ] >> B=A B = Uppgift 1 Skriv in följande matriser i Matlab , B = c = 3, d = [ ] (a) Sätt in kolonnvektorn c som 3:e kolonn i A och sätt in radvektorn d som 2:a rad i B (b) Låt 1:a och 3:e raden i A byta plats och låt därefter den 2:a och 4:e kolonnen byta plats 3 Bygga upp matriser Med funktionerna zeros och ones kan man i Matlab bilda matriser med nollor och ettor Exempelvis zeros(m,n) ger en matris av storleken m n fylld med nollor Med zeros(size(a)) får vi en matris fylld med nollor av samma storlek som A Motsvarande gäller för ones Enhetsmatriser bildas med funktionen eye, med eye(n) får vi enhetsmatrisen av storleken n n Man kan också använda eye för att bilda rektangulära matriser med ettor på huvuddiagonalen och nollor för övrigt Med eye(m,n) får vi en sådan matris av storleken m n och med eye(size(a)) får vi en av samma storlek som A Med diag bildas diagonalmatriser En vektor kan läggas in på en viss diagonal enligt >> d=[2 3 7]; >> d=[2 3 7]; >> A=diag(d,0) % eller A=diag(d) >> A=diag(d,1)
3 Huvuddiagonalen markeras med 0, diagonalen ovanför till höger med 1, diagonalen nedanför till vänster med -1, osv Matrisen blir så stor att vektorns alla element får plats längs angiven diagonal Man kan bygga upp matriser blockvis av andra matriser med hakparanterer ([ ]) Vi har gjort detta i samband med att vi bildade den utökade matrisen E = [A b] Då satte vi i Matlab ihop n n-matrisen A med n 1-matrisen (kolonnvektor) b till n (n+1)-matrisen E enligt E=[A b] Vi kan sätta ihop två matriser A och B horisontellt med [A B] om antal rader i de två matriserna är lika Två matriser A och B kan sättas ihop vertikalt med [A; B] om antal kolonner i de två matriserna är lika Uppgift 2 Radera matrisen B (clear B) och skriv in den igen genom att först bilda kolonnerna b 1 = 3, b 2 = 2, b 3 = och sedan sätta in dem i matrisen B = [b 1 b 2 b 3 ] Uppgift 3 Bilda matrisen Bilda delmatriserna A ij, av storlek 2 2, i partitioneringen (mer om detta finns i Lay kapitel 24) [ ] A11 A 12 A 21 A 22 genom att ta ut delar av matrisen A (Se förra avsnittet hur man gör i Matlab) Hur kan man bilda A i Matlab, då delmatriserna A ij är givna? Försök återskapa A med delmatriserna A 11,A 12,A 21 och A 22 4 Operationer på matriser Matris-vektorprodukten y = Ax av en m n-matris och en n-kolonnvektor är en m-kolonnvektor som ges av y 1 a 11 a 1n x 1 a 11 x 1 +a 12 x 2 + +a 1n x n = = y m a m1 a mn x n a m1 x 1 +a m2 x 2 + +a mn x n eller elementvis y A x Ax y i = n a ij x j = a i1 x 1 +a i2 x 2 + +a in x n j=1 Matris-vektorprodukten y = Ax kan beräknas i Matlab med den inbyggda matrismultiplikationen (*) enligt y=a*x eller med lite egen programmering (som bygger upp y elementvis) 3
4 >> y=zeros(m,1); >> for i=1:m s=0; for j=1:n s=s+a(i,j)*x(j); y(i)=s; Ett alternativt sätt att introducera matris-vektorprodukt är att definiera Ax som en linjärkombination av kolonnerna i A, (se Lay avsnitt 14) x 1 y = Ax = [ ] a 1 a n x n I Matlab skulle vi, för tex n = 3, skriva = x 1 a 1 +x 2 a 2 + +x n a n = = >> y=a(:,1)*x(1)+a(:,2)*x(2)+a(:,3)*x(3) a 11 a m1 x 1 + a 12 a m2 x och för ett större värde på n skulle vi kunna bilda linjärkombinationen enligt >> y=zeros(m,1); >> for j=1:n y=y+a(:,j)*x(j); a 1n a mn x n Matris-matrisprodukten C = AB av en m n-matris A och en n p-matris B, med kolonner b 1,,b p, är en m p-matris som ges av eller elementvis c ij = C = AB = A[b 1,,b p ] = [Ab 1,,Ab p ] n a ik b kj, i = 1,,m, j = 1,,n k=1 Matrismultiplikationen C = AB kan beräknas i Matlab med den inbyggda matrismultiplikationen (*) enligt C=A*B eller med lite egen programmering (som bygger upp C elementvis) >> C=zeros(m,p); >> for i=1:m for j=1:p cij=0; for k=1:n cij=cij+a(i,k)*b(k,j); C(i,j)=cij; 4
5 Alternativt bygger vi upp kolonnvis enligt >> C=zeros(m,p); >> for j=1:p C(:,j)=A*B(:,j); Uppgift 4 Skriv in följande matriser i Matlab , B = 3 2 1, x = 1, a = [ ] Beräkna följande produkter, både för hand, dvs med penna och papper, och med Matlab, dvs med inbyggda matrismultiplikationen (*), Ax, Bx, AB, ax, xa, ab Beräkna produkten Ax även genom att ni skriver en egen programkod i Matlab Skriv snyggt och tydligt Uppgift 5 Bilda , B = , C = (a) Kontrollera att associativa och distributiva lagarna gäller för dessa matriser Du skall alltså se att A(BC) = (AB)C respektive A(B + C) = AB + AC och (B + C) BA+CA (b) Vanligtvis är matrismultiplikation inte kommutativ Tex är AC CA och BC CB (kontrollera gärna), men vad gäller för AB och BA? 5 Små linjära ekvationssystem Matriser används bland annat för att skriva ned linjära ekvationssystem I Matlab finns backslashkommandot (\) eller alternativt kommandot rref(row-reduced-echelon form) som löser systemet, Ax = b enligt >> x=a\b >> rref([a b]) Backslash-kommandot används när A är en kvadratisk matris och vi vet att vi har en entydig lösning Har vi fria variabler så använder vi rref som reducerar den utökade matrisen [A b] till reducerad trappstegsform Vid numeriska beräkningar skall man inte bilda x = A 1 b, dvs man skall inte bilda inversen och multiplicera med den Det blir mindre effektivt och mindre noggrant, speciellt för lite större matriser 5
6 6 Stora och glesa linjära ekvationssystem En del problem har väldigt många obekanta och ger stora matriser Finns det få kopplingar blir det många nollor i matrisen, vi får en sk gles matris Vi skall se hur Matlab hanterar detta När väl matrisen är lagrad känner Matlab av att det är en gles matris när vi tex vill beräkna lösningen till ett linjärt ekvationssystem Som exempel tar vi matrisen Detta är en gles matris och en lagringsmetod är att lagra tripplar (i,j,a ij ) för de element som är skilda från noll Vi bildar en tabell över nollskilda element och deras rad- respektive kolonnindex i j a ij I Matlab bildar man tre vektorer av rad- och kolonnindex samt matriselement >> ivec=[ ]; >> jvec=[ ]; >> aijvec=[ ]; och bildar den glesa matrisen med funktionen sparse enligt >> A=sparse(ivec,jvec,aijvec) (1,1) 7 (3,1) 3 (4,1) 1 (2,2) 2 (5,2) -5 (2,3) -8 (5,3) 9 (1,4) 5 (4,4) 4 (3,5) 11 (5,5) 6 Utskriften visar alla nollskilda element och deras plats i matrisen Med funktionen full kan vi omvandla en gles matris till en vanlig fylld matris enligt >> FA=full(A) F
7 Här får vi en kontroll att vi bildat rätt matris Nu var detta ingen stor matris, vi villebara visa principerna för hur man bildar en gles matris med sparse Efter att i Matlab ha bildat den glesa matrisen A, högerledsvektorn b så beräknar vi lösningen x med x=a\b Eftersom matrisen är lagrad som en gles matris kommer Matlab lösa ekvationssystemet med metoder som utnyttjar gleshetsstrukturen för att mycket effektivt och noggrant beräkna lösningen I många linjära ekvationssystem från tekniska tillämpningar är matrisen en sk bandmatris, dvs matrisen har diagonaler av nollskilda element oftast samlade nära huvuddiagonalen En sådan matris kan man bilda med sparse men enklare och mer effektivt är att använda funktionen spdiags Som ett första litet exempel tar vi matrisen Detta är en bandmatris med tre diagonaler (ofta kallad en tridiagonal matris) I Matlab bildar vi en vektor fylld med 1:or, därefter placerar vi in denna vektor (multiplicerad med 2 respektive -1) som diagonaler med spdiags enligt >> n=5; ett=ones(n,1); >> A=spdiags([-ett 2*ett -ett],[-1 0 1],n,n); Diagonalerna sätts ihop som kolonner i en matris med [-ett 2*ett -ett], de måste därför vara lika långa Kolonnerna placeras som diagonaler i ordningen som ges av vektorn [-1 0 1] och det hela skall bli en n n-matris, därav n,n allra sist I nästa avsnitt skall vi använda matrisen ovan 7 Randvärdesproblem för differentialekvationer Vi skall se på randvärdesproblem för differentialekvation av typen { u (x) = f(x,u,u ), x a x x b u(x a ) = u a, u(x b ) = u b Oftast går det inte att ge en användbar formel för lösningen, utan vi måste använda beräkningsmetoder för att bestämma en numerisk lösning Det finns olika beräkningsmetoder, gemensamt för dem är att de leder till lösning av ett icke-linjärt ekvationssystem eller ett linjärt ekvationssystem i det fall f är linjär i u och u Vi skall i nästa läsperiod se på hur man löser system av icke-linjära ekvationer För tillfället kommer vi nöja oss med att se på linjära randvärdesproblem, dvs sådana problem som kan skrivas { u (x)+a(x)u (x)+b(x)u(x) = f(x), x a x x b u(x a ) = u a, u(x b ) = u b Vanligtvis måste vi beräkna en numerisk lösning, men om a och b är konstanter, dvs inte beror av x, så finns det som ni vet formler för lösningarna 7
8 Vi använder differensmetoden för att lösa problemet { u (x)+a(x)u (x)+b(x)u(x) = f(x), x a x x b u(x a ) = u a, u(x b ) = u b gör vi en likformig indelning av intervallet a x b i ett nät a = x 0 < x 1 < < x i 1 < x i < x i+1 < < x n < x n+1 = b där x i = a+ih,i = 0,1,,n+1 med h = b a n+1 Vi ersätter u (x i ) och u (x i ) med sk centraldifferenskvoter u (x i ) D + D u(x i ) = u i+1 2u i +u i 1, u (x h 2 i ) D 0 u(x i ) = u i+1 u i 1 2h i de inre nätpunkterna x i,i = 1,,n, och får ekvationssystemet u i+1 2u i +u i 1 h 2 +a(x i ) u i+1 u i 1 2h +b(x i )u i = f(x i ), i = 1,2,,n Låter vi u i beteckna en approximation av u(x i ) så resulterar detta i ett linjärt ekvationssystem Som exempel tar vi: Stationär värmeledning i en isolerad stav med en värmekälla Temperaturen u(x) beskrivs av randvärdesproblemet { κu (x) = f(x), 0 x L u(0) = u 0, u(l) = u L där u 0 och u L är temperaturen i stavens ändpunkter, κ är stavens värmeledningsförmåga och f(x) är värmekällan Inför nätet x i = ih, i = 0,1,,n + 1 med h = L n+1 på 0 x L och låt u i beteckna approximationer av u(x i ), i = 0,1,,n+1 Ersätt u (x i ) med centraldifferenskvoter i de inre nätpunkterna x i,i = 1,,n, och vi får Med matriser kan detta skrivas där u i+1 +2u i u i 1 = h2 κ f(x i) i = 1,2,,n Au = b, u = u 1 u 2 u n 1 u n, b = h 2 κ f(x 1)+u 0 h 2 κ f(x 2) h 2 h 2κ f(x n 1) κ f(x n)+u L Matrisen A är precis den bandmatris vi såg på i förra avsnittet, När vi har bildat högerledsvektorn b löser vi med backslash (\) Eftersom matrisen är lagrad som gles matris känner Matlab av att det och lösningen av ekvationssystemet görs effektivt med metoder som tar vara på gleshetsstrukturen Uppgift 6 Låt κ = 2, L = 1, u 0 = 40, u L = 60 samt f(x) = 200e (x L 2 )2 Lös värmeledningsproblemet och rita upp lösningen Tag n = 30 8
Linjära ekvationssystem
CTH/GU STUDIO 1 LMA515c - 2016/2017 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna studioövning börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på matriser
Mer om linjära ekvationssystem
CTH/GU TMV151-213/21 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna övning fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad av matriser samt
Matriser och vektorer i Matlab
CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En
linjära ekvationssystem.
CTH/GU LABORATION 2 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna laboration börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på
Mer om linjära ekvationssystem
CTH/GU LABORATION 2 TMV141-212/213 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna laboration fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad
Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper
CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna
Egenvärdesproblem för matriser och differentialekvationer
CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.
Matriser och linjära ekvationssystem
Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
Matriser och linjära ekvationssystem
Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader
Matriser och vektorer i Matlab
CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Linjära ekvationssystem i Matlab
CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
15 september, Föreläsning 5. Tillämpad linjär algebra
5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess
14 september, Föreläsning 5. Tillämpad linjär algebra
14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar
Grafritning och Matriser
Grafritning och Matriser Analys och Linjär Algebra, del B, K1/Kf1/Bt1, ht11 1 Inledning Vi fortsätter under läsperiod och 3 att arbete med Matlab i matematikkurserna Dessutom kommer vi göra projektuppgifter
Matriser och Inbyggda funktioner i Matlab
Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner
Linjär Algebra M/TD Läsvecka 2
Linjär Algebra M/TD Läsvecka 2 Omfattning och Innehåll 2.1 Matrisoperationer: addition av matriser, multiplikation av matris med skalär, multiplikation av matriser. 2.2-2.3 Matrisinvers, karakterisering
Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v
Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2
Matriser och Inbyggda funktioner i Matlab
CTH/GU STUDIO 1 TMV036a - 2012/2013 Matematiska vetenskaper Matriser och Inbyggda funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1 Moore: 2.3, 3.1-3.4, 3..1-3.., 4.1, 7.4 1 Inledning Nu
Dagens program. Linjära ekvationssystem och matriser
Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,
TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning
MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4.
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna -. Föreläsningarna, 6/9 /9 : I sammanfattningen kommer en del av det vi tagit
Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
Laboration: Vektorer och matriser
Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix
1 Grundläggande kalkyler med vektorer och matriser
Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just
Subtraktion. Räkneregler
Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom
MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =
Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET
Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1
Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1
MATRISTEORI. Pelle Pettersson MATRISER. En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens
MATRISTEORI Pelle Pettersson ALLMÄN MATRISKUNSKAP MATRISER En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens element Exempel Matrisen 2 3 4 5 6 har två rader och
6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6
Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.
Gausselimination fungerar alltid, till skillnad från mer speciella metoder.
LINJÄRA EKVATIONSSYSTEM, GAUSSELIMINATION. MATRISER. Läs avsnitten 4.-4.. Lös övningarna 4.ace, 4.2acef, 4., 4.5-4.7, 4.9b, 4. och 4.abcfi. Läsanvisningar Avsnitt 4. Det här avsnittet handlar om Gauss-elimination,
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
MAM283 Introduktion till Matlab
Rum: A3446 E-post: ove.edlund@ltu.se Hemsida: www.math.ltu.se/ jove Översikt: Matlab i MAM283 Några fakta Introduktion till Matlab. Omfattning: 0,4 p En föreläsning och tre datorövningar Examineras genom
Introduktion till Matlab
CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Version för IT-programmet Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska
Introduktion till Matlab
Inledande matematik, I1 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Introduktion till Matlab
CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt
Studiehandledning till linjär algebra Avsnitt 1
Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 1 Kapitel 1 och 11.2 alt. 11.9 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.)
Linjär Algebra M/TD Läsvecka 1
Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet
NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem
NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Introduktion till Matlab
CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor runt om i världen,
Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :
1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel
SF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
Dagens program. Linjära ekvationssystem och matriser
Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
MVE022 Urval av bevis (på svenska)
MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller
Avsnitt 2. Matriser. Matriser. Vad är en matris? De enkla räknesätten
Avsnitt Matriser Vad är en matris? De enkla räknesätten Matrismultiplikation Produkt av en rad med en kolumn Produkt av rader med en kolumn Produkt av rader med kolumner När är matrismultiplikationen definierad?
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
Funktioner och grafritning i Matlab
CTH/GU STUDIO 1b MVE350-2014/2015 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab. Sedan ser vi
Linjära ekvationssystem
CTH/GU LABORATION MVE0-0/0 Matematiska vetenskaper Inledning Linjära ekvationssystem Redan i första läsperioden löste vi linjära ekvationssystem Ax = b med Matlab. Vi satte ihop koefficentmatrisen A med
MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.
Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
1.1 MATLABs kommandon för matriser
MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion
1 Positivt definita och positivt semidefinita matriser
Krister Svanberg, april 1 1 Positivt definita och positivt semidefinita matriser Inom ickelinjär optimering, speciellt kvadratisk optimering, är det viktigt att på ett effektivt sätt kunna avgöra huruvida
Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61
Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska
Dagens program. Repetition Determinanten Definition och grundläggande egenskaper
Dagens program Repetition Determinanten Definition och grundläggande egenskaper Radoperationers påverkan på erminanten Beräkning av erminanten för en trappstegsmatris Utveckling efter rad eller kolonn
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
A. Grundläggande matristeori
A. Matristeori A. Grundläggande matristeori A.1 Definitioner A.1.1 Matriser och vektorer En matris är en rektangulär tabell av element ordnade i rader och kolonner (kolumner). Elementen i en matris kan
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Projekt Finit Element-lösare
Projekt Finit Element-lösare Emil Johansson, Simon Pedersen, Janni Sundén 29 september 2 Chalmers Tekniska Högskola Institutionen för Matematik TMA682 Tillämpad Matematik Inledning Många naturliga fenomen
KPP053, HT2016 MATLAB, Föreläsning 2. Vektorer Matriser Plotta i 2D Teckensträngar
KPP053, HT2016 MATLAB, Föreläsning 2 Vektorer Matriser Plotta i 2D Teckensträngar Vektorer För att skapa vektorn x = [ 0 1 1 2 3 5]: >> x = [0 1 1 2 3 5] x = 0 1 1 2 3 5 För att ändra (eller lägga till)
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Linjära ekvationssystem
Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
Carl Olsson Carl Olsson Linjär Algebra / 18
Linjär Algebra: Föreläsn 1 Carl Olsson 2018-03-19 Carl Olsson Linjär Algebra 2018-03-19 1 / 18 Kursinformation Kurschef Carl Olsson arbetsrum: MH:435 tel: 046-2228565 epost: calle@maths.lth.se Carl Olsson
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.
Övningstenta 6. d b = 389. c d a b = 1319 b a
Övningstenta 6 Problem 1. Vilket är det största antalet olika element en symmetrisk matris A(n n kan ha? Problem. Bestäm de reella talen a,b,c och d då man vet att a b d c = 109 a c d b = 389 c d a b =
TMV141. Fredrik Lindgren. 22 januari 2013
TMV141 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 22 januari 2013 F. Lindgren (Chalmers&GU) Linjär algebra E1 22.01.2013 1 / 73 Outline 1 Föreläsning
Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13
LINJÄR ALGEBRA Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris
At=A' % ' transponerar en matris, dvs. kastar om rader och kolonner U' % Radvektorn U ger en kolonnvektor
% Föreläsning 1 26/1 % Kommentarer efter %-tecken clear % Vi nollställer allting 1/2+1/3 % Matlab räknar numeriskt. Observera punkten som decimaltecken. sym(1/2+1/3) % Nu blev det symboliskt pi % Vissa
Numerisk Analys, MMG410. Exercises 2. 1/33
Numerisk Analys, MMG410. Exercises 2. 1/33 1. A är en kvadratisk matris vars alla radsummor är noll. Visa att A är singulär. Låt e vara vektorn av ettor. Då är Ae = 0 A har icke-trivialt nollrum. 2/33
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
Moment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.
Linjära ekvationssystem
Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att
Block 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 207 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.. För
Beräkningsvetenskap föreläsning 2
Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa
SKRIVNING I VEKTORGEOMETRI Delkurs
SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Linjär algebra. Lars-Åke Lindahl
Linjär algebra Lars-Åke Lindahl 2009 Fjärde upplagan c 2009 Lars-Åke Lindahl, Matematiska institutionen, Uppsala universitet Innehåll Förord................................. v 1 Linjära ekvationssystem
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Determinanter, egenvectorer, egenvärden.
Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a
5.7. Ortogonaliseringsmetoder
5.7. Ortogonaliseringsmetoder Om man har problem med systemets kondition (vilket ofta är fallet), lönar det sig att undvika normalekvationerna vid lösning av minsta kvadratproblemet. En härtill lämplig
TAMS79: Föreläsning 10 Markovkedjor
TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom
Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?
Linjär algebra på 2 45 minuter
Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom