Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Storlek: px
Starta visningen från sidan:

Download "Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :"

Transkript

1 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel för argumentet av en kvot: Vi har att Sätt nu och Då är Alltså får vi Jämför med logaritmlagarna; har man lagen så får man på köpet! Linjära ekvationssystem: Vi har tidigare tittat på ett 2x2 ekvationssystem Vi observerade att det består av ekvationer för linjer, och att lösningsmängden var skärningen av linjerna Vi tittar nu på vad ett 3x3 ekvationssystem betyder och hur man löser det Metoden vi använder för att lösa detta system fungerar även för system med ekvationer och variabler Varje ekvation ovan är faktiskt en ekvation för ett plan Vi säger att ekvationen är på normalform, precis som linjens ekvation ovan Vi återkommer senare under kursen till varför det kallas normalform Specialfall av planets ekvation är 1) 2)

2 2 Återigen är lösningen till ekvationssystemet skärningen mellan 3 plan Lösningen kan därför vara antingen tomma mängden Matrisnotation:, en punkt (vanligast!!), en linje, ett plan, eller hela rummet För att spara tid och möda vill vi undvika att skriva ut variablerna, (eller som de ofta kallas), under hela lösningsprocessen Därför skriver vi om ekvationssystemet ovan som Detta kallas för systemets utökade matris (augmented matrix) och kallas för systemets koefficientmatris Det finns 3 sk radoperationer vi utför på den utökade matrisen för att lösa systemet Dessa radoperation ger nya ekvationssystem som är ekvivalenta (har samma lösningsmängd) som det ursprungliga systemet 1) Byta plats på 2 rader (ekvationer) 2) Multiplicera en rad med ett tal som inte är noll 3) Addera en multipel av en rad till en annan Vi markerar dessa operationer med följande symboler: När vi gör en radoperation på en matris så säger vi att den nya matrisen är radekvivalent med den föregående Vi skriver det som Lösningsförfarandet: Steg 1: Vi börjar med kolonnen längst till vänster Målet är att få en etta någonstans i kolonnen Detta gör vi mha 2) och 3) Om vi bara har nollor i hela kolonnen går vi bara vidare till nästa kolonn Steg 2: Steg 3: under ettan faktor Vi byter plats på rader så att ettan hamnar högst upp Vi adderar multiplar av första raden till de raderna under så att det bara finns nollor

3 3 Betrakta matrisen som består av alla element till höger och under den nya ettan Vi upprepar alla 3 steg på denna matris Tillslut när vi har gått igenom hela matrisen så ska det se ut tex såhär Ettorna, som har egenskapen att de är det första nollskilda elementet på sin rad, kallas för pivotelement När matrisen är i denna form, att det bara finns nollor under och till vänster om pivotelementen, säger vi att den är i trappstegsform (echelon form) Även om ettorna ersätts med andra tal som inte är noll så kallar vi det för trappstegsform Denna metod att få matrisen i trappstegsform kallas för Gausselimination Om fortsätter att göra radoperation 3) kan vi även se till att det är nollor ovanför ettorna Då blir matrisen i reducerad trappstegsform Varför vill vi få den utökade matrisen för ett ekvationssystem på trappstegsform? Svar: Då ser man nästan direkt vad lösningen till ekvationssystemet är! ex Radreducera nedanstående matris till trappstegsform Gausselimination ger: Hade detta varit ett ekvationssystem så hade den sista ekvationen sagt Lösningsmängden måste därför vara OBS!! I praktiken måste man ta många genvägar Ovanstående metod kan bli för omständlig Det kan löna sig att börja med en annan kolonn, eller att konstruera ettan med radoperationen 3) istället för att bara dela raden med ett tal Så blanda metod och känsla

4 4 I koefficientmatrisen svarar varje kolonn mot en variabel De variabler vars kolonn innehåller ett pivotelement kallas för grundvariabler och övriga variabler kallas för fria variabler När vi skriver upp lösningen till ett ekvationssystem så föredrar vi att skriva framför att skriva Detta kallas vektornotation, och kallas för vektor Den allmäna lösningen till ett ekvationssystem Steg 1: Radreducera den utökade matrisen till trappstegsform Steg 2: Kalla de fria variablerna för och om det finns 2 fria variabler (Finns det fria variabler så välj bokstäver!) Steg 3: Tolka den utökade matrisen som ekvationer och lös ut de fria variablerna i termer av Steg 4: Gör följande steg: Variablerna och kallas parametrar och vi säger att lösningen ovan är på parameterform OBS, eftersom parametrarna är fria variabler så får de anta vilka värden som helst Därför bör man lägga till i svaret! ex Om är den utökade matrisen för ett linjärt ekvationssystem som har reducerats till trappstegsform, beskriv den allmäna lösningen på parameterform

5 5 Vi behöver inte göra steg 1 eftersom matrisen redan är i trappstegsform I de två första kolonnerna finns två 1:or som är pivotelement Alltså är grundvariabler Bara är fri variabel Steg 2: Steg 3: Ekvation nr 2 ger att Ekvation nr 1 ger att Steg 4: Svar: Antingen det som står ovan (vektorform som jag tycker är att föredra), eller:

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11

M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11 M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 41 Linjär Algebra, Föreläsning

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF64 Algebra och geometri Sjätte föreläsningen Mats Boij Institutionen för matematik KTH 5 januari, 07 Repetition Ett delrum i R n är slutet under addition x + y V om x, y V multiplikation med skalär a

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

November 6, { b1 = k a

November 6, { b1 = k a Fö 7: November 6, 2018 Linjära ekvationssystem Inledande exempel: Finn ekv för linjen L som går genom punkterna P a 1, b 1 och Qa 2, b 2 sådana att a 1 a 2. Lsg: Linjen L kan beskrivas av ekv y = k x +

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010 SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Onsdagen den 8 december, 2010 UPPGIFT (1) Betrakta det linjära ekvationssystemet x 1 x 2 + x + 2x 4, x 1 + x

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Objective:: Linjärt beroende och oberoende version 1.0

Objective:: Linjärt beroende och oberoende version 1.0 DEFINITIONEN AV LINJÄRT BEROENDE MED EXEMPEL Objective:: Linjärt beroende och oberoende version. Definitionen av linjärt beroende med exempel Vi börjar med ett inledande exempel för att motivera definitionen

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

Veckoblad 4, Linjär algebra IT, VT2010

Veckoblad 4, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den fjärde veckan ska vi under måndagens föreläsning se hur man generaliserar vektorer i planet och rummet till vektorer med godtycklig dimension. Vi kommer också

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010 SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 april 5 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 8- Hjälpmedel : Inga hjälpmedel

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1

2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1 ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

Carl Olsson Carl Olsson Linjär Algebra / 18

Carl Olsson Carl Olsson Linjär Algebra / 18 Linjär Algebra: Föreläsn 1 Carl Olsson 2018-03-19 Carl Olsson Linjär Algebra 2018-03-19 1 / 18 Kursinformation Kurschef Carl Olsson arbetsrum: MH:435 tel: 046-2228565 epost: calle@maths.lth.se Carl Olsson

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15.

Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15. 1 Matematiska Institutionen KTH Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15. 1. Undersök om vektorn (1,, 1, ) tillhör span{(1,, 3, 4), (1, 0, 1, 1),

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

SKRIVNING I VEKTORGEOMETRI Delkurs

SKRIVNING I VEKTORGEOMETRI Delkurs SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Studiehandledning till linjär algebra Avsnitt 1

Studiehandledning till linjär algebra Avsnitt 1 Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 1 Kapitel 1 och 11.2 alt. 11.9 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.)

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0

1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen. 2x y + z = 3 x + 2y = 0 1. Ekvationer 1.1. Ekvationer och lösningar. En linjär ekvation i n variabler x 1,..., x n är en ekvation på formen a 1 x 1 + a 2 x 2 + a n x n = b, med givna tal a 1,..., a n och b. Ett linjärt ekvationssystem

Läs mer

Algebraiska egenskaper hos R n i)u + v = v + U

Algebraiska egenskaper hos R n i)u + v = v + U Underrum till R n, nollrum, kolonnrum av en matris, rank, bas, koordinater, dimension. Påminnelse om R n s egenskaper: Algebraiska egenskaper hos R n i)u + v = v + U v) c(u + v) = cu + cv ii) ( u + v)

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4. Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna -. Föreläsningarna, 6/9 /9 : I sammanfattningen kommer en del av det vi tagit

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1

LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra II LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING Lös ekvationssystemet x + y + z 9 x + 4y 3z 3x + 6z 5z med hjälp av Gausselimination Lösning:

Läs mer

linjära ekvationssystem.

linjära ekvationssystem. CTH/GU LABORATION 2 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna laboration börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på

Läs mer

Linjär Algebra M/TD Läsvecka 3

Linjär Algebra M/TD Läsvecka 3 bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild

Läs mer

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet

Läs mer

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas

Läs mer

Linjär algebra F1 Ekvationssystem och matriser

Linjär algebra F1 Ekvationssystem och matriser Information Ekvationer Ekvationssystem Matriser Linjär algebra F1 Ekvationssystem och matriser Pelle 2016-01-18 Information Ekvationer Ekvationssystem Matriser kursfakta hemsida frågelåda Fakta om Linjär

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

Avsnitt 4, Matriser ( =

Avsnitt 4, Matriser ( = Avsnitt Matriser W Beräkna AB då ( a A ( - b A B B ( 8 7 6 ( - - - och Först måste vi försäkra oss om att matrismultiplikationen verkligen går att utföra För att det ska gå måste antalet kolumner i den

Läs mer

Linjär Algebra M/TD Läsvecka 2

Linjär Algebra M/TD Läsvecka 2 Linjär Algebra M/TD Läsvecka 2 Omfattning och Innehåll 2.1 Matrisoperationer: addition av matriser, multiplikation av matris med skalär, multiplikation av matriser. 2.2-2.3 Matrisinvers, karakterisering

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller April 27, 25 Vektorrum Definition Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller. x M och y M = x + y M. 2. x + y = y +

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,

Läs mer

Determinanter, egenvectorer, egenvärden.

Determinanter, egenvectorer, egenvärden. Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

denna del en poäng. 1. (Dugga 1.1) (a) Beräkna u (v 2u) om v = u och u har längd 3. Motivera ert svar.

denna del en poäng. 1. (Dugga 1.1) (a) Beräkna u (v 2u) om v = u och u har längd 3. Motivera ert svar. Kursen edöms med etyg 3, 4, 5 eller underkänd, där 5 är högsta etyg För godkänt etyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt 3 poäng För var och en av

Läs mer

SF1624 Algebra och geometri Lösningsförsag till modelltentamen

SF1624 Algebra och geometri Lösningsförsag till modelltentamen SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2 SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

15 september, Föreläsning 5. Tillämpad linjär algebra

15 september, Föreläsning 5. Tillämpad linjär algebra 5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-10-28 DEL A 1. Vi har matriserna 1 1 1 1 1 0 3 0 A = 1 1 1 1 1 1 1 1 och E = 0 0 0 1 0 0 1 0. 1 0 0 1 0 1 0 0 (a) Bestäm vilka elementära

Läs mer

Linjär algebra. Lars-Åke Lindahl

Linjär algebra. Lars-Åke Lindahl Linjär algebra Lars-Åke Lindahl 2009 Fjärde upplagan c 2009 Lars-Åke Lindahl, Matematiska institutionen, Uppsala universitet Innehåll Förord................................. v 1 Linjära ekvationssystem

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 207 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.. För

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

Tentamen TMV140 Linjär algebra Z

Tentamen TMV140 Linjär algebra Z Tentamen TMV40 Linjär algebra Z 307 kl. 08.30 2.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Dawan Mustafa, 0703 088 304 Hjälpmedel: Inga, ej heller räknedosa För godkänt

Läs mer

14 september, Föreläsning 5. Tillämpad linjär algebra

14 september, Föreläsning 5. Tillämpad linjär algebra 14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar

Läs mer

1 Positivt definita och positivt semidefinita matriser

1 Positivt definita och positivt semidefinita matriser Krister Svanberg, april 1 1 Positivt definita och positivt semidefinita matriser Inom ickelinjär optimering, speciellt kvadratisk optimering, är det viktigt att på ett effektivt sätt kunna avgöra huruvida

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p) SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

3x + y z = 0 4x + y 2z = 0 2x + y = Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x = 1 x + y = 1 x + 2y = 2

3x + y z = 0 4x + y 2z = 0 2x + y = Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x = 1 x + y = 1 x + 2y = 2 TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 3 7 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och

Läs mer

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0.

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0. TM-Matematik Mikael Forsberg, 734-4 3 3 Rolf Källström, 7-6 93 9 För Campus och Distans Linjär algebra mag4 och ma4a 6 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta

Läs mer

MVE022 Urval av bevis (på svenska)

MVE022 Urval av bevis (på svenska) MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Måndagen den 24 september, 2012

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Måndagen den 24 september, 2012 SF64 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 4 september, Låt T : R R 4 vara den linjära avbildningen med standardmatris (a) Bestäm en bas för bildrummet

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017 SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

En vektor är mängden av alla sträckor med samma längd och riktning.

En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

Slappdefinition. Räkning med vektorer. Bas och koordinater. En vektor är mängden av alla sträckor med samma längd och riktning.

Slappdefinition. Räkning med vektorer. Bas och koordinater. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6

3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6 TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 5 4 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och

Läs mer

x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3)

x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3) TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 74-4 kurser:: Linjär Algebra ma4a Matematik för ingenjörer maa 8 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, AT3 211/212 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni redan vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och

Läs mer

Linjära ekvationssystem i Matlab

Linjära ekvationssystem i Matlab CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

TMV141. Fredrik Lindgren. 22 januari 2013

TMV141. Fredrik Lindgren. 22 januari 2013 TMV141 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 22 januari 2013 F. Lindgren (Chalmers&GU) Linjär algebra E1 22.01.2013 1 / 73 Outline 1 Föreläsning

Läs mer

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3

5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3 1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift

Läs mer

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning

Läs mer

Facit/lösningsförslag

Facit/lösningsförslag Facit/lösningsförslag 06-08- Låt l vara linjen med parameterform x, y, z 0 s, mellan planet x y z och planet z 0 och låt l vara skärningslinjen a) Skriv l på parameterform b) Beräkna avståndet mellan l

Läs mer

= ( 1) ( 1) = 4 0.

= ( 1) ( 1) = 4 0. MATA15 Algebra 1: delprov 2, 6 hp Fredagen den 17:e maj 2013 Skrivtid: 800 1300 Matematikcentrum Matematik NF Lösningsförslag 1 Visa att vektorerna u 1 = (1, 0, 1), u 2 = (0, 2, 1) och u 3 = (2, 2, 1)

Läs mer