Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13

Storlek: px
Starta visningen från sidan:

Download "Innehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13"

Transkript

1 LINJÄR ALGEBRA

2

3 Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris och homogent ES 6 4 Determinant 7 4 Determinanten av en enhetsmatris 7 4 Radoperationer i en determinant 9 3

4 Grundläggande algebra 3

5 4 GRUNDLÄGGANDE ALGEBRA

6 3 Matrisalgebra Nu lever matriser sitt eget liv, fritt från ekvationssstem Men även ekvationsstem kan framställas med matrisalgebra En matris är ett rektangulärt schema av element (tal) a, a, a,n a, a, a,n A : (3) a m, a m, a m,n Definition Två matriser a, a, a,n b, b, b,q a, a, a,n A och B b, b, b,q a m, a m, a m,n b p, a p, b p,q är lika om de är av samma tp dvs m p och n q samt om varje element a j,k b j,k för j,,,m och k,,,n, dvs elmentvis likhet Exempel är lika omm x x Man kan teckna en totalmatris med högerled, som a, a, a,n b a, a, a,n b A B : (3) a m, a m, a m,n b n alltså motsvarande ett ES med n ekvationer och m obekanta/variabler x, x,,x m 3 Addition av matriser Exempel 3 Givet två märken på ckelramar De har vardera tre olika modeller på ramarna Följande matris anger pris utan moms på respektive ram i tusental kronor Rad är märke och rad märke A Märke 9 märke 4 5

7 6 3 MATRISALGEBRA Till dessa ramar har man valt 6 olika tper av hjul, till respektive modell på ramen med priserna (tusentals kronor utan moms) B Priset för en ram med två hjul för de 6 modellerna kan beräknas med matrisoperationer 9 3 A + B (kkr) 3 3 Vi ser att addition (och subtraktion) av två matriser kräver att de är av samma tp Dessutom ser vi att multiplikation med ett reellt tal (en skalär), i detta fall talet innebär att samtliga element multipliceras med, alltså elementvis multiplkation med "skalären" Exempel 33 Med moms (5%) blir priset för ram+två hjul 9 3 5(A + B) kkr alltså elementvis multiplkation med "skalären" 5 Observera att multiplikationen är distributiv 5 (A + B) 5 A + 5 B Allmänt kan alltså en matris A av tp m n skrivas A a a a n a a a n a m a m a mn alltså med element a jk på plats ( j,k) För en matris B, sådan att A + B skall vara möjligt krävs att b b b n b b b n B b m b m b mn dvs av samma tp m n Summan a + b a + b a n + b n a + b a + b a n + b n A + B a m + b m a m + b m a mn + b mn dvs elementet på plats ( j,k) i A + B är a jk + b jk, för j,,,m och k,,,n

8 3 MULTIPLIKATION MELLAN MATRISER 7 3 Multiplikation mellan matriser Först skall vi iakktaga ett samband mellan rader och kkolonner i en matris Exempel 34 Matrisen A vidare att 9 4 har rader och 3 kolonner Vi ser antal rader antal element i en kolonn 3 antal kolonner antal element i en rad och detta är tpiskt för alla matriser Vi börjar med det enkla fallet, då A endast har en rad och B endast har en kolonn Detta ger den allmänna principen att rad i vänster matris "multpliceras" med kolonn ihöger matris Exempel 35 Exvis är med A 3 och a b c A B a + b + 3 c en matris av tp, västentligen ett element eller ett tal(om än med paranteser och ) Vi ser att prodketens tp är tp A 3 och tp B 3 och för produkten A B är alltså tpen 3 3 För produkten A B mellan två matriser är det nödvändigt och tillräckligt att antal kolonner i A är lika med antal rader i B För en (rad-)matris A a a a 3 och en (kolonn-)matris B b b b 3 är antal kolonner i A lika med antal rader i B Då och endast då är multiplikationen A B möjlig Produkten är en matris av ordning 3 3, i princip ett reellt tal, närmare bestämt A B a a a 3 b b b 3 Principen för multiplikation mellan matriser är att ta a b + a b + a 3 b 3 (33) rad i vänster martris gånger kolonn i höger matris som beskrivs i (33) Därför måste antal kolonner i vänster matris antal rader i höger matris Exempel 36 För två matriser av rätt tper kan alltså multiplikation utföras I exempel har vi koefficientmatrisen A : Vi skriver nu variablerna Vi kommer att använda denna tp av multiplikation vid skalär produkt av vektorer

9 8 3 MATRISALGEBRA x och högerledet som matriser, X : och B : Med multiplikationen A X menas att rad j i A multipliceras "skalärt", med kolonn k i X som i (33) tp A och tp X Antal kolonner i A är alltså lika med antal rader i X Produkten A X blir då en matris av tp Elementen i produkten A X är x A X x alltså vänster led i ekvationen i exempel Detta ekvationsstem kan alltså skrivas A X B Det ligger nu nära till hands att få fram X i exemplet ovan genom att dividera bort A i vänster led Vi skall se på detta i nästa avsnitt, men först definiera multiplikation mellan två matriser Vi börjar med en rad gånger en kolonn För en rad A a a a n och en kolonn b b av tp n respektive n är A B a b + a b + + a n b n a a a p a a a p För matriser A av tp m p och B a m a m a mp av tp q n är multiplikation definierad omm p q, dvs b n b b b n b b a n b q b q b qm omm antalet kolonner i vänster matris A, antal rader i höger matris B Produkten A B : C är då en matris av tp m n med elementet c jk a j b k + a j b jk + + a jp b pk på plats ( j,k) för j,,m och k,,,n Exempel 37 Vi skall göra en liknande beräkning av priset som i exempel 3 men bara för märke Vi bildar matrisen med rampriset i första kolonn och hjulpriset i andra kolonn 9 5 C : 35 5 Priset för ram+två hjul fås genom att multiplicera C med : F från höger (enda möjligheten) Detta ger C F {Blir en matris av tp 3 } 9 3

10 3 MULTIPLIKATION MELLAN MATRISER 9 Multiplikation mellan reella (komplexa) tal a, b och c uppfller a (b c) (a b) c (Associativa lagen) a b b a (Kommutativa lagen) a b + a c a (b + c) (Distributiva lagen) (34) Matrismultiplikation uppfller den första och sista lagen, om matriserna är av Associativa lagen för multiplikation gäller: Exempel 38 Matriserna a, a A, a,3 a, a, a,3, B b, b, b 3, och C c, c, är av tp 3, 3 och Alltså är produkterna (A B) C och A (B C) definierade och ger en matris av tp 3 3 Båda produkterna blir lika: a, b, c, + a, b, c, + a,3 b 3, c, a, b, c, + a, b, c, + a,3 b 3, c, a, b, c, + a, b, c, + a,3 b 3, c, a, b, c, + a, b, c, + a,3 b 3, c, rätta tper, men inte kommutativitet 3 Exempel 39 Givet matriserna A a b c, B d e f och C Eftersom B och C är av tp 3, kan de adderas men inte multipliceras Däremot kan man multiplicera med A från vänster på både B och C Vi verifierar att A (B +C) och A B + A C ger samma matris (av tp 3) a 3d + 7 b 3e + 3 c 3 f A (B +C) a d + 3 b e + c f Pss är a 3d b 3e c 3 f A B + A C a d b e c f och ví ser att likhet gäller Exempel 3 Givet matrisen A B A, dvs kommuterar med A? 3 Vilka matriser B uppfller A B

11 3 MATRISALGEBRA Lösning: Först undersöker vi vilken tp B har Pga A B existerar, måste B ha rader och pga B A existerar, måste B ha kolonner, dvs tp B, alltså a b samma tp som A Vi ansätter B Sambandet A B B A ger då 4 c d ekvationer a 3c a + b a 3c b 3d a + b 3a b b 3d 3a b A B B A a c b d c + d 3c d a c c + d b d 3c d Detta reduceras till att c (b/3),d a + bdvs B a b/3 b a + b Kommentarer I exemplet utgick vi från en kvadratisk matris A För att två matriser A och B skall kommutera, måste de vara kvadratiska av samma ordning (Övning: Visa det!) 33 Enhetsmatris För multiplikation med vanliga, dvs reella (eller komplexa) tal finns talet, ett "neutralt element" Vi vet ju att x x x för varje reellt (komplext) tal x Motsvarande tal bland matriser är enhetsmatrisen av en given ordning, alltså en kvadratisk matris Av ordning är den E : (35) Exempel 3 Matrisen C är av tp 3 Alltså är multiplikationen E C möjlig och ger en 3 matris Man ser 3 att E C 3 3 C För att multiplicera med en enhetsmatris från höger på C krävs det att den är av ordning 3 Denna matris är E (36) Exempel 3 Vi prövar och finner att C E C, där C är samma matris som i föregående exempel och E är matrisen i (36)

12 34 INVERS MATRIS 34 Invers matris För varje reellt (komplext) tal x finns ett inverterat tal/värde, exvis till talet /3 är det inverterade talet 3 (/3) 3/ För vissa kvadratiska matriser finns en invers matris Exempel 33 Givet matrisen A i kapitel sidan 6, exempel sidan kan skrivas x A X B där A, X och B Inversmatrisen till A skrivs A, om den existerar, vilket den faktiskt gör i detta exempel Den är A Man observerar att både A A E och A A E, vilket man lätt kan kontrollera Vi använder inversmatrisen för att lösa detta ES VL HL {}}{{}}{ AX B A (A X) (A A) X E X X A B Vi får alltså lösningen X A B Med siffror x X A B dvs samma lösning som i exempel 3, Kommentarer Eftersom inversmatrisen till koefficientmatrisen existerar, så får vi har en lösning detta exempel (som i ) I exempel 3 och 4 har vi respektive med lösningar Dessa ES har samma koefficientmatris Tdligen är det dess utseende som avgör om det finns (en) lösning eller inte Detta hänger ihop med om inversmatrisen existerar eller inte Givet den kvadratiska matrisen av ordning a b A c d Ett "konditionstal" för en sådan matris är dess determinant Det är a b deta det c d a b c d ad bc Omm detta tal existerar inversmatrisen till A och den är A d b (37) ad bc c a

13 3 MATRISALGEBRA För matrisen A är deta ( ) ( ) Alltså existerar inversmatrisen, som är (Jämför med exemplet ovan) A I exempel 5 är koefficientmatrisen inte kvadratisk och kan därför inte ha en inversmatris Exempel 34 Beräkna determinanten av matrisen i exempel 3 Lösning: deta 4 ( ) ( 4) Exempel 35 Kofficientmatrisen i exempel 7 A 3 är kvadratisk och ES har en lösning Man kan misstänka att dess determinant och dess invers(-matris) existerar I själva verket är dess determinant och (således) existerar inversen Den är A 4 3 Vi multiplicerar ihop denna matris med A: A A E Pss är A A E Exempel 36 Vi löser ES i exempel 7 men denna gång mha inversmatrisen i föregående exempel Vi får att detta ES kan skrivas med matrismultiplikation, som x x A A z z Hur determinant och invers matris beräknas för matriser av ordning 3 och högre undersöker vi längre fram

14 34 INVERS MATRIS 3 Teorem Givet en kvadratisk matris A och två matriser B och C, sådana att B A A C E Då är B C Satsen säger att om det finns en vänsterinvers och en högerinvers, B respektive C, så är dessa lika Bevis: B B E B (AC) (B A) C E C C Exempel 37 ES i exempel 5 har koefficientmatrisen A 3 Man kan lätt visa att A v : 3 3 är vänsterinvers till A, dvs A v A E men A A v E, dvs A v är inte högerinvers Vi vet att ES i exempel 5 saknar lösning Vad händer om vi löser detta ES med A x A 3 3 v? ) A x v A ) x E 3 x A v Uppenbarligen är denna lösning falsk eftersom detta ES saknar lösning Var ligger "felet"? jo, vi har bara en implikation " " vid *) För att få implikationen måset vi multiplicera med A från vänster i likheten **) Detta ger A 3 3 A A v A 3 A v 3 men A A v E, enligt ovan, dvs A v är inte högerinvers Vi kan slutligen verifiera att lösningen är falsk genom att sätta in lösningen i den urprungliga ekvationen: A 3 5 4,

15 4 3 MATRISALGEBRA Kommentarer Vissa matriser A av tp m n, med m > n har vänsterinvers A v matris kan inte vara högerinvers till A men denna Användningen av en sådan vänsterinvers begränsar sig alltså till att man antingen vet att det finns en lösning eller till att ta fram en lösning och sedan kontrollera om den är sann eller falsk i den ursprungliga matrisekvationen x Exempel 38 Lös ekvationssstemet x 7 3x + 9 föregående exempel med samma metod som i Lösning: A x v A x A v 7 9 Vi sätter in denna lösning i den ursprungliga matrisekvationen A och alltså är lösningen 4 3 x Invers matris med Jacobis metod Exempel 39 Matrisen A Högerled är B : 3 vi bestämma A Vi ser A X( är koefficientmatris i exempel 7 Vi skall lösa detta ES mha invers matris Alltså skall x x x 3 x x x 3 x 3 x 3 x 33 ) som en okänd matris av tp 3 3 (ordning 3) X skall uppflla AX E Detta skriver vi som en totalmatris, som vi sedan överför på radreducerad form 3 Denna sista totalmatris betder 3 E X 3 {alltså} X A

16 34 INVERS MATRIS 5 Alltså kan vi lösa matrisekvationen x z A x z B : A B Matrisekvation Exempel 3 Vi skall nu lösa matrisekvationen (dvs bestämma matrisen X) där A A X X + B och B 3 Lösning: Vi skriver om ekvationen som B A X X A X E X (A E) X X (A E) B, om inversmatrisen (A E) existerar Nu är A E 3 Alltså existerar inversen, som är (A E) det 3 3 Matrisekvationen hr alltså lösningen X (A E) B Transponatmatris Vi transponerar först en matris av tp 3 Givet matrisen a, a A, a,3 a, a, a,3 Dess transponat är matrisen A T a, a, a, a, a,3 a,3

17 6 3 MATRISALGEBRA Definition Givet matrisen A (a j,k ) av tp m n Transponatmatrisen är då A T (a k, j ) av tp n m Exempel 3 Givet ES i exempel Det kan skrivas som en matrisekvation A X B x där A, X och B Vi skall "vända" på samtliga matriser och ändå få samma ES samtliga matriser: A T Vi ser att matrisekvationen kan skrivas, X T x och B T X T A T B T, om vi multiplicerar ihop matriserna i VL och sätter produkten lika med HL Utraäknat blir ju detta X T A T x x B T som är det ursprungliga ES Observera att tp X T och tp A T, så att martrisprodukten i V L existerar och är av tp HL:s matris är också av tp Allmänt gäller att B T A T (A B) T (38) Bevis: HL: Element på plats (k,i) i (A B) T är detsamma som element på plats (i,k) i A B Detta element är produkten av rad i i A och kolonn k i B VL: Element på plats (k,i) i B T A T är produkten av rad k i B T och kolonn i i A T, dvs produkten av kolonn k i B och rad i i A 34 Nollmatris och homogent ES En nollmatris är en matris med alla element B är nollmatrisen av tp 3 Ett homogent ES har ett HL, som matris är ren nollmatris Exempel 3 Följande ES skrivet som en matrisekvation är ett homogent ES (Samma koefficientmatris som i exempel 5) A X,

18 34 INVERS MATRIS 7 där A 3, X x och (därmed) Man ser att x z är lösning Detta är tpiskt för ett homogent ES På matrisform 3 Vi ser att rangen för koefficient- och totalmatris är lika Detta är också tpiskt för ett sådant ES Antal lösningar är i detta fall Allmänt har ett homogent ES eller med lösningar Exempel 33 Följande ES har samma koefficienmatris som i exempel 6 men homogent sådant är följande { x x + z och som matrisekvation x + z z På radrecuderad form Alltså en fri variabel z och således med lösningar Vi ser att rangen för koefficientoch totalmatris är lika<antal variabler 3 Svar: x t t, t R z t

MATRISTEORI. Pelle Pettersson MATRISER. En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens

MATRISTEORI. Pelle Pettersson MATRISER. En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens MATRISTEORI Pelle Pettersson ALLMÄN MATRISKUNSKAP MATRISER En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens element Exempel Matrisen 2 3 4 5 6 har två rader och

Läs mer

14 september, Föreläsning 5. Tillämpad linjär algebra

14 september, Föreläsning 5. Tillämpad linjär algebra 14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar

Läs mer

15 september, Föreläsning 5. Tillämpad linjär algebra

15 september, Föreläsning 5. Tillämpad linjär algebra 5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess

Läs mer

Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1

Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1 Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = = Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4. Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna -. Föreläsningarna, 6/9 /9 : I sammanfattningen kommer en del av det vi tagit

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1

LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra II LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING Lös ekvationssystemet x + y + z 9 x + 4y 3z 3x + 6z 5z med hjälp av Gausselimination Lösning:

Läs mer

Linjär Algebra M/TD Läsvecka 2

Linjär Algebra M/TD Läsvecka 2 Linjär Algebra M/TD Läsvecka 2 Omfattning och Innehåll 2.1 Matrisoperationer: addition av matriser, multiplikation av matris med skalär, multiplikation av matriser. 2.2-2.3 Matrisinvers, karakterisering

Läs mer

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Gausselimination fungerar alltid, till skillnad från mer speciella metoder.

Gausselimination fungerar alltid, till skillnad från mer speciella metoder. LINJÄRA EKVATIONSSYSTEM, GAUSSELIMINATION. MATRISER. Läs avsnitten 4.-4.. Lös övningarna 4.ace, 4.2acef, 4., 4.5-4.7, 4.9b, 4. och 4.abcfi. Läsanvisningar Avsnitt 4. Det här avsnittet handlar om Gauss-elimination,

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

Avsnitt 2. Matriser. Matriser. Vad är en matris? De enkla räknesätten

Avsnitt 2. Matriser. Matriser. Vad är en matris? De enkla räknesätten Avsnitt Matriser Vad är en matris? De enkla räknesätten Matrismultiplikation Produkt av en rad med en kolumn Produkt av rader med en kolumn Produkt av rader med kolumner När är matrismultiplikationen definierad?

Läs mer

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning

TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.

Läs mer

Carl Olsson Carl Olsson Linjär Algebra / 18

Carl Olsson Carl Olsson Linjär Algebra / 18 Linjär Algebra: Föreläsn 1 Carl Olsson 2018-03-19 Carl Olsson Linjär Algebra 2018-03-19 1 / 18 Kursinformation Kurschef Carl Olsson arbetsrum: MH:435 tel: 046-2228565 epost: calle@maths.lth.se Carl Olsson

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

Avsnitt 4, Matriser ( =

Avsnitt 4, Matriser ( = Avsnitt Matriser W Beräkna AB då ( a A ( - b A B B ( 8 7 6 ( - - - och Först måste vi försäkra oss om att matrismultiplikationen verkligen går att utföra För att det ska gå måste antalet kolumner i den

Läs mer

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6 Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.

Läs mer

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller

Definition 1 Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller April 27, 25 Vektorrum Definition Ett vektorrum M (över R) är en mängd element, vektorer, sådan att det finns en kommutativ operation + på mängden M som uppfyller. x M och y M = x + y M. 2. x + y = y +

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

Studiehandledning till linjär algebra Avsnitt 1

Studiehandledning till linjär algebra Avsnitt 1 Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 1 Kapitel 1 och 11.2 alt. 11.9 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.)

Läs mer

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0.

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0. TM-Matematik Mikael Forsberg, 734-4 3 3 Rolf Källström, 7-6 93 9 För Campus och Distans Linjär algebra mag4 och ma4a 6 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta

Läs mer

TMV166 Linjär Algebra för M. Tentamen

TMV166 Linjär Algebra för M. Tentamen MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

1 Reducerat faktorförsök rf f

1 Reducerat faktorförsök rf f 1 REDUCERAT FAKTORFÖRSÖK RF F 1 Reducerat faktorförsök rf f Vi skall med tre faktorer och således 2 3 försök reducera till ett fullständigt 2 2 försök. 1.1 Tre faktorer Vi repeterar med ett tidigare fullständigt

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Självkoll: Ser du att de två uttrycken är ekvivalenta? ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga. GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet

Läs mer

SF1624 Algebra och geometri Lösningsförsag till modelltentamen

SF1624 Algebra och geometri Lösningsförsag till modelltentamen SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till

Läs mer

Linjär algebra. Lars-Åke Lindahl

Linjär algebra. Lars-Åke Lindahl Linjär algebra Lars-Åke Lindahl 2009 Fjärde upplagan c 2009 Lars-Åke Lindahl, Matematiska institutionen, Uppsala universitet Innehåll Förord................................. v 1 Linjära ekvationssystem

Läs mer

SKRIVNING I VEKTORGEOMETRI Delkurs

SKRIVNING I VEKTORGEOMETRI Delkurs SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11

M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11 M0043M Integralkalkyl och Linjär Algebra, H14, Linjär Algebra, Föreläsning 11 Staffan Lundberg / Ove Edlund Luleå Tekniska Universitet Staffan Lundberg / Ove Edlund M0043M H14 1/ 41 Linjär Algebra, Föreläsning

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

Linjär algebra F1 Ekvationssystem och matriser

Linjär algebra F1 Ekvationssystem och matriser Information Ekvationer Ekvationssystem Matriser Linjär algebra F1 Ekvationssystem och matriser Pelle 2016-01-18 Information Ekvationer Ekvationssystem Matriser kursfakta hemsida frågelåda Fakta om Linjär

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.

(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c. UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

Determinanter, egenvectorer, egenvärden.

Determinanter, egenvectorer, egenvärden. Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a

Läs mer

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z

x = som är resultatet av en omskrivning av ett ekvationssystemet som ursprungligen kunde ha varit 2x y+z = 3 2z y = 4 11x 3y = 5 Vi får y z Ett nytt försök med att ta fram inversen till en matris Innan vi startar med att bestämma inversen till en matris måste vi veta varför vi skulle kunna behöva den. Vi har A x b som är resultatet av en omskrivning

Läs mer

Linjär algebra Tio förrätter och två efterrätter Roy Skjelnes

Linjär algebra Tio förrätter och två efterrätter Roy Skjelnes Linjär algebra Tio förrätter och två efterrätter Roy Skjelnes Matematiska Institutionen, KTH Typsatt med L A TEX 2ε och TikZ Kompilerad 8 september 2014 Inledande ord Detta häfte är baserat på en föreläsningsserie

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 1 Måndagen den 29 november, 2010 SF624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning Måndagen den 29 november, 200 UPPGIFT () Betrakta det linjära ekvationssystemet x + x 2 + x 3 = 7, x x 3 + x 4

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

Övningstenta 6. d b = 389. c d a b = 1319 b a

Övningstenta 6. d b = 389. c d a b = 1319 b a Övningstenta 6 Problem 1. Vilket är det största antalet olika element en symmetrisk matris A(n n kan ha? Problem. Bestäm de reella talen a,b,c och d då man vet att a b d c = 109 a c d b = 389 c d a b =

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF64 Algebra och geometri Sjätte föreläsningen Mats Boij Institutionen för matematik KTH 5 januari, 07 Repetition Ett delrum i R n är slutet under addition x + y V om x, y V multiplikation med skalär a

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI Delkurs 207 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.. För

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A 1 a Bestäm de komplexa koefficienterna a, b och c så att polynomet Pz z 3 + az 2 + bz + c har nollställena

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

A. Grundläggande matristeori

A. Grundläggande matristeori A. Matristeori A. Grundläggande matristeori A.1 Definitioner A.1.1 Matriser och vektorer En matris är en rektangulär tabell av element ordnade i rader och kolonner (kolumner). Elementen i en matris kan

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3)

x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3) TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 74-4 kurser:: Linjär Algebra ma4a Matematik för ingenjörer maa 8 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta

Läs mer

Algebraiska egenskaper hos R n i)u + v = v + U

Algebraiska egenskaper hos R n i)u + v = v + U Underrum till R n, nollrum, kolonnrum av en matris, rank, bas, koordinater, dimension. Påminnelse om R n s egenskaper: Algebraiska egenskaper hos R n i)u + v = v + U v) c(u + v) = cu + cv ii) ( u + v)

Läs mer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l. SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B

Läs mer

TMV166 Linjär algebra för M, vt 2016

TMV166 Linjär algebra för M, vt 2016 TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare

Läs mer

Linjär Algebra M/TD Läsvecka 3

Linjär Algebra M/TD Läsvecka 3 bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild

Läs mer

MVE022 Urval av bevis (på svenska)

MVE022 Urval av bevis (på svenska) MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel

Läs mer

Objective:: Linjärt beroende och oberoende version 1.0

Objective:: Linjärt beroende och oberoende version 1.0 DEFINITIONEN AV LINJÄRT BEROENDE MED EXEMPEL Objective:: Linjärt beroende och oberoende version. Definitionen av linjärt beroende med exempel Vi börjar med ett inledande exempel för att motivera definitionen

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

Grupper och RSA-kryptering

Grupper och RSA-kryptering UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

denna del en poäng. 1. (Dugga 1.1) (a) Beräkna u (v 2u) om v = u och u har längd 3. Motivera ert svar.

denna del en poäng. 1. (Dugga 1.1) (a) Beräkna u (v 2u) om v = u och u har längd 3. Motivera ert svar. Kursen edöms med etyg 3, 4, 5 eller underkänd, där 5 är högsta etyg För godkänt etyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt 3 poäng För var och en av

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

TMV141. Fredrik Lindgren. 22 januari 2013

TMV141. Fredrik Lindgren. 22 januari 2013 TMV141 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 22 januari 2013 F. Lindgren (Chalmers&GU) Linjär algebra E1 22.01.2013 1 / 73 Outline 1 Föreläsning

Läs mer

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med : 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel

Läs mer

c11 c 12 c 13 c 14 c 21 c 22 c 23 c 24 C = f 11 f 12 f f 1n

c11 c 12 c 13 c 14 c 21 c 22 c 23 c 24 C = f 11 f 12 f f 1n Moment 5.., 5.., 5..3, 5..4 Viktiga exempel 5., 5.3, 5.4, 5.5, 5.6, 5.7 Handräkning 5.-5.7, 5.-5., 5.8-5.3, 5.33 Datorräkning Problem 5 till 4 i detta dokument Matriser Definition. En matris är ett schema

Läs mer

Kursplanering för Linjär algebra, HT 2003

Kursplanering för Linjär algebra, HT 2003 Kursplanering för Linjär algebra, HT 2003 Mikael Forsberg 12 augusti 2003 Innehåll 1 Kursbok 2 2 Kursinnehåll 2 2.1 Kursens uppläggning......................... 2 2.2 Målsättning..............................

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0.

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0. Avsnitt Egenvärden och egenvektorer W Vilka av följande matriser är ortogonala? b d En matris A a a a n a a a n a a a n a m a m a mn är en ortogonal matris om dess kolumner bildar en ON-bas för rummet

Läs mer

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7 Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)

Läs mer

Veckoblad 4, Linjär algebra IT, VT2010

Veckoblad 4, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den fjärde veckan ska vi under måndagens föreläsning se hur man generaliserar vektorer i planet och rummet till vektorer med godtycklig dimension. Vi kommer också

Läs mer

Lösningar till MVE021 Linjär algebra för I

Lösningar till MVE021 Linjär algebra för I Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

1 Vektorer i koordinatsystem

1 Vektorer i koordinatsystem 1 Vektorer i koordinatsystem Ex 11 Givet ett koordinatsystem i R y a 4 b x Punkten A = (3, ) och ortsvektorn a = (3, ) och punkten B = (5, 1) och ortsvsektorn b = (5, 1) uttrycks på samma sätt, som en

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer