TMV156 Inledande matematik E, 2010 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING
|
|
- Ann-Christin Andreasson
- för 8 år sedan
- Visningar:
Transkript
1 TMV156 Inledande matematik E, 2010 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING 1. Syfte och mål I den här laborationen skall du lära dig att definera och använda anononyma funktioner för att beräkna värden på matematiska funktioner som inte är fördefinerade i Matlab. Vi inför också begreppet vektorisering av funktioner som är intimt sammankopplat med elementvisa operationer och väldigt bra när man t.ex. skall rita funktionsgrafer. I laborationen får du lära dig rita snygga och informativa sådana. Den syftar också till att göra dig medveten om de fallgropar du kan ramla i vid all användning av datorgrafik. En viktig sensmoral är att datorer kan vara en stor hjälp när man vill förstå ett matematiskt (och därmed ett tekniskt) problem men att man för att kunna använda datorn på ett effektivt sätt också måste ha koll på matematiken. Kunskaperna vi förvärvar används sedan till att bättre förstå olika funktioners betydelse och att studera grafers förändringar med avseende på olika tänkbara parametrar. Den som hinner får dessutom chansen att börja studera de verktyg som finns i Matlab för att hitta funktioners optimala punkter. I den sista laborationen i den här kursen skall vi skriva egna program som gör detta åt oss. 2. Instruktioner Välj plottningsintervall och skalor på x, y-axlarna så att figuren blir bra. Se sidan i Adams. Vissa funktioner har parametrar, a, b, c,... Plotta då i en figur flera grafer med lämpligt valda parametervärden. Använd label, title, legend samt olika färg och linjetyp så att figuren blir informativ. Skapa en ny filkatalog ( directory ) Lab2 för denna övning. Gör alltid uppgifterna i script-filer. För rituppgifterna, arbeta med script-filer som innehåller kommandon av typen: A=0; B=1;N=50; %Bara exempel! f=@(x)... %Gör alltid implicita funktioner på det här sättet! g=@(x)... x=linspace(a,b,n); y1=f(x); y2=g(x); plot(x, y1, go-, x, y2, rd: ) legend( y=f(x), y=g(x) ) Spara gärna någon figur i Matlabs eget format.fig så att du kan öppna den igen. Testa också att spara den till i.eps format ( encapsulated postscript ) eller.png så att du kan importera den till något ordbehandlingsprogram. Notera att det går att exportera till många olika format. På så sätt kan man även manipulera figurer i rit- eller bildbehandlingsprogram om man vill Anonyma funktioner. 3. Uppgifter Att skapa anonyma funktioner. Definera fyra anonyma funktioner: >>g1=@(z)(z^2+z-2) >>g2=@(y)(z^2-3*z+2) >>f1=@(x)(g1(x)/g2(x)) >>f2=@(q)(g2(q)/g1(q)) Date: , Fredrik Lindgren, Matematiska vetenskaper, Chalmers tekniska högskola. 1
2 2 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING Vilka matematiska funktioner definerar f 1(x) och f 2(x)? Vad har de för definitionsmängd? Testa och anropa dem med några olika värden, i synnerhet x = 2, 1, 1, 2. Händer det som borde hända? Notera att namnen på inparametrarna i de olika anonyma funktionerna är olika: z, y, x respektive q. Vilken funktion fyller dessa namn? Spelar det någon roll att de är olika? Antag att vi vill ändra namnet på inparametern i funktionen med funktionshandtag g1 till w. Hur deklarerar vi då g1? Behöver vi ändra någon av de andra funktionerna efter att vi har ändrat g1? Vektorisera de anonyma funktionerna. Skapa en vektor x1=a:dx:b för några lämpliga värden på a, dx och b och anropa de anonyma funktionerna från den förra uppgiften med denna. Du borde då få ett felmeddelande. Detta beror på att de inte är vektoriserade. En vektoriserad funktion kan ta en vextor x = (x 1, x 2,...,x n ) och om man skrivery=f(x) så är y i = f(x i ) (notera att vi här använder matematiska notation, inte Matlabnotation. I det senare fallet skulle vi skriva y(i)=f(x(i))). Skriv om f 1, f 2, g 1 och g 2 så att de är vektoriserade. Testa på vektorn x1 igen och på x 2 = ( 2, 1, 0, 1, 2, 3). Hur skapar man den senare på enklast sätt? 3.2. Några rituppgifter Ett tredjegradspolynom med olika upplösning. Gör följande för N = 10, 30, 50, 100 för att se hur kvalitén på figuren förbättras med ökat N. Börja med att skapa en m-fil poly3deg.m genom att skriva edit poly3deg.m vid matlabprompten. Kopiera sedan in nedandstående och förfärdiga det. Kommentera koden och skriv efter varje rad vad som händer. (Kommentera gör du genom att skriva ett procenttecken följt av din kommentar. Allt som står efter ett procenttecken i Matlab hoppas över av programmet: det är bara synligt för det mänskliga ögat och är ett sätt för programmeraren att själv komma ihåg hur hon tänkte när hon skrev programmet och att kommunicera det till andra användare och utvecklare. Det är ofta bra när man ska leta fel i kod att det är välkommenterat.) f=@(t)(t.^3-2t.^2+t-1); a=? b=? N=10; x=linspace(a,b,n); y1=f(x); plot(x,y1, *- ) hold on N=30; y2=f(x); plot(x,y2, kd- ). plot(x,y4, g:o ) legend( N=10, N=30, N=50, N=100 ) title( Grafen till f(x)=x.^3-2x.^2+x-1 ) xlabel( x ) ylabel( f(x) ) Hitta sedan nollställena till polynomet med funktionen roots, se help roots och plotta dem som cirklar i figuren genom att skriva hej=roots(?) %Hur ska man använda roots? stlk=size(hej) %Vad gör size? y=zeros(stlk) %Vad gör zeros? hold on %hold on? plot(hej,y, o )
3 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING Sinusfunktioner och samplingssatsen. Om man har för mycket punkter i plotten så blir det långsamt och tar massa minne utan att man vinner så mycket extra insikter jämfört om man hade haft, säg hälften så många. Har man för lite så kan det dels bli fult, men man kan också missa viktig information. Öppna en ny m-fil och plotta funktionen sin(ωt) med linspace(-pi,pi,n) med N = 10, 100, 500, 1000 och punkter för ω = 100 och försök förstå vad som händer. Uppenbarligen blir det alldeles galet när man har för få punkter, trots att det ser fint ut! Sensmoralen är att man bör försöka skapa sig en förståelse av funktionen man ska rita. Datorn kräver sin matematiker. Det här är för övrigt ett exempel på Nyquists samplingssats som säger att man måste mäta en signal minst två gånger per period för att det inte ska bli fel. Man kan se plottningen som att man mäter funktionsvärdet i de punkter som finns i vektorn x i det här fallet och sedan försöker återskapa funktionen med linjär interpolation mellan mätpunkterna. Vad är periodlängden för funktionen sin(100t)? Om vi skulle skapat x med syntaxen p : dx : pi, hur stort skulle dx kunna vara för att uppfylla villkoret i Nyquist samplingssats? Nyquists samplinssats är viktig för en elektroingenjör att känna till och den kommer dyka upp i många kurser i senare årskurser Olika funktioner. Plotta följande funktioner på intervallet [ π/2, π/2]. Använd olika linjefärger och legend så man ser vilken graf som hör till vilken figur. För flera matematiska funktioner, skriv help elfun. y = x 2 y = tan(x) y = cot(x) y = ln( x ) y = exp(x) Komplexa tal ger problem. Rita grafen till funktionen y = x med definitionsområdet 3 x 3. Läs varningen som skrivs ut i kommandofönstret. Skriv sedan figure(2) plot(y, * ) %Eller möjligen plot(y, *-r ) i din skriptfil. Vad visar denna plot? Här finns tydligen anledning att vara vaksam! Zooma slutligen in origo i denna plot genom att skriva axis([ ]). Vad gör kommandot axis? Translation och skalning 1. Antag att vi har en funktion f(x). Vi har sett att grafen av f(x b) ligger b steg till höger om grafen till f(x). Dessutom har vi sett att grafen av f(ax), a > 0 är en version av grafen som är ihoptryckt så att bredden i någon mening är 1/a av den ursprungliga. För övrigt så gäller att Af(x), A > 0 gör grafen A gånger så hög. Ett särkilt intressant fall (i synnerhet för en elektroingenjör) är funktionen y = Asin(kx a) (A > 0, k > 0) Vad kallas A, a och k? Se Adams sid 207. Variera en parameter i taget och plotta de olika grafer du får i tre olika fönster i samma figur med hjälp av subplot. Se till att parametern antar ett värde som är mindre än 1, ett som är större och att den också antar värdet 1. Studera noggrant de fenomen som beskrivs ovan. Gör titlar etc. som i uppgiften ovan. Tips: Definiera en implicit funktion som tar fyra inargument: k, a, A och x. enligt funk=@(x,a,a,k)(a*sin(k*x-a))
4 4 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING Translation och skalning 2. Gör om uppgift hela för funktionen g(x) = exp( x 2 ). Den här funktionen spelar en alldeles särskild roll i sannolikhetsteorin med det speciella valet A = k/ 1 π. Här kallas talet a för medelvärdet och 2k är standardavvikelsen. Grafen är den berömda normalfördelningskurvan. Ni borde alltså kunna återskapa bilden på Läs alltid Wikipedia-artiklar med kritiska ögon, men läs dem gärna. Det finns förvånansvärt mycket om matematik och teknik! Rationella funktioner 1. Plotta grafen till funktionen y = 1 x i ett område runt origo. Plotta också den lodräta asymptoten med en annan linjetyp Rationella funktioner 2. På räkneövningarna har vi ritat rationella funktioner. Nu ska vi göra det med hjälp av Matlab också. Betrakta funktionen f(x) = x3 4x x 2 1. Man kan visa att den har singulariteter i x = 1 och x = 1 samt en inflektionspunkt i x = 0. Använd på ett smart sätt roots för att hitta dessa singulariteter. Hitta också nollställen med hjälp av samma funktion! Vi vet också att den beter sig som y = x då x. Rita funktionen genom att t.ex. plotta den i tre steg. Först på intervallet [ K, 1), sedan på ( 1, 1) och slutligen på (1, K] där K är något lämpligt tal som är större än 2. Markera sedan inflektionspunkten med en cirkel. Slutligen plottar du de lodräta asymptoterna och grafen av y = x med en annan linjetyp än funktionsgrafen. Notera att räta linjer alltid kan plottass med bara två punkter! Sätt ut namn på linjerna medlegend, titel på figuren medtitle samt namn på axlarna medxlabel ochylabel. Ett snyggare sätt att få till fina grafer av funktioner vars singulariteter man har konstaterat ligger i intervallet (ˆx ǫ, ˆx + ǫ) för något litet positivt ǫ fås av följande exempel. funk=@(hej)(?) % En anonym funktion som definerar en funktion med % singularitet. xhat=? %Den punkt där vi tror singulariteten finns epsilon=? % Ett avstånd till xhat så att vi är säkra på att % singulariteten inte ligger utanför intevallet % (xhat-epsilon,xhat+epsilon) N=?% Antal punkter i varje delintervall Left=? %Intervallets vänstergräns Right=? %Intevallets högergräns x_left=linspace(left,xhat-epsilon,n); % Gör punkter till vänster om % singulariteten. x_right=linspace(xhat+epsilon,right,n);% Gör punkter till höger om % singulariteten. x=[x_left NaN x_right]; % Sätter ihop alla dessa punkter med % Not a Number där singulariteten finns. y=f(x); %Beräknar funktionsvärdena av punkterna i vektorn x plot(x,y) % Nu riter Matlab grafen men ritar inte punkten med NaN. % Där får grafen ett hål och vi slipper felaktiga, % fula linjer.
5 DATORÖVNING 2 ANONYMA FUNKTIONER, FUNKTIONSGRAFER OCH LITE OPTIMERING Optimering Anrop av färdiga funktioner, nollställen till generella funktioner. Funktionen roots ovan hittar bara nollställen till polynom. För att lösa f(x) = 0 för en mer generell funktion f så används fzero. Läs igenom hjälpfilen och använd funktionen på polynomen i föregående uppgift. Jämför lösningarna. Det finns minst en viktig skillnad! Försök också med (den matematiska) funktionen g(x) = (x 2 1)exp(x). Var har g sina nollställen? Anrop av färdiga funktioner, min- och maxvärden. I matlab finns två standardlösare för att minimera funktioner, fminsearch och fminbnd. ( Dessutom finns bättre lösare för olika speciella problem i Optimization Toolbox.) Vad är skillnaden mellan ovan nämda funktioner? Testa båda på funktionen g(x) i uppgiften ovan. Funktionen g = g(x) (x 2 4) har flera lokala minima. Plotta funktionen och välj gränser respektive startvärde så att du hittar alla! Det krävs alltså en sökning per lokalt minimum. Hur gör man för att hitta ett maximum med hjälp av dessa Matlab-funktioner? Mera optimering. Betrakta funktionen. Försök hitta det globala maximat på R +! f(x) = exp(0, 01x)(1 + sin(x)) Lurad av grafen? Plotta funktionen f(x) = (xln(x) +3sin(x) + 7x)/ x först på intervallet [0, 1] och sedan på [0, ]. I den första plotten missar man tydligen ett globalt minimum. Försök hitta det med optimeringsfunktionerna från föregående övning. Svårt, eller hur?! Testa med g(x) = 1000f(x/1000). Kan du med hjälp av lösningen till det problemet räkna ut ungefär vad lösningen är till det första? 3.4. Extrauppgifter. Gör det du inte hann med i den förra laborationen!
CTH/GU LABORATION 1 MVE /2013 Matematiska vetenskaper. Mer om grafritning
CTH/GU LABORATION 1 MVE16-1/13 Matematiska vetenskaper 1 Inledning Mer om grafritning Vi fortsätter att arbeta med Matlab i matematikkurserna. Denna laboration är i stor utsträckning en repetition och
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.
Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Mer om funktioner och grafik i Matlab
CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus
TMV156/TMV155E Inledande matematik E, 2009
TMV156/TMV155E Inledande matematik E, 2009 DATORÖVNING 2 PÅ VÄG MOT PROGRAMMERING Instruktioner Skapa en ny filkatalog ( directory ) Lab2 för denna övning. Gör alltid uppgifterna i script-filer eller funktionsfiler.
Grafritning och Matriser
Grafritning och Matriser Analys och Linjär Algebra, del B, K1/Kf1/Bt1, ht11 1 Inledning Vi fortsätter under läsperiod och 3 att arbete med Matlab i matematikkurserna Dessutom kommer vi göra projektuppgifter
Introduktion till Matlab
CTH/GU LABORATION 1 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska
Matlabövning 1 Funktioner och grafer i Matlab
Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom PM:et. Gå sedan igenom exemplen
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Introduktion till Matlab
CTH/GU LABORATION 1 TMV206-2018/2019 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Matlabövning 1 Funktioner och grafer i Matlab
Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom hela PM:et. Gå sedan igenom
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Grafik och Egna funktioner i Matlab
Grafik och Egna funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht11 Moore: 5.1-5.2 och 6.1.1-6.1.3 1 Inledning Vi fortsätter med läroboken Matlab for Engineers av Holly Moore. Först
Funktioner och grafritning i Matlab
CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.
Mer om funktioner och grafik i Matlab
CTH/GU 2017/2018 Matematiska vetenskaper Mer om funktioner och grafik i Matlab 1 Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och
Introduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
Laboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
ATT RITA GRAFER MED KOMMANDOT "PLOT"
MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att
Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Introduktion till Matlab
CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor
Introduktion till Matlab
CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna
Introduktion till Matlab
CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt
Introduktion till Matlab
CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor
Funktioner och grafritning i Matlab
CTH/GU STUDIO 1b MVE350-2014/2015 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab. Sedan ser vi
Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.
INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:
TMV225 Inledande matematik M. Veckoprogram för läsvecka 4
MATEMATISKA VETENSKAPER TMV5 016 Chalmers tekniska högskola Läsvecka 4 Examinator: Anders Logg TMV5 Inledande matematik M Veckoprogram för läsvecka 4 Denna vecka kommer vi först att definiera och studera
15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. Starta Matlab genom att
TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB
TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande
Introduktion till Matlab
Inledande matematik, I1 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion
Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-11-19 Plot och rekursion I denna laboration skall du lära dig lite om hur plot i MatLab fungerar samt använda
Matriser och Inbyggda funktioner i Matlab
Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner
Matematisk Modellering
Matematisk Modellering Föreläsning läsvecka 4 Magnus oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/17 Denna föreläsning (läsvecka 4) Kursadministration (redovisning projekt 2,
Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
Datorövning 1 Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet
de uppgifter i) Under m-filerna iv) Efter samlade i en mapp. Uppgift clear clc Sida 1 av 6
Inlämningsuppgift 2, HF1006.. (MATLAB) INLÄMNINGSUPPGIFT 2 (MATLAB) Kurs: Linjär algebra och analys Del2, analys Kurskod: HF1006 Skolår: 2018/19 Redovisas under en av de tre schemalaggs gda redovisningstillfällen
Laborationstillfälle 1 Lite mer om Matlab och matematik
Laborationstillfälle Lite mer om Matlab och matematik En första introduktion till Matlab har ni fått under kursen i inledande matematik. Vid behov av repetition kan materialet till de övningar som gjordes
Introduktion till Matlab
CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor runt om i världen,
TMV225 Inledande matematik M
MATEMATISKA VETENSKAPER TMV 016 Chalmers tekniska högskola Läsvecka Examinator: Anders Logg TMV Inledande matematik M Veckoprogram för läsvecka Efter att ha studerat konvergens, gränsvärden och kontinuitet
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
TSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
2. (a) Skissa grafen till funktionen f(x) = e x 2 x. Ange eventuella extremvärden, inflektionspunkter
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 08 21, f Telefon: Jonatan Vasilis, 0762 721861 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50 poäng.
Matriser och Inbyggda funktioner i Matlab
CTH/GU STUDIO 1 TMV036a - 2012/2013 Matematiska vetenskaper Matriser och Inbyggda funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1 Moore: 2.3, 3.1-3.4, 3..1-3.., 4.1, 7.4 1 Inledning Nu
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Newtons metod. 1 Inledning. 2 Newtons metod. CTH/GU LABORATION 6 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION 6 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra veckan såg vi på intervallhalveringsmetoden. Den är pålitlig men
Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper
CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion
Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)
Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2
GNU Octave 2.1.50 Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola
GNU Octave..5 Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som både kan visa grafiken
MMA132: Laboration 1 & 2 Introduktion till MATLAB
MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med
% Föreläsning 4 22/2. clear hold off. % Vi repeterar en liten del av förra föreläsningen:
% Föreläsning 4 22/2 clear hold off % Vi repeterar en liten del av förra föreläsningen: % Vi kan definiera en egen funktion på följande sätt: f = @(x) 2*exp(-x/4) + x.^2-7*sin(x) f(2) % Detta ger nu funktionsvärdet
TMV225 Inledande Matematik M
MATEMATIK Hjälpmedel: Inga, inte ens räknedosa Chalmers tekniska högskola Datum: 201-08-28 kl. 8.0 12.0 Tentamen Telefonvakt: Anders Martinsson Telefon: 070 088 04 TMV225 Inledande Matematik M Tentan rättas
4.4. Mera om grafiken i MATLAB
4.4. Mera om grafiken i MATLAB Larry Smarr, ledare för NCSA (National Center for Supercomputing Applications i University of Illinois, brukar i sina föredrag betona betydelsen av visualisering inom den
Parametriserade kurvor
CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs
För teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna.
Matematik Chalmers Tentamen i TMV225 Inledande matematik M, 2009 01 17, f V Telefon: Christoffer Cromvik, 0762 721860 Inga hjälpmedel. Kalkylator ej tillåten. Varje uppgift är värd 10 poäng, totalt 50
TMV225 Inledande matematik M
MATEMATISKA VETENSKAPER TMV5 016 Chalmers tekniska högskola Läsvecka 5 Examinator: Anders Logg TMV5 Inledande matematik M Veckoprogram för läsvecka 5 Efter att ha avslutat vårt studie av derivator kommer
GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola
GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola 1 1 Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som
SF1625 Envariabelanalys
Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel
Labb 3: Ekvationslösning med Matlab (v2)
Envariabelanalys Labb 3: Ekvationslösning 1/13 Labb 3: Ekvationslösning med Matlab (v2) Envariabelanalys 2007-03-05 Björn Andersson (IT-06), bjoa@kth.se Johannes Nordkvist (IT-06), nordkv@kth.se Det finns
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
MMA132: Laboration 1 Introduktion till MATLAB
MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 11 Juni, 2015 Provkod: TEN1 Hjälpmedel:
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara
Introduktion till Python Teoridel
Institutionen för teknikvetenskap och matematik, LTU 2 november 2014 Laboration 1, M0043M, HT14 Laborationsuppgifter skall lämnas in senast 21 november 2014. Introduktion till Python Teoridel 1 Inledning
Mer om funktioner och grafik i Matlab
CTH/GU TIF7/MVE3-7/8 Matematiska vetenskaper Mer om funktioner och grafik i Matlab Inledning Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus
KPP053, HT2016 MATLAB, Föreläsning 3. Plotter och diagram Läsa och skriva data till fil
KPP053, HT2016 MATLAB, Föreläsning 3 Plotter och diagram Läsa och skriva data till fil 2D-plott (igen) x = linspace(-10,10); %godtyckligt intervall % punkt framför * och ^ ger elmentvis operation y = x.^2
x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)
Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
En introduktion till MatLab
Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Grundläggande kommandon
Allmänt om Matlab Utvecklades på 70-talet som ett lättanvänt gränssnitt till programbiblioteken LINPACK (linjär algebra) och EISPACK (egenvärdesproblem), ursprungligen skrivna i Fortran. En kommersiell
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x
Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon
Lägg märke till skillnaden, man ser det tydligare om man ritar kurvorna.
Matlabövningar 1 Börja med att läsa igenom kapitel 2.1 2 i läroboken och lär dig att starta och avsluta Matlab. Starta sedan Matlab. Vi övar inte på de olika fönstren nu utan återkommer till det senare.
MATLAB övningar, del1 Inledande Matematik
MATLAB övningar, del1 Inledande Matematik Övningarna på de två första sidorna är avsedda att ge Dig en bild av hur miljön ser ut när Du arbetar med MATLAB. På de följande sidorna följer uppgifter som behandlar
Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration
10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive
Linjärisering och Newtons metod
CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
Envariabel SF1625: Föreläsning 11 1 / 13
Envariabel SF1625: Föreläsning 11 1 / 13 Att göra denna vecka 2 / 13 Översikt över modul 4 (seminarium nästa måndag) Förändringstakter (4.1) Newton-Raphson (4.2) L Hopitals regel (4.3) Analys av funktioner
Du kan söka hjälp efter innehåll eller efter namn
Du kan söka hjälp efter innehåll eller efter namn Skalärer x = 2 y = 1.234 pi, inf Ex: Skriver du >> x+100*pi Så blir svaret ans = 316.1593 (observera decimalpunkt.) Vektorer v = [1 2 3 4] radvektor u
Lab 1, Funktioner, funktionsfiler och grafer.
Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna
Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 22 Mars, 2016 Provkod: TEN1 Hjälpmedel:
Modul 4 Tillämpningar av derivata
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.