Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation

Storlek: px
Starta visningen från sidan:

Download "Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation"

Transkript

1 Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare för att göra bättre signalanalyser med sin utrustning. Man vill från insamlade mätdata också göra bättre beräkning/skattning av motsvarande spektraltäthet (periodogram). Målet med projektet är att utreda/lösa följande punkter se uppgiftsspecifikationen nedan. Utredningen skall baseras på simuleringar och resultaten skall verifieras och vara dokumenterade 1 se nedan. I uppdragsgivarens beställning ingår även källkoden för de programtekniska delarna (för test/verifikationer). Källkoden skall levereras som Matlab m-kod. I. Hur påverkas samplade mätvärden av den likformiga A/D-omvandlarens upplösning/kvantiseringsegenskaper? Hur stor del av mätsignalen utgörs av kvantiseringsbrus? Speciellt behöver uppdragsgivaren framräknade värden på kvantiseringsbrusets medelvärde, varians och medeleffekt för en likformig A/D-omvandlare med 10 bitars upplösning för spänningsmätning inom /- 5V. Man vill även veta maximalt värde på motsvarande SDR (signal distorsion ratio) för detta fall (räknat på en sinus-signal). II. Hur påverkas data/mätresultat av samplingshastigheten? Speciellt: Vilken effekt får vikning av störande (yttre) bredbandigt brus på mätdata? Uppdraget omfattar analys av att ett störande bredbandigt termiskt brus som specificeras och beräknas i två fall enligt Bilaga P1-1 III. Mätsignalen behöver filtreras från yttre störning/brus (elektroniskt) - Vilka effekter medför det då m.a.p. signalens periodogram? Vad händer med brus (som har känd fördelning) då det passerar ett känt linjärt filter? Hur stor del av mätsignalens spektrum efter filtret utgörs av bruset? Mätdata antas ha stokastiska bidrag/störningar varför spektraltätheten behöver skattas. Uppdraget mera i detalj: Det filter och det brus som uppdragsgivaren vill inkludera/analysera specificeras enligt Bilaga P1-2 (fall a och b). IV. Uppdragsgivaren vill göra sina beräkningar/spektralanalyser (periodogram) med en metod som förbättrats med medelvärdesbildning och med smoothing. Hur förbättrar man skattningen med medelvärdesbildning och med smoothing? Hur bestäms frekvensupplösningen i resultatet? Uppdraget specificeras närmare i Bilaga P1-2 under punkt fall c.

2 Etapp 2 En detektor behöver förbättras Problembeskrivning och uppdragsspecifikation En detektor i uppdragsgivarens system ger felaktiga mätdata vid datainsamling på grund av störande signaler. För att förbättra insignalen till detektorn så ställs följande specifikation/ krav på ett digitalt filter som projektet får i uppdrag att designa. V. Filtertyp Filtertypen skall vara FIR baserat på metoden "impulssvarstrunkering" (IRT) kombinerat med fönstring. Filtret skall vara kausalt. VI. Dämpning. Passband 1 - upp till 900 Hz. Dämpning < 1dB Stopband Hz Hz. Dämpning >30 db Passband Hz. Dämpning = 6 db i mitten av passbandet Stopband Hz. Dämpning >40 db Passband Hz. Dämpning < 1 db VII. Samplingsfrekvens. Filtret skall ha samplingsfrekvensen 8000 Hz VIII. Man vill dessutom ha dokumentation på: - Redovisning på hur filtrets impulssvar beräknas är speciellt intressant (man överväger att senare koda denna del i C - d.v.s. funktioner som i Matlab mer eller mindre ger svaret direkt kan inte användas här). - Källkod för filtret i Matlab m-kod - Filtrets frekvenssvar - Filterts stegsvar - Filtrets fördröjningstid - Filtrets stigtid - Beskrivning av de krav som ställs på matchande för-filter (för att förhindra vikning). Utredningen skall verifieras med simuleringar och den skall vara dokumenterad. 1 Den skriftliga dokumentationen skall bestå av en teknisk rapport (riktad till beställaren) samt en kortfattad rapport (fem delar) om projektarbetet (riktad till projektets handledare). Rapporterna inlämnas med E-post (använd helst format pdf på de bifogade filerna) Stoppdatum för projekt P1: Se planen (kursen hemsida).

3 Bilaga P1-1 En givare ger en mätsignal x(t). Mätningen störs av bandbegränsat vitt gaussiskt brus, w(t), (medelvärde = 0, bruset är inte korrelerat med mätsignalen). Se figur nedan. Spektraltätheten för bruset är 1/8800 [V 2 /Hz] för frekvenser, f, där f < 2000 Hz. För övriga frekvenser har spektraltätheten ett värde som är försumbart (sätts till 0). x(t) w(t) sampling x[n] Fall nr 1 - Störd A/D-omvandling. Enbart brusets inverkan, signalen w(t) enligt ovan, studeras. Signalen x(t) tänks vara bortkopplad. Samplingen sker i detta fall med frekvensen 6000 Hz. Uppgift: Beräkna P ( x[n] > ). D.v.s. räkna fram sannolikheten för att det omvandlade mätvärdets absolutbelopp är större än 80 mv (trots att insignalen logiskt sett har värdet 0). Bortse här från kvantiseringseffekter! Fall nr 2 - Störd A/D-omvandling. Enbart brusets inverkan, signalen w(t) enligt ovan, studeras. Signalen x(t) tänks vara bortkopplad. Samplingen sker i detta fall med frekvensen 3000 Hz. Uppgift: Beräkna P ( x[n] > ). Bortse även här från kvantiseringseffekter. Inte ett krav (men ger plus i kanten): Beräkna för hand sannolikheten i de två fallen och jämför teori mot simuleringens resultat.

4 Bilaga P1-2 Skattning av spektraltäthet Signalen y(t) utgör en spänning [V] och den samplas (sampelhastigheten bestäms av projektet liksom mättiden). R y beskrivs som en funktion av frekvensen där frekvensen anges i Hz. Frekvensupplösningen behöver bestämmas. W(t) Analogt filter med elektronik x(t) R C y(t) RC-filtret har tidskonstanten RC=160 μs. Skatta spektraltäthen (R y ) för signalen y(t) i följande två fall. Fall a: Bara störning Signalen x(t) är här urkopplad så att endast effekten av störningen w(t) studeras. Störningen w(t) har samma beskrivning som tidigare: Det är bandbegränsat vitt gaussiskt brus, (medelvärde = 0, bruset är inte korrelerat med mätsignalen). Spektraltätheten för bruset är 1/8800 [V 2 /Hz] för frekvenser, f, där f < 2000 Hz. För övriga frekvenser har spektraltätheten ett värde som är försumbart (sätts till 0). Fall b: Nyttig signal störning Beräkning av periodogram med dator då nyttiga mätsignaler ingår (förutom bruset). Skatta spektraltätheten med datorverktyg under samma förutsättningar som i föregående fall fast inkludera även nedanstående mätsignal x (förutom signalen/störningen w). Mätsignalen x(t) = Asin( 2π200t ) Bsin ( 2π600t ) där A= 0.3 V och B = 0.01 V

5 Forts Bilaga P1-2 Fall c: Skattning av spektraltäthet med booster Uppdragsgivaren vill göra sina beräkningar/spektralanalyser (periodogram) med en metod som förbättrats med medelvärdesbildning och med smoothing. Utför de datorberäknade skattningarna (under fall a och fall b ovan) genom att använda o medelvärdesbildning (av separata periodogram). En fråga som man vill ha ett kvalitativt svar på är: Hur beror variansen på din skattning av antalet medelvärdesbildningar (på flera separata segment av dina mätdata)? o smoothing (använd Hanningfönster med olika fönsterbredder). En fråga som man vill ha ett kvalitativt svar på är: Hur påverkar fönsterbredden frekvensupplösningen? Spektraltätheten redovisas grafiskt tillsammans med motsvarande analys

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.

Läs mer

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.

Läs mer

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1

AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1 AD-DA-omvandlare Mätteknik Ville Jalkanen ville.jalkanen@tfe.umu.se Inledning Analog-digital (AD)-omvandling Digital-analog (DA)-omvandling Varför AD-omvandling? analog, tidskontinuerlig signal Givare/

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

Laboration i tidsdiskreta system

Laboration i tidsdiskreta system Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

DIGITALA FILTER DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1

DIGITALA FILTER DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1 DIGITALA FILTER TILLÄMPAD FYIK OCH ELEKTRONIK, UMEÅ UNIVERITET 1 DIGITALA FILTER Digitala filter förekommer t.ex.: I Photoshop och andra PC-programvaror som filtrerar. I apparater med signalprocessorer,

Läs mer

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30 Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20

Läs mer

Sammanfattning TSBB16

Sammanfattning TSBB16 Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)

Läs mer

Elektronik Dataomvandlare

Elektronik Dataomvandlare Elektronik Översikt Analoga och digitala signaler Dataomvandlare Pietro Andreani Institutionen för elektro- och informationsteknik Lunds universitet Nyquistteorem Kvantiseringsfel i analog-till-digital

Läs mer

Digital signalbehandling Digitalt Ljud

Digital signalbehandling Digitalt Ljud Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1

Läs mer

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt

Läs mer

Mätteknik Digitala oscilloskop

Mätteknik Digitala oscilloskop Mätteknik 2018 Digitala oscilloskop Läsanvisningar Modern elektronisk mätteknik: Kap. 5 - Probens uppbyggnad och egenskaper (326-336) Kap. 6 - Digitala minnesoscilloskop (347-381) Kap. 8 - Frekvensanalys

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle

Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Institutionen för hälsovetenskap och medicin Kod: Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Datum 2013-08-19 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna

Läs mer

Kap 10 - Modeller med störningar. Hur beskriva slumpmässiga störningar?

Kap 10 - Modeller med störningar. Hur beskriva slumpmässiga störningar? Kap 10 - Modeller med störningar Notera att Beskrivning av signaler i frekvensdomänen -sammanfattning ger en bakgrund till Kap 10 och 11. Huvudpunkter: Hur beskriva slumpmässiga störningar? Data insamlas

Läs mer

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter Digitala filter Digitala filter FIR Finit Impulse Response Digitala filter förekommer t.ex.: I Matlab, Photoshop oh andra PCprogramvaror som filtrerar. I apparater med signalproessorer, t.ex. mobiltelefoner,

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag

Läs mer

Elektronik. Dataomvandlare

Elektronik. Dataomvandlare Elektronik Dataomvandlare Johan Wernehag Institutionen för elektro- och informationsteknik Lunds universitet 2 Översikt Analoga och digitala signaler Nyquistteorem Kvantiseringsfel i analog-till-digital

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är

Läs mer

RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2

RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2 t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Mätteknik E-huset. Digitalt oscilloskop Vertikal inställning. Digitalt oscilloskop. Digitala oscilloskop. Lab-lokal 1309 o 1310

Mätteknik E-huset. Digitalt oscilloskop Vertikal inställning. Digitalt oscilloskop. Digitala oscilloskop. Lab-lokal 1309 o 1310 Schema Mätteknik F 2015 Läsvecka 1 (v13) måndag 23-mar Förel 13-15 (E:B) Läsvecka 2 (v14) DigOsc måndag 30-mar Förel 13-15 (E:B) PÅSK!! Mätteknik 2015 Läsvecka 3 (v15) DigOsc tisdag 07-apr Lab 8-12 onsdag

Läs mer

Enchipsdatorns gränssnitt mot den analoga omvärlden

Enchipsdatorns gränssnitt mot den analoga omvärlden Agenda Enchipsdatorns gränssnitt mot den analoga omvärlden Erik Larsson Analog/Digital (AD) omvandling Digital/Analog (DA) omvandling Sampling, upplösning och noggrannhet Laborationsuppgift.5 Motivation.5.5

Läs mer

Elektronik Dataomvandlare

Elektronik Dataomvandlare Elektronik Översikt Analoga och digitala signaler Dataomvandlare Pietro Andreani Institutionen för elektro- och informationsteknik Lunds universitet Nyquistteorem Kvantiseringsfel i analog-till-digital

Läs mer

Temperaturreglering. En jämförelse mellan en P- och en PI-regulator. θ (t) Innehåll Målsättning sid 2

Temperaturreglering. En jämförelse mellan en P- och en PI-regulator. θ (t) Innehåll Målsättning sid 2 2008-02-12 UmU TFE/Bo Tannfors Temperaturreglering En jämförelse mellan en P- och en PI-regulator θ i w θ θ u θ Innehåll Målsättning sid 2 Teori 2 Förberedelseuppgifter 2 Förutsättningar och uppdrag 3

Läs mer

Föreläsning 6: Spektralskattning: icke parametriska metoder. Leif Sörnmo 4 oktober 2009

Föreläsning 6: Spektralskattning: icke parametriska metoder. Leif Sörnmo 4 oktober 2009 Föreläsning 6: Spektralskattning: icke parametriska metoder Leif Sörnmo 4 oktober 2009 1 Metoder för spektralskattning icke-parametriska korrelogram, periodogram fönstring, medelvärdesbildning minimum-varians

Läs mer

Elektronik 2018 EITA35

Elektronik 2018 EITA35 Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan

Läs mer

Laboration 3 Sampling, samplingsteoremet och frekvensanalys

Laboration 3 Sampling, samplingsteoremet och frekvensanalys Laboration 3 Sampling, samplingsteoremet och frekvensanalys 1 1 Introduktion Syftet med laborationen är att ge kunskaper i att tolka de effekter (speglingar, svävningar) som uppkommer vid sampling av en

Läs mer

Läsinstruktioner. Materiel

Läsinstruktioner. Materiel Läsinstruktioner Häftet om AD- och DA-omvandlare skrivet av Bertil Larsson Appendix till denna laborationshandledning. Läs igenom resten av handledningen så att ni vet vilka uppgifter som kommer. Gör förberedelseuppgifter

Läs mer

Grundläggande signalbehandling

Grundläggande signalbehandling Beskrivning av en enkel signal Sinussignal (Alla andra typer av signaler och ljud kan skapas genom att sätta samman sinussignaler med olika frekvens, Amplitud och fasvridning) Periodtid T y t U Amplitud

Läs mer

Tentamen i Signaler och kommunikation, ETT080

Tentamen i Signaler och kommunikation, ETT080 Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av

Läs mer

Enchipsdatorns gränssnitt mot den analoga omvärlden

Enchipsdatorns gränssnitt mot den analoga omvärlden Enchipsdatorns gränssnitt mot den analoga omvärlden Erik Larsson Analog/Digital (A/D) och Digital/Analog (D/A) omvandling AD omvandling DA omvandling Motivation - -.2.4.6.8 -.2.4.6.8 - -.2.4.6.8 Analog/Digital

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

DT1120/DT1130 Spektrala transformer Tentamen

DT1120/DT1130 Spektrala transformer Tentamen DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Signalbehandling, förstärkare och filter F9, MF1016

Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, inledning Förstärkning o Varför förstärkning. o Modell för en förstärkare. Inresistans och utresistans o Modell för operationsförstärkaren

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1

TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1 TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)

Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63) Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution

Läs mer

Parameterskattning i linjära dynamiska modeller. Kap 12

Parameterskattning i linjära dynamiska modeller. Kap 12 Parameterskattning i linjära dynamiska modeller Kap 12 Grundläggande ansats Antag (samplade) mätdata (y och u)från ett system har insamlats. Givet en modell M(t, θ) och mätdata, hitta det θ som ger en

Läs mer

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Spektrum av en samplad signal Samplingsprocessen kan skrivas som Fouriertranformen kan enligt linjäritetsoch tidsskiftsatsen

Läs mer

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation TSEI67 Telekommunikation Lab 4: Digital transmission Redigerad av Niclas Wadströmer Mål Målet med laborationen är att bekanta sig med transmission av binära signaler. Det innebär att du efter laborationen

Läs mer

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden- Analogt och Digital Bertil Larsson Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter

Läs mer

5 OP-förstärkare och filter

5 OP-förstärkare och filter 5 OP-förstärkare och filter 5.1 KOMPARATORKOPPLINGAR 5.1.1 I kretsen nedan är en OP-förstärkare kopplad som en komparator utan återkoppling. Uref = 5 V, Um= 13 V. a) Rita utsignalen som funktion av insignalen

Läs mer

Optimal Signalbehandling Datorövning 1 och 2

Optimal Signalbehandling Datorövning 1 och 2 Institutionen för Elektro- och Informationsteknik Lunds Universitet Lunds Tekniska Högskola Optimal Signalbehandling Datorövning 1 och 2 Leif Sörnmo Martin Stridh 2011 Department of Electrical and Information

Läs mer

Gamla Årstabron. Sammanställning av töjningsmätningar utförda

Gamla Årstabron. Sammanställning av töjningsmätningar utförda Gamla Årstabron Sammanställning av töjningsmätningar utförda 9-9-4 Brobyggnad KTH Brinellvägen 34, SE-1 44 Stockholm Tel: 8-79 79 58, Fax: 8-1 69 49 www.byv.kth.se/avd/bro Andreas Andersson 9 Royal Institute

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Flerdimensionella signaler och system

Flerdimensionella signaler och system Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här

Läs mer

Mätteknik Digitala oscilloskop

Mätteknik Digitala oscilloskop Mätteknik 2017 Digitala oscilloskop Vecka 12 Intro torsdag 23-mars Förel 10-12 (E:B) Schema Mätteknik F 2017 Vecka 13 DigOsc måndag 27-mars tisdag 28-mars Förel 10-12 (E:B) onsdag 29-mars Lab 8-12 torsdag

Läs mer

Beskrivning av signaler i frekvensdomänen - sammanfattning

Beskrivning av signaler i frekvensdomänen - sammanfattning Beskrivning av signaler i frekvensdomänen - sammanfattning Bengt Carlsson Systems and Control Dept of Information Technology, Uppsala University January 21, 2010 Abstract Detta material ger en sammanfattning

Läs mer

Signaler och system, IT3

Signaler och system, IT3 Signaler och system, IT3 Vad är signalbehandling? 1 Detta dokument utgör introduktionsföreläsningen för kursen Signaler och system för IT3 period 2. Kursen utvecklades år 2002 av Mathias Johansson. 1 Vad

Läs mer

Grundläggande ljud- och musikteori

Grundläggande ljud- och musikteori Grundläggande ljud- och musikteori Jan Thim Magnus Eriksson Lektionens syfte Syftet med denna lektion är är att att ge ge förståelse för för decibelbegreppet, spektrum, digitalisering och och olika olika

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Laboration 1: Aktiva Filter ( tid: ca 4 tim)

Laboration 1: Aktiva Filter ( tid: ca 4 tim) 091129/Thomas Munther IDE-sektionen/Högskolan Halmstad Uppgift 1) Laboration 1: Aktiva Filter ( tid: ca 4 tim) Vi skall använda en krets UAF42AP. Det är är ett universellt aktivt filter som kan konfigureras

Läs mer

Tentamen i Krets- och mätteknik, fk - ETEF15

Tentamen i Krets- och mätteknik, fk - ETEF15 Tentamen i Krets- och mätteknik, fk - ETEF15 Institutionen för elektro- och informationsteknik LTH, Lund University 2016-10-27 8.00-13.00 Uppgifterna i tentamen ger totalt 60. Uppgifterna är inte ordnade

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik IE06 Inbyggd Elektronik F F3 F4 F Ö Ö PIC-block Dokumentation, Seriecom Pulsgivare I,, R, P, serie och parallell KK LAB Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchoffs lagar Nodanalys

Läs mer

Mätning av biopotentialer

Mätning av biopotentialer 1. Inledning Inom dagens sjukvård är tekniken en självklar och viktig faktor. De allra flesta diagnoser, analyser och behandlingar grundar sig på information från ett flertal tekniska utrustningar och

Läs mer

Videoförstärkare med bipolära transistorer

Videoförstärkare med bipolära transistorer Videoförstärkare med bipolära transistorer IE1202 Analog elektronik - Joel Nilsson joelni at kth.se Innehåll i 1 Första försöket 1 1.1 Beräkningar....................................... 1 1.1.1 Dimensionering

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Laboration ( ELEKTRO

Laboration ( ELEKTRO UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker ohansson ohan Pålsson 21-2-16 Rev 1.1 $.7,9$),/7(5 Laboration ( ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

Institutionen för systemteknik

Institutionen för systemteknik Institutionen för systemteknik Department of Electrical Engineering Examensarbete Förbättra SNR i en digital TV-box genom översampling av A/D-omvandlare Examensarbete utfört i Elektroniksystem Vid Tekniska

Läs mer

Frekvensplanet och Bode-diagram. Frekvensanalys

Frekvensplanet och Bode-diagram. Frekvensanalys Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,

Läs mer

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: Ter2 TID:4 mars 207, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 0730-9699 BESÖKER SALEN:

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

TSRT62 Modellbygge & Simulering

TSRT62 Modellbygge & Simulering TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1

Läs mer

Audio & Videoteknik 2D2021, 2D1518

Audio & Videoteknik 2D2021, 2D1518 TENTAMEN Kurs: Kursnummer: Moment: Program: Åk: Examinator: Rättande lärare: Datum: Tid: Hjälpmedel: Audio & Videoteknik 2D2021, 2D1518 Tentamen Medieteknik 2 Trille Fellstenius Trille Fellstenius, Svante

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Förstärkare. Mätteknik. Ulrik Söderström, TFE, UmU. 1

Förstärkare. Mätteknik. Ulrik Söderström, TFE, UmU. 1 Förstärkare Mätteknik Ulrik Söderström, TFE, UmU ulrik.soderstrom@umu.se 1 Inledning Varför använda förstärkare inom mätteknik? Liten mätsignal behöver förstärkas Brus/störningar (oönskade signaler) behöver

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats

Läs mer

A/D- och D/A- omvandlare

A/D- och D/A- omvandlare A/D- och D/A- omvandlare Jan Carlsson 1 Inledning Om vi tänker oss att vi skall reglera en process så ställer vi in ett börvärde, det är det värde som man vill processen skall åstadkomma. Sedan har vi

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR

Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR 1 Bandbredd anger maximal frekvens som oscilloskopet kan visa. Signaler nära denna

Läs mer

Vad är spektralanalys? Spektralanalys. Frekvensinnehåll. Enkelt exempel

Vad är spektralanalys? Spektralanalys. Frekvensinnehåll. Enkelt exempel Vad är spektralanalys? Analys av frekvensinnehållet i en tidsserie/signal. Spektralanalys Erik Gudmundson Vad innebär Analys av frekvensinnehållet? Vad är en tidsserie/signal? Tidsserie: mätning av någon

Läs mer

Laboration 5. Temperaturmätning med analog givare. Tekniska gränssnitt 7,5 p. Förutsättningar: Uppgift: Temperatur:+22 C

Laboration 5. Temperaturmätning med analog givare. Tekniska gränssnitt 7,5 p. Förutsättningar: Uppgift: Temperatur:+22 C Namn: Laborationen godkänd: Tekniska gränssnitt 7,5 p Vt 2014 Laboration 5 LTH Ingenjörshögskolan vid Campus Helsingborg Temperaturmätning med analog givare. Syftet med laborationen är att studera analog

Läs mer

Exercises Matlab/simulink V

Exercises Matlab/simulink V 817/Thomas Munther IDE-sektionen Exercises Matlab/simulink V MA-filter ( Moving Average ) Detta är ju egentligen inget annat än ett FIR-filter fast där vi använder samma vikter på alla insignaltermer och

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,

Läs mer

Umeå universitet Tillämpad fysik och elektronik Ville Jalkanen mfl Laboration Tema OP. Analog elektronik för Elkraft 7.

Umeå universitet Tillämpad fysik och elektronik Ville Jalkanen mfl Laboration Tema OP. Analog elektronik för Elkraft 7. Laboration Tema OP Analog elektronik för Elkraft 7.5 hp 1 Applikationer med operationsförstärkare Operationsförstärkaren är ett byggblock för analoga konstruktörer. Den går att använda för att förstärka

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Tillämpning av komplext kommunikationssystem i MATLAB

Tillämpning av komplext kommunikationssystem i MATLAB (Eller: Vilken koppling har Henrik Larsson och Carl Bildt?) 1(5) - Joel Nilsson joelni at kth.se Martin Axelsson maxels at kth.se Sammanfattning Kommunikationssystem används för att överföra information,

Läs mer

DT1120 Spektrala transformer för Media Tentamen

DT1120 Spektrala transformer för Media Tentamen DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,

Läs mer

Faltningsreverb i realtidsimplementering

Faltningsreverb i realtidsimplementering Faltningsreverb i realtidsimplementering SMS45 Lp1 26 DSP-system i praktiken Jörgen Anderton - jorand-3@student.ltu.se Henrik Wikner - henwik-1@student.ltu.se Introduktion Digitala reverb kan delas upp

Läs mer

En översikt av Kap 7. Tillbakablick, återkoppling Informationsteknologi Reglering av vätskenivån i en tank. Framkoppling. Informationsteknologi

En översikt av Kap 7. Tillbakablick, återkoppling Informationsteknologi Reglering av vätskenivån i en tank. Framkoppling. Informationsteknologi Bengt Carlsson Avd f... och även i reningsverk En översikt av Kap 7 Tekniken i Kap 7 är vanlig i många industriella tillämpningar (t ex kärnkraftver och för klimatreglering i byggnader llbakablick, återkoppling

Läs mer

EKG-klassificering. Andreas Bergkvist, Michael Sörnell,

EKG-klassificering. Andreas Bergkvist, Michael Sörnell, EKG-klassificering Projektrapport i Signaler och system Uppsala Universitet Inst. för signaler och system 2002-2-0 För: Mattias Johansson Av: Andreas Bergkvist, andreasbergkvist@hotmail.com Michael Sörnell,

Läs mer

Digital signalbehandling fk Laboration 5 Ett antal signalbehandlingstillämpningar

Digital signalbehandling fk Laboration 5 Ett antal signalbehandlingstillämpningar Institutionen för data- och elektroteknik 1999-11-21 Inledning Denna laboration avser att ge illustration av och inblick i ett antal områden för digital signalbehandling. Vi kommer att studera exempel

Läs mer

2 Laborationsutrustning

2 Laborationsutrustning Institutionen för data- och elektroteknik 2002-02-11 1 Inledning Denna laboration syftar till att illustrera ett antal grundbegrepp inom digital signalbehandling samt att närmare studera frekvensanalys

Läs mer

AKTIVA FILTER. Laboration E42 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Rev 1.0.

AKTIVA FILTER. Laboration E42 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson Rev 1.0. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker Johansson 1999-09-03 Rev 1.0 AKTIVA FILTER Laboration E42 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer