Parameterskattning i linjära dynamiska modeller. Kap 12
|
|
- Ingrid Åberg
- för 6 år sedan
- Visningar:
Transkript
1 Parameterskattning i linjära dynamiska modeller Kap 12
2 Grundläggande ansats Antag (samplade) mätdata (y och u)från ett system har insamlats. Givet en modell M(t, θ) och mätdata, hitta det θ som ger en så bra (i mistakvadratfelsmening) prediktion av systemet som möjligt. Prediktionsfelsminimering. Behöver konstruera en prediktor från modellen M(t, θ), hur den ser ut beror på hur bruset modelleras. Beteckning: ŷ(t θ)= prediktion av y(t) givet data upp till t 1.
3 Skräddarsydda modeller (Grey-box modeller): Skatta systemparametrar i fysikalisk modell. Konfektionsmodeller (Black-box modeller): Parametrar har generellt ingen fysikalisk tolkning. Typisk skattas parametrar i en allmän differensekvation.
4 Skräddarsydda modeller (12.1) Modellera okända parametrar i fysikalisk modell med parameter θ: ẋ(t) = f(x(t), u(t), θ) y(t) = h(x(t), u(t), θ) Använd mätningar till att skatta θ. Tillvägagångsätt problemberoende. Mera om skräddarsydda modeller senare i kursen.
5 Linjära konfektionsmodeller (12.2) Olika klasser av konfektionsmodeller med störterm w(t) och störningsfri insignal η(t): Box-Jenkins y(t) = η(t) + w(t) y(t) = G(q, θ)u(t) + H(q, θ)e(t) G(q, θ) = H(q, θ) = B(q) F(q) = b 1q nk + b 2 q nk b nb q nk n 1 + f 1 q f nf q nf C(q) D(q) = 1 + c 1q c nc q nc 1 + d 1 q d nd q nd där e(t)=vitt brus. Notera att insignalen u(k) tidsfördröjd nk sampel.
6 Output-Error (OE). Modellerar ej störsignalens egenskaper. FIR (specialfall av OE): y(t) = G(q, θ)u(t) + e(t) y(t) = B(q)u(t) + e(t) ARMAX. Antar F(q) = D(q) = A(q): A(q)y(t) = B(q)u(t) + C(q)e(t) ARX. Sätt C(q) = 1 i ARMAX modellen: A(q)y(t) = B(q)u(t) + e(t)
7 Även rena tidsseriemodeller (bara en signal y) kan erhållas: ARMA (B = F = 0): A(q)y(t) = C(q)e(t) C(q) = 1 ger AR, A(q) = 1 ger MA. Modellerna används på så sätt att man anger ordningstalen na, nb, nc, nd, nf och nk och beräknar de parametrar som bäst beskriver data. Val av modell mm i Kap 14.
8 Anpassning av modeller till data (12.3) Givet en parametrisk modell och gamla mätdata {y(s), u(s)} s= t 1 kan man prediktera värdet på utsignalen vid tiden t. Prediktionen betecknas ŷ(t θ). Prediktionsfelet definieras som: ɛ(t, θ) = y(t) ŷ(t θ) Ide: Välj den modell θ som minimerar prediktionsfelens varians.
9 Givet mätdata {y(t), u(t)} t=1,...,n bilda förlustfunktionen: V N (θ) = 1 N N ɛ 2 (t, θ) t=1 och beräkna det θ som minimierar V N (θ): ˆθ N = arg min θ V N (θ) Om störningarna är Gaussiska så är ovanstående maximum-likelihood (ML) skattningen av θ.
10 Prediktion Prediktor för generell modell (Box-Jenkins): ŷ(t θ) = [1 H 1 (q, θ)]y(t) + H 1 (q, θ)g(q, θ)u(t) Prediktor för Output-error modell: ŷ(t θ) = B(q, θ) A(q, θ) u(t) Prediktor för ARX-modell: ŷ(t θ) = [1 A(q, θ)]y(t) + B(q, θ)u(t)
11 Linjär regression - jmfr F2! Minimeringen av förlustfunktionen är speciellt enkel om prediktionen kan skrivas som en linjär funktion av θ. För en ARX modell kan prediktionen skrivas som: där ŷ(t θ) = θ T ϕ(t) θ = (a 1 a na b 1 b nb ) T ϕ(t) = ( y(t 1) y(t na) u(t nk) u(t nk n Motsvarande prediktionsfel blir: ɛ(t, θ) = y(t) θ T ϕ(t)
12 Förlustfunktionen V N (θ) minimimeras i detta fall av: ˆθ N = R 1 N f N där f N = 1 N R N = 1 N N ϕ(t)y(t) t=1 N ϕ(t)ϕ T (t) t=1 Notera att (för ARX modellen) består elementen i f N och R N alla av skattningar av olika kovariansfunktioner för y och u. Vid beräkning av skattningen skall invertering av R N undvikas av numeriska skäl.
13 Iterativ sökning För många modellstrukturer (B-J, OE, ARMAX...) är funktionen V N (θ) en komplicerad funktion av θ. Då måste numerisk sökning användas. Ex: Newton-Raphsons metod: ˆθ (i+1) = ˆθ (i) µ i [V N(ˆθ (i) )] 1 V N(ˆθ (i) ) Se boken ( ) för detaljer. Det finns färdiga rutiner i Matlab som gör minimeringen. theta= metod (data,modellordning) men även ett grafiskt gränssnitt (Blabb 2)
14 Modellens egenskaper (12.4) Hur bra blir modellskattningar med prediktionsfelsmetoden? Modellens variansfel beror på att mätningarna och systemet påverkas av brus. Identiska experiment ger aldrig likadana resultat. Modellens biasfel beror på att modellen ej fullständigt kan beskriva systemet. Biasfelet kavarstår även om mätningarna skulle kunna göras utan inverkan av brus. En bra modell har både litet variansfel och biasfel.
15 Biasfelet Antag ett sannt system y(t) = G o (q)u(t) + w(t) samt en linjär modell med θ-oberoende brusmodell y(t) = G(q, θ)u(t) + H (q)e(t) då gäller θ = lim N ˆθ N = arg min π π G 0 (e iω ) G(e iω, θ) 2 Φ u (ω) H (e iω ) 2dω
16 Variansfelet Antag att biasfelet = 0. Då gäller: där E(ˆθ N θ 0 )(ˆθ N θ 0 ) T λ N R 1 R = EΨ(t, θ 0 )Ψ(t, θ 0 ) T Ψ(t, θ 0 ) = d dθŷ(t θ) OBS. För ARX modell är Ψ(t, θ 0 ) = ϕ(t) Formell beskrivning (sid 299): N(ˆθN θ 0 ) AsN(0, λr 1 )
17 Konfidensintervall för den skattade modellen kan beräknas! I frekvensplanet gäller approximativt: var(g(e iω, ˆθ N )) n N Φ w (ω) Φ u (ω) där n är modellens ordningstal. Notera att biasfelet antas vara noll.
18 Identifierbarhet Olika värden på θ bör ge olika prediktioner ŷ(t, θ). Identifierbarhet: parametrarna kan bestämas från mätdata. Icke-identifierbarhet kan bero på: - Parametriseringen - Insignalen - Återkoppling
TSRT62 Modellbygge & Simulering
TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1
Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller
Sammanfattning av föreläsning 4 Modellbygge & Simulering, TSRT62 Föreläsning 5. Identifiering av olinjära modeller Reglerteknik, ISY, Linköpings Universitet Linjära parametriserade modeller: ARX, ARMAX,
Sammanfattning av föreläsning 5. Modellbygge & Simulering, TSRT62. Föreläsning 6. Modellkvalitet och validering. Bias och varians
Sammanfattning av föreläsning 5 Modellbygge & Simulering, TSRT62 Föreläsning 6. Modellkvalitet och validering Reglerteknik, ISY, Linköpings Universitet Skattningens kvalitet: bias och varians Fysikaliska
Datorövningar i systemidentifiering Del 2
Datorövningar i systemidentifiering Del 2 Denna version: 24 augusti 2015 REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING 1 Parametrisk identifiering av konfektionsmodeller Parametriska konfektionsmodeller (black-box-modeller)
Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
TENTAMEN Systemidentifiering, 4p, F, FRI, STS
TENTAMEN Systemidentifiering, 4p, F, FRI, STS Tid: Fredagen den 17 mars kl 09.00 14.00 Plats: Polacksbacken, skrivsal Ansvarig lärare: Alexander Medvedev, telefon 471 3064, mobil 070 57 48 173. Alexander
Kap 10 - Modeller med störningar. Hur beskriva slumpmässiga störningar?
Kap 10 - Modeller med störningar Notera att Beskrivning av signaler i frekvensdomänen -sammanfattning ger en bakgrund till Kap 10 och 11. Huvudpunkter: Hur beskriva slumpmässiga störningar? Data insamlas
Föreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
Datorövningar i systemidentifiering Del 3
Datorövningar i systemidentifiering Del 3 Denna version: 15 oktober 2015 REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING 1 Parametrisk identifiering av tillståndsmodeller Hittills har alla parametriska modeller
Härledning av Black-Littermans formel mha allmänna linjära modellen
Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem
Teststorheten är ett modellvalideringsmått Betrakta. Översikt. Modellvalideringsmått, forts. Titta lite noggrannare på testet.
Ämnen för dagen TSFS6 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 27-4-5 En teststorhet är ett
Reglerteori. Föreläsning 3. Torkel Glad
Reglerteori. Föreläsning 3 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av föreläsning 2 Det mesta av teorin för envariabla linjära system generaliseras lätt till ervariabla (era
En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen
Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få
Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare
Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Reglerteori. Föreläsning 4. Torkel Glad
Reglerteori. Föreläsning 4 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 3 Kovariansfunktion: R u (τ) = Eu(t)u(t τ) T Spektrum: Storleksmått: Vitt brus: Φ u (ω) =
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
SF1901: Medelfel, felfortplantning
SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error
Beskrivning av signaler i frekvensdomänen - sammanfattning
Beskrivning av signaler i frekvensdomänen - sammanfattning Bengt Carlsson Systems and Control Dept of Information Technology, Uppsala University January 21, 2010 Abstract Detta material ger en sammanfattning
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Homework Three. Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo. 28 november Time series analysis
Homework Three Time series analysis Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 28 november 25 1 Vi ska här analysera en datamängd som består av medeltemperaturen månadsvis i New York mellan
3 Maximum Likelihoodestimering
Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
Ämnen för dagen. TSFS06 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter. Beteendemoder och felmodeller.
Ämnen för dagen TSFS6 Diagnos och övervakning Föreläsning 5 - Konstruktion av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet erik.frisk@liu.se 29-4-8 En teststorhet är ett
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
övningstentamen I DYNAMISKA SYSTEM OCH REGLERING
övningstentamen I DYNAMISKA SYSTEM OCH REGLERING SAL: - TID: mars 27, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 73-9699 BESÖKER SALEN:
TENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
Sammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
Institutionen för systemteknik
Institutionen för systemteknik Department of Electrical Engineering Examensarbete Reglering av klinkerugn för framställning av zinkklinker Examensarbete utfört i Reglerteknik vid Tekniska högskolan i Linköping
Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14
STOCKHOLMS UNIVERSITET MT 5001 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 13 januari 2014 Tentamen i Linjära statistiska modeller 13 januari 2013, kl. 9-14 Examinator: Martin Sköld, tel.
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett
LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2
LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall
Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,
Föreläsning 11, FMSF45 Konfidensintervall
Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, FMSF45 Konfidensintervall Stas Volkov 2017-11-7 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F11: Konfidensintervall
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
Exempel på tentamensuppgifter
STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
FÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Dina anteckningar: Semifysikalisk modellering i kursen Modellering
Måns Östring, Control & Communication, sid 1 Dina anteckningar: Semifysikalisk modellering i kursen Modellering Måns Östring Control & Communication, ISY Innehåll Orientering med miniexempel Större exempel:
Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0
Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
Grundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Adaptiv temperaturreglering av bostadshus
UPTEC STS08 020 Examensarbete 20 p April 2008 Adaptiv temperaturreglering av bostadshus Gustav Hedberg Abstract Adaptiv temperaturreglering av bostadshus Adaptive Temperature Control in Residential Buildings
Enkel och multipel linjär regression
TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)
Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd
Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion
Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
ESS011: Matematisk statistik och signalbehandling Tid: 14:00-18:00, Datum:
ESS0: Matematisk statistik och signalbehandling Tid: 4:00-8:00, Datum: 20-0-2 Examinatorer: José Sánchez och Bill Karlström Jour: Bill Karlström, tel. 070 624 44 88. José Sánchez, tel. 03 772 53 77. Hjälpmedel:
Analys av egen tidsserie
Analys av egen tidsserie Tidsserieanalys Farid Bonawiede Samer Haddad Michael Litton Alexandre Messo 9 december 25 3 25 Antal solfläckar 2 15 1 5 5 1 15 2 25 3 Månad Inledning Vi har valt att betrakta
Reglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är
Martin Enqvist Återkoppling, PID-reglering, specifikationer Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(21) Exempel: Farthållare i en bil 4(21) Välj
Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort
Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.
UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Föreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski
FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem
Regressionsmodellering inom sjukförsäkring
Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...
Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TID: 13 mars 2018, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 070-3113019 BESÖKER SALEN: 09.30,
Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Ulrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Välkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)
Dagens föreläsning. TSFS06 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter. Tröskelsättning och beslut i osäker miljö
Dagens föreläsning TSFS6 Diagnos och övervakning Föreläsning 6 - Tröskling och analys av teststorheter Erik Frisk Institutionen för systemteknik Linköpings universitet frisk@isy.liu.se 22-3-28 Tröskelsättning
Modellering av Dynamiska system Bengt Carlsson Rum 2211
Modellering av Dynamiska system -2012 Bengt Carlsson bc@it.uu.se Rum 2211 Introduktion #1 System och deras modeller Dynamiska och statiska system Användning av modeller Matematisk modellering Ett modelleringsexempel
Kap 8 - Empirisk modellering. Två grundprinciper för att bygga matematiska modeller (kombineras ofta!):
Kap 8 - Empirisk modellering Två grundprinciper för att bygga matematiska modeller (kombineras ofta!): 1 Fysikaliskt modellbygge. Använd naturlagar (massbalans, energibalans, Newtons lagar etc etc). Ibland
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Ulrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Sannolikheter och kombinatorik
Sannolikheter och kombinatorik En sannolikhet är ett tal mellan 0 och 1 som anger hur frekvent en händelse sker, där 0 betyder att det aldrig sker och 1 att det alltid sker. När vi talar om sannolikheter
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling
Modellering av Dynamiska system Bengt Carlsson Rum 2211
Modellering av Dynamiska system -2011 Bengt Carlsson bc@it.uu.se Rum 2211 Introduktion #1 System och deras modeller Dynamiska och statiska system Användning av modeller Matematisk modellering Ett modelleringsexempel