Kap 10 - Modeller med störningar. Hur beskriva slumpmässiga störningar?
|
|
- Berit Strömberg
- för 6 år sedan
- Visningar:
Transkript
1 Kap 10 - Modeller med störningar Notera att Beskrivning av signaler i frekvensdomänen -sammanfattning ger en bakgrund till Kap 10 och 11. Huvudpunkter: Hur beskriva slumpmässiga störningar? Data insamlas alltid i diskret tid. Men matematiska samband ofta i kontinuerlig tid (t ex differentialekvationer). Vilka samband finns?
2 Läsanvisningar: Kap 10.1 Läses Kap 10.2 Läs översiktligt, notera solhusexemplet! Kap 10.3 Deterministiska modeller -Läs översiktligt, Stokastiska modeller -Läses Kap 10.4 Läses (jmfr utdelat material) Kap 10.5 Läses översiktligt.
3 Kap Tidsdiskreta modeller Viktigast i denna kurs: Insignal-utsignalform. Vi kommer att normera samplingstiden (T = 1) i alla uttryck.
4 Kap Störningar i dynamiska system Kända mätbara störningar, w. Ex. uppmätt solintensitet, se sid En störning som är mätbar kan i modellen ses som en vanlig insignal.
5 Okända störningskällor: Ofta samlas den totala effekten ihop som ett additvit bidrag till utsignalen: y(t) =z(t)+w(t) där z(t) är den ostörda ( brusfria ) utsignalen. Huvudproblem; Hitta lämplig beskrivning för w(t).
6 Stokastiska modeller och spektrum Viktigt att få känsla för detta. Se sid samt utdelat material.
7 10.5- Samband mellan kontinuerliga och diskreta modeller Matlabfunktioner: SYSD = C2D(SYSC,TS,METHOD) converts the continuous-time LTI model SYSC to a discrete-time model SYSD with sample time TS. SYSC = D2C(SYSD,METHOD) produces a continuous-time model SYSC that is equivalent to the discrete-time LTI model SYSD. Se vidare Kap 10.5 i kursboken
8 Kap 11 - Korrelation och spektralanalys
9 Systembeskrivningar (repetition) Antag linjärt system. Tidskontinuerliga system. y(t) = 0 g(τ)u(t τ)dτ Laplace-transform L{y(t)} = Y(s) ger: Y(s) = G(s)U(s)
10 Systembeskrivningar Tidsdiskreta system (låter då t vara diskreta sampeltidpunkter). Differensekvationen y(t)+a 1 y(t 1)+... +a n y(t n) = b 0 u(t)+b 1 u(t 1)+... +b n u(t n) Definiera bakåtskiftoperatorn q 1 enligt q 1 y(t) = y(t 1). y(t) = G(q)u(t) G(q) = B(q) A(q) = b 0 +b 1 q b n q n 1+a 1 q a n q n Obs i många framställningar skrivs istället A(q 1 ) = 1+a 1 q a n q n Vi kan även skriva y(t) = g(k)u(t k) k=0 Z-transform Z{y(t)} = Y(q) ger: Y(z) = G(z)Y(z)
11 Identifieringsprinciper Enkla experiment (steg och impulssvar). Se föreläsning 1. Black box identifiering (nyttjar ingen fysikalisk kunskap). a) Icke parametrisk identifiering (impulssvar, frekvensfunktion). b) Parametrisk identifiering. Grey box identifiering (nyttjar delvis fysikalisk kunskap).
12 Korrelationsanalys (11.1) Betrakta ett tidsdiskret system y(t) = g k u(t k)+w(t) k=1 Korskovarians mellan u(t) och y(t): R yu (τ) = Ey(t)u(t τ) Antag w(t) och u(t) oberoende (i.e. R uv (τ) = 0) och u(t) vitt brus med varians λ: R yu (τ) = λg τ
13 Skatta korskovariansfunktionen som enligt: ˆR N yu(τ) = 1 N N y(t)u(t τ) t=1 Skattning av impulssvaret: ĝ N τ = 1 λ ˆR N yu(τ) Enkelt, snabb info om tidsfördröjningar och tidskonstanter. Oprecis information (tabell/kurva). Om u(t) ej vitt brus. Förfiltrera signalerna (se boken). Matlabkommando (SI-toolbox): cra.
14 Fourieranalys (11.2) - läs översiktligt Metoden som beskrivs i 11.2 motsvarar metoden i Kap 11.4 (vilket nämns på sid 266).
15 Skattning av signalspektra ( ) Två alternativ: Använd beloppet i kvadrat av den diskreta fouriertransformen. Kallas periodogram. Använd samband mellan kovariansfunktion och spektrum. Grundide: Skatta kovariansfunktionen och sätt in i uttrycket för spektrum. Kallas Blackman-Tukeys metod. Både metoderna kräver lite trix för att ge vettiga skattningar!
16 Skattning av signalspektra (Kap 11.3) Teori: Effektspektrum ges av R w (τ) = E{w(t+τ)w(t)} (1) Φ(ω) = k= R w (k)e iωk (2) Men vi måste skatta R w (τ) från ett ändligt antal data. Princip: ˆR w (τ) = 1 N N τ t=1 w(t+τ)w(t) (3)
17 Fladdrigheten i spektrumskattningen (hög varians) kan minskas på bekostnad av dess upplösning. Blackman-Tukeys metod (Glättade periodogram): Medelvärdesbilda periodogramet över ett antal närliggande frekvenser. Kan även tolkas som en filterering av kovariansskattningen. Läs sid ! (Om periodogram används kan Welchs metod användas: Dela upp data i ett antal intervall, beräkna periodogrammet i varje intervall och medelvärdesbilda.)
18 Blackman-Tukeys metod: ˆΦ N (ω) = ˆR N u (k) = 1 N M k= M w M (k)ˆr N u (k)e iωk N u(t+k)u(t) t=1 Val av M (kallas γ i LB) bestämmer avvägningen mellan frekvensupplösning och brusighet. (Riktmärke: M=N/10): Lättar att särskilja två närliggande frekvenstoppar om M stor VarˆΦ N v (ω) 0.7 M N Φ2 v(ω)
19 Kap 11.4 Skattning av överföringsfunktionen Antag linjärt system samt att u(t) och v(t) oberoende: y(t) = G(p)u(t)+v(t) M.h.a. tidigare resultat för korsspektra kan överföringsfunktionen skattas enligt: Ĝ N (iω) = ˆΦ N yu(ω) ˆΦ N u (ω) Störningen spektrum kan också skattas (se ekv (11.36))
20 Matlab: spa Sammanfattning: - Mycket använd metod. Talanalys, mekaniska system, geofysik... - Antar endast linjärt system. - Fönsterbredden M måste anpassas. - Antar u och v okorrelerade - Gäller ej för återkopplade system! - Bra att använda som komplement till parametriska metoder.
Beskrivning av signaler i frekvensdomänen - sammanfattning
Beskrivning av signaler i frekvensdomänen - sammanfattning Bengt Carlsson Systems and Control Dept of Information Technology, Uppsala University January 21, 2010 Abstract Detta material ger en sammanfattning
TSRT62 Modellbygge & Simulering
TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1
Reglerteori. Föreläsning 3. Torkel Glad
Reglerteori. Föreläsning 3 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av föreläsning 2 Det mesta av teorin för envariabla linjära system generaliseras lätt till ervariabla (era
Parameterskattning i linjära dynamiska modeller. Kap 12
Parameterskattning i linjära dynamiska modeller Kap 12 Grundläggande ansats Antag (samplade) mätdata (y och u)från ett system har insamlats. Givet en modell M(t, θ) och mätdata, hitta det θ som ger en
Spektralanalys - konsten att hitta frekvensinnehållet i en signal
Spektralanalys - konsten att hitta frekvensinnehållet i en signal Bengt Carlsson, Erik Gudmundson och Marcus Björk Systems and Control Dept. of Information Technology, Uppsala University 7 november 013
Föreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller
Sammanfattning av föreläsning 4 Modellbygge & Simulering, TSRT62 Föreläsning 5. Identifiering av olinjära modeller Reglerteknik, ISY, Linköpings Universitet Linjära parametriserade modeller: ARX, ARMAX,
Datorövningar i systemidentifiering Del 1
Datorövningar i systemidentifiering Del 1 Denna version: 24 augusti 2015 REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING Målsättning Detta häfte innehåller datorövningar i systemidentifiering. Området är i mångt
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Föreläsning 6: Spektralskattning: icke parametriska metoder. Leif Sörnmo 4 oktober 2009
Föreläsning 6: Spektralskattning: icke parametriska metoder Leif Sörnmo 4 oktober 2009 1 Metoder för spektralskattning icke-parametriska korrelogram, periodogram fönstring, medelvärdesbildning minimum-varians
TSRT91 Reglerteknik: Föreläsning 5
TSRT9 Reglerteknik: Föreläsning 5 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar / 23 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Industriell reglerteknik: Föreläsning 2
Industriell reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 33 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare
Modellbygge och simulering av L. Ljung och T. Glad - Kap 1-2
Modellbygge och simulering av L. Ljung och T. Glad - Kap 1-2 Experiment vs modellbygge Många frågor om ett system kan besvaras genom att utföra experiment. Vettigt! Men ibland finns nackdelar: Kostnader.
TENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 2 Matematiska modeller Laplacetransformen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 2 Gustaf Hendeby HT1 2017 1 / 21 Innehåll föreläsning 2 ˆ Sammanfattning
SYSTEM. Tillämpad Fysik Och Elektronik 1 SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System.
SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET SYSTEMEGENSKAPER System y(t) y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET
Ulrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Ulrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
Tentamen i Tillämpningar av fysik och dynamik i biologiska system, 7p
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Åke Fransson Stefan Berglund Björn Ekenstam Bo Tannfors Tentamen i Tillämpningar av fysik och dynamik i biologiska system, 7p Datum: 2001-08-31, kl 9.00-15.00,
Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar
6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)
System. Z-transformen. Staffan Grundberg. 8 februari 2016
Z-transformen 8 februari 2016 Innehåll Z-transformen Tidsdiskreta LTI-system Överföringsfunktioner Frekvensegenskaper Z-transformen Z-transformen av en tidsdiskret signal y[n] ges av Y (z) = Z[y] = y[n]z
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling
Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner
Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner Reglerteknik, IE1304 1 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel 17.1. Inledning 2 3 2 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Vad är spektralanalys? Spektralanalys. Frekvensinnehåll. Enkelt exempel
Vad är spektralanalys? Analys av frekvensinnehållet i en tidsserie/signal. Spektralanalys Erik Gudmundson Vad innebär Analys av frekvensinnehållet? Vad är en tidsserie/signal? Tidsserie: mätning av någon
Reglerteori. Föreläsning 4. Torkel Glad
Reglerteori. Föreläsning 4 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 3 Kovariansfunktion: R u (τ) = Eu(t)u(t τ) T Spektrum: Storleksmått: Vitt brus: Φ u (ω) =
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
TSDT08 Signaler och System I Extra uppgifter
TSDT08 Signaler och System I Extra uppgifter Erik G. Larsson ISY/Kommunikationssystem december, 2008 P. Ett LTI system har impulssvaret och matas med insignalen ht) = e 2t ut) xt) = e 3t ut) + cosπt +
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Innehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
TENTAMEN Systemidentifiering, 4p, F, FRI, STS
TENTAMEN Systemidentifiering, 4p, F, FRI, STS Tid: Fredagen den 17 mars kl 09.00 14.00 Plats: Polacksbacken, skrivsal Ansvarig lärare: Alexander Medvedev, telefon 471 3064, mobil 070 57 48 173. Alexander
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Formalia. Modellbygge & Simulering, TSRT62. Föreläsning 1. Varför modeller? Föreläsning 1: Modeller och modellbygge
Formalia Modellbygge & Simulering, TSRT62 Föreläsning 1 Labanmälan via länk på kurshemsidan Datortenta i datorsal Fem av lektionerna i datorsal Reglerteknik, ISY, Linköpings Universitet Identifieringslabben
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Måndag 8 januari 08, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
TSRT91 Reglerteknik: Föreläsning 9
TSRT91 Reglerteknik: Föreläsning 9 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 20 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Övningar i Reglerteknik. Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys. y(0) = 2,
Differentialekvationer Övningar i Reglerteknik Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys.. Lös följande begynnelsevärdesproblem dy dt y =, t > 0 y(0)
TENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 8 oktober 206, kl. 2.00-5.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Rosth, tel. 08-47070. Hans kommer och svarar på frågor ungefär kl.0.
Datorövningar i systemidentifiering Del 2
Datorövningar i systemidentifiering Del 2 Denna version: 24 augusti 2015 REGLERTEKNIK AUTOMATIC CONTROL LINKÖPING 1 Parametrisk identifiering av konfektionsmodeller Parametriska konfektionsmodeller (black-box-modeller)
Föreläsning 10, Egenskaper hos tidsdiskreta system
Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering
i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen
TENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
Försättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Forskare Signalbehandling Systemteknik (IT) Dept. of Information Technology, Division of f Systems and Control Översikt
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Spektrum av en samplad signal Samplingsprocessen kan skrivas som Fouriertranformen kan enligt linjäritetsoch tidsskiftsatsen
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är
Martin Enqvist Återkoppling, PID-reglering, specifikationer Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(21) Exempel: Farthållare i en bil 4(21) Välj
Sammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F1 Introduktion Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars
EXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG
FÖRELÄSNING EXEMPEL : ARTVARIATION Kurs- och transform-översikt. Kursintroduktion med typiska signalbehandlingsproblem och kapitelöversikt. Rep av transformer 3. Rep av aliaseffekten Givet: data med antal
Faltning steg för steg
Faltning steg för steg p./8 Faltning steg för steg System och Transformer Mario Natiello Matematikcentrum, Lunds Universitet Faltning steg för steg p.2/8 Innehåll Tidsdiskreta kausala följder Faltning
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Reglerteknik I: F2. Överföringsfunktionen, poler och stabilitet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F2 Överföringsfunktionen, poler och stabilitet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 16 Linjära systemmodeller Linjära tidsinvarianta modeller är användbara
TSIU61: Reglerteknik. Sammanfattning av föreläsning 8 (2/2) Andra reglerstrukturer. ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från störsignalen
TSIU61 Föreläsning 9 HT1 2016 1 / 26 Innehåll föreläsning 9 TSIU61: Reglerteknik Föreläsning 9 Andra reglerstrukturer hendeby@isy.liu.se ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från referenssignalen
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TID: 13 mars 2018, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 070-3113019 BESÖKER SALEN: 09.30,
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen. Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT)
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT) Vad är spektralanalys? Analys av frekvensinnehållet i en tidsserie/signal.
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT) Översikt Kort om projektet Vad är spektralanalys? Koppling till Transformmetoder
Reglerteknik Z / Bt/I/Kf/F
Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre
Modellering av Dynamiska system Bengt Carlsson Rum 2211
Modellering av Dynamiska system -2012 Bengt Carlsson bc@it.uu.se Rum 2211 Introduktion #1 System och deras modeller Dynamiska och statiska system Användning av modeller Matematisk modellering Ett modelleringsexempel
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
Reglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT)
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Modellering av Dynamiska system Bengt Carlsson Rum 2211
Modellering av Dynamiska system -2013 Bengt Carlsson bc@it.uu.se Rum 2211 Introduktion #1 System och deras modeller Dynamiska och statiska system Användning av modeller Matematisk modellering Ett modelleringsexempel
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 060 Uppgift a G c (s G(sF (s + G(sF (s s + 3, Y (s s + 3 s ( 3 s s + 3 Svar: y(t 3 ( e 3t Uppgift b Svar: (i insignal u levererad insulinmängd från pumpen, mha tex spänningen
LABORATIONSINSTRUKTION DIGITAL REGLERTEKNIK. Lab nr. 3 DIGITAL PI-REGLERING AV FÖRSTA ORDNINGENS PROCESS
LABORATIONSINSTRUKTION DIGITAL REGLERTEKNIK Lab nr. 3 DIGITAL PI-REGLERING AV FÖRSTA ORDNINGENS PROCESS Obs! Alla förberedande uppgifter skall vara gjorda innan laborationstillfället! Namn: Program: Laborationen
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 Johan Löfberg Avdelningen för Reglerteknik Institutionen för systemteknik johan.lofberg@liu.se Kontor: B-huset, mellan ingång 27 och 29
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Reglerteori. Föreläsning 5. Torkel Glad
Reglerteori. Föreläsning 5 Torkel Glad Föreläsning 1 Torkel Glad Januari 2018 2 Sammanfattning av Föreläsning 4 Kalmanlter Optimal observatör Kräver stokastisk modell av störningarna Kräver lösning av
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Föreläsning 8, Introduktion till tidsdiskret reglering, Z-transfomer, Överföringsfunktioner
Föreläsning 8, Introduktion till tidsdiskret reglering, Z-transfomer, Överföringsfunktioner Reglerteknik, IE1304 1 / 24 Innehåll 1 2 3 4 2 / 24 Innehåll 1 2 3 4 3 / 24 Vad är tidsdiskret reglering? Regulatorn