Föreläsning 10, Egenskaper hos tidsdiskreta system
|
|
- Axel Ivarsson
- för 7 år sedan
- Visningar:
Transkript
1 Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE / 26
2 Innehåll Kapitel Skillnad mellan analog och digital reglering 1 Kapitel Skillnad mellan analog och digital reglering / 26
3 Innehåll Kapitel Skillnad mellan analog och digital reglering 1 Kapitel Skillnad mellan analog och digital reglering / 26
4 Stegsvar för olika regulatorer Bilden på sid 327 visar ett återkopplat system. I bilden nedan (se även sid ) visas stegsvaret för det analoga systemet (blå) och för ett diskretiserat system med samplingstiden 1s (grön) respektive 3s (röd). Figur: Stegsvar för kontinuerliga och diskreta system 4 / 26
5 Av bilden på föregående sida framgår att systemet får sämre egenskaper då samplingstiden ökar. Det beror på att styrsignalen inte förändras under samplingsintervallet och alltså baseras på ett inaktuellt värde av utsignalen. Av detta kan vi dra följande slutsatser. Ett diskret system har sämre egenskaper än motsvarande kontinuerliga system (vilket inte betyder att alla diskreta system är sämre än alla kontinuerliga system). Stabilitetsgränsen och andra egenskaper för ett kontinuerligt system gäller inte om systemet diskretiseras. Stabilitetsgränsen och andra egenskaper för ett diskret system är beroende av samplingstiden. 5 / 26
6 Innehåll Kapitel Skillnad mellan analog och digital reglering 1 Kapitel Skillnad mellan analog och digital reglering / 26
7 Blockschemareduktion Av tabellen på sid 330 framgår att exakt samma regler för blockschemareduktion gäller för både kontinuerliga och diskreta system. Övningsuppgift 18.1a 7 / 26
8 Innehåll Kapitel Skillnad mellan analog och digital reglering 1 Kapitel Skillnad mellan analog och digital reglering / 26
9 Amplitudförstärkning och fasvridning Mappningen från s-planet (Laplace) till z-planet (z-transform) bygger på att vi sätter z = e sh, där h är samplingstiden. För att beräkna ett systems frekvensegenskaper sätter vi som bekant s = jω, vilket ger z = e jωh. För ett kontinuerligt system, som har överföringsfunktionen G(s), gäller som bekant att amplitudfunktionen, A(ω) = G(jω) och fasfunktionen, ϕ(ω) = arg(g(jω)). Detta innebär att för ett diskret system, med överföringsfunktionen H(z), är amplitudfunktionen, A(ω) = H(e jωh ) och fasfunktionen, ϕ(ω) = arg(h(e jωh )) Kom ihåg, vad gäller komplexa tal, att e ±jx = cosx ± j sinx. Övningsuppgift 18.3a, eventuellt även 18.3c 9 / 26
10 Lågfrekvensförstärkning Lågfrekvensförstärkningen, K LF = lim ω 0 H(e jωh ) = H(e 0 ) = H(1) Lägg märke till skillnaden på slutvärdessatsen, som gäller en signal, och lågfrekvensförstärkningen, som gäller en överföringsfunktion. Övningsuppgift 18.4a 10 / 26
11 Bodediagram Bodediagram är inte alls lika vanliga för diskreta system som för kontinuerliga. Dels behövs de inte för att dimensionera diskreta regulatorer, dels går de inte att skissa med hjälp av asymptoter. På sid 334 visas bodediagrammet för H(z) = 1 z 0.7 med samplingstiden, h = 2s. Beräkning av amplitud- och fasfunktion för detta filter finns på sid Följande är typiskt för diskreta system: Amplitudkurvan upprepar sig periodiskt när frekvensen nått samplingsfrekvensen, vilken är 2π. Kurvan blir periodisk med h frekvensen lika med samplingsfrekvensen. Fasfunktionen konvergerar inte utan ϕ då ω. 11 / 26
12 Shannons samplingsteorem Shannons samplingsteorem säger att om samplingsfrekvensen är mindre än dubbla högsta frekvensen i den samplade signalen, fs < 2f, kommer sampelvärdena inte att överensstämma med den samplade signalen. Vad som händer är att en signal med hög frekvens misstolkas som en annan signal med låg frekvens, se bild sid 335. Detta fenomen kallas aliaseffekten. För att undvika aliaseffekt måste signalen filtreras med ett lågpassfilter innan den samplas, så att högfrekventa komponenter försvinner. 12 / 26
13 Innehåll Kapitel Skillnad mellan analog och digital reglering 1 Kapitel Skillnad mellan analog och digital reglering / 26
14 Olika sätt att avgöra om ett system är stabilt Stabilitet innebär (här) att om insignalen har ett maxvärde har utsignalen också ett maxvärde. Olika metoder att avgöra om ett system är stabilt är polbestämning, bode-diagram, Nyquistkriteriet och Schur-Coons kriterium. 14 / 26
15 Polbestämning 1 Beräkna systemets poler. Dessa är rötterna till systemets karakteristiska ekvation. Den karakteristiska ekvationen fås genom att sätta överföringsfunktionens nämnare lika med 0. Exempel: Överföringsfunktionen H(z) = 1 har den z 2 karakteristiska ekvationen z 2 = 0. 2 Lös den karakteristiska ekvationen. Exempel: z 2 = 0 har lösningen z = 2. Systemet har alltså en pol som ligger z = 2. 3 Om alla poler ligger innanför enhetscirkeln i det komplexa z-planet är systemet stabilt. Exempel: Eftersom 2 = 2 > 1 är detta system inte stabilt. 15 / 26
16 Polbestämning, forts Hur lätt polbestämning är avgörs av den karakterisktiska ekvationens gradtal. Om det är en första- eller andragradsekvationen är det lätt, annars krävs ett program i stil med Matlab. Har vi tillgång till ett sådant program är det å andra sidan alltid tämligen enkelt att använda polbestämning. Övningsuppgift 18.6c-d, 18.7a, eventuellt 18.7b 16 / 26
17 Bodediagram och Nyquistkriteriet Dessa metoder fungerar exakt som för kontinuerliga system. Eftersom dessa diagram är mycket svåra att rita för hand för diskreta system kräver denna metod i praktiken tillgång till exempelvis Matlab. I Matlab kan kommandot margin(g) användas för att bestämma amplitud- och fasmarginalen för ett system med överföringsfunktionen G oavsett om systemet är diskret eller kontinuerligt. Vi ägnar oss inte vidare åt dessa metoder. 17 / 26
18 Schur-Coons stabilitetskriterium Detta är den diskreta motsvarigheten till Rouths metod. Schur-Coons stabilitetskriterium är en enkel metod att manuellt avgöra om ett system är stabilt. Dess starka sida är att den fungerar bra utan hjälpmedel oavsett systemets gradtal. Dess svaga sida är att den, jämfört med datorbaserade beräkningar, ändå kräver en del jobb. Dessutom blir det ofta väldigt komplexa uttryck om metoden används för algebraiska beräkningar, till exempel att bestämma stabilitetsgränser för förstärkningen. 18 / 26
19 Schur-Coons stabilitetskriterium, forts Schur-Coons stabilitetskriterium används så här: 1 Ta fram systemets karakterisktiska polynom, A(z), dvs överföringsfunktionens nämnare. Exempel: z H(z) = 2 +z+1 A(z) = z 3 z z+0.07 z3 z z Skriv upp koefficienterna för alla potenser av z. Exempel: a 0 = 1,a 1 = 1,a 2 = 0.11,a 3 = Beräkna b i = a 0 a i a n a n i för alla i sådana att 0 i n 1, där n är det karakteristiska polynomets gradtal. Exempel: b 0 = = b 1 = 1 ( 1) = b 2 = ( 1) = / 26
20 Schur-Coons stabilitetskriterium, forts 4 Räkna ut c i,d i osv på samma sätt som b i. Exempel: c 0 = c 1 = ( ) d 0 = ( ) Systemet har alla poler strikt inom enhetscirkeln om a 0,b 0,c 0 osv alla är strikt positiva. Exempel: a 0 = 1 > 0,b 0 = > 0,c 0 = > 0,d 0 = > 0 systemet är stabilt. Övningsuppgifter: 18.6g 20 / 26
21 Innehåll Kapitel Skillnad mellan analog och digital reglering 1 Kapitel Skillnad mellan analog och digital reglering / 26
22 Det kvarstående felet beräknas enligt formlerna på sid 340. Formlerna kan tas fram genom att: 1 Beräkna systemets överföringsfunktion, H(z). 2 Ta fram ett uttryck för felet, E(z) = R(z) Y (z) = R(z) R(z)H(z) = R(z)(1 H(z)). 3 Sätta in z-transformen för börvärdet, R(z) i ovanstående uttryck. 4 Använda slutvärdessatsen, lim k e(k) = lim z 1 (z 1)E(z) för att få fram det kvarstående felet. Övningsuppgift / 26
23 Innehåll Kapitel Skillnad mellan analog och digital reglering 1 Kapitel Skillnad mellan analog och digital reglering / 26
24 Polernas betydelse för insvägningsförloppet En ändring av insignalen (börvärde eller störning) sätter systemet i svägning. Om alla poler ligger innanför enhetscirkeln avtar svägningarna och systemets utsignal når ett slutvärde. Detta, övergående, skede kallas för det transienta förloppet. Om systemet har mer än en pol kan dess transienta förlopp approximeras med förloppet för ett system med bara den dominanta (längst från origo) polen. Hur bra approximationen blir beror på hur mycket längre från origo än övriga poler den dominanta polen är. Större skillnad ger bättre approximation. 24 / 26
25 Polernas betydelse för insvägningsförloppet, forts Svägningarna avtar snabbare desto närmare origo den dominanta polen ligger. Om systemet har alla poler i origo avtar insvägningen på ett samplingsintervall (detta kallas dead-beat-reglering). Om den dominanta polen ligger utanför enhetscirkeln tilltar svägningarna mot oändligheten. Om den dominanta polen ligger på enhetscirkeln kommer svägningarna varken att avta eller tillta, utan fortsätta med oförändrad amplitud. 25 / 26
26 Polernas betydelse för insvägningsförloppet, forts En pol på positiva reella axeln ger ingen oscillation och inte heller någon översväng. Desto större vinkeln från den reella axeln till polen är, desto högre frekvens har oscillationen. Desto större beloppet av imaginärdelen av en pol är, desto större blir översvängen. Om polens vinkel till den reella axeln är ±π, dvs polen ligger på den negativa reella axeln, är oscillationsperioden två samplingsintervall. 26 / 26
Reglerteknik. Kurskod: IE1304. Datum: 12/ Tid: Examinator: Leif Lindbäck ( )
Tentamen i Reglerteknik (IE1304) 12/3-2012 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 12/3-2012 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
REGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 0-03-4 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd formelsamling,
Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i eglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 20-06-09 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd
Reglerteknik. Datum: 20/ Tid: Examinator: Leif Lindbäck ( ) Hjälpmedel: Formelsamling, dimensioneringsbilaga, miniräknare.
Tentamen i Reglerteknik (IE1304) 20/3-2014 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 20/3-2014 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
Föreläsning 11, Dimensionering av tidsdiskreta regulatorer
Föreläsning 11, Dimensionering av tidsdiskreta regulatorer KTH 8 februari 2011 1 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4 5 6 2 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4
Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner
Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner Reglerteknik, IE1304 1 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel 17.1. Inledning 2 3 2 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!)
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Uppgift 1 (4p) Figuren nedan visar ett reglersystem för nivån i en tank.utflödet från tanken styrs av en pump och har storleken V (m 3 /s).
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet
Föreläsning 8, Introduktion till tidsdiskret reglering, Z-transfomer, Överföringsfunktioner
Föreläsning 8, Introduktion till tidsdiskret reglering, Z-transfomer, Överföringsfunktioner Reglerteknik, IE1304 1 / 24 Innehåll 1 2 3 4 2 / 24 Innehåll 1 2 3 4 3 / 24 Vad är tidsdiskret reglering? Regulatorn
Laplacetransform, poler och nollställen
Innehåll föreläsning 2 2 Reglerteknik, föreläsning 2 Laplacetransform, poler och nollställen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning
TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning
TSRT91 Reglerteknik: Föreläsning 5
TSRT9 Reglerteknik: Föreläsning 5 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar / 23 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 6 Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Sammanfattning av förra föreläsningen 2 G(s) Sinus in (i stabilt system) ger sinus
Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,
Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens
Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. umregelmetoder Bodediagram (Kompenseringsfilter) Simulering MALAB-programmet Simulink
TENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan
TENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,
TSRT91 Reglerteknik: Föreläsning 4
TSRT91 Reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 16 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
TSRT91 Reglerteknik: Föreläsning 4
Föreläsningar 1 / 16 TSRT91 glerteknik: Föreläsning 4 Martin Enqvist glerteknik Institutionen för systemteknik Linköpings universitet 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
TENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
TSIU61: Reglerteknik
TSIU61: Reglerteknik Föreläsning 11 Tidsdiskret implementering Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 11 Gustaf Hendeby HT1 2017 1 / 17 Innehåll föreläsning 11 ˆ Sammanfattning av föreläsning
System. Z-transformen. Staffan Grundberg. 8 februari 2016
Z-transformen 8 februari 2016 Innehåll Z-transformen Tidsdiskreta LTI-system Överföringsfunktioner Frekvensegenskaper Z-transformen Z-transformen av en tidsdiskret signal y[n] ges av Y (z) = Z[y] = y[n]z
ERE 102 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:
Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Formelsamling i Reglerteknik
Formelsamling i Reglerteknik Laplacetransformation Antag att f : IR IR är en styckvis kontinuerlig funktion. Laplacetransformen av f definieras av Slutvärdesteoremet F(s) = L(f)(s) = 0 e st f(t)dt lim
Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Frekvensbeskrivning, Bodediagram
Innehåll föreläsning 5 Reglerteknik I: Föreläsning 5 Frekvensbeskrivning, Bodediagram Fredrik Lindsten fredrik.lindsten@it.uu.se Kontor 2236, ITC Hus 2, Systemteknik Institutionen för informationsteknologi
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
6. Stabilitet. 6. Stabilitet
6. Stabilitet 6. Stabilitet Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt
Reglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) 0-03-8. (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet
Frekvensbeskrivning, Bodediagram
Innehåll föreläsning 5 Reglerteknik, föreläsning 5 Frekvensbeskrivning, Bodediagram Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning
Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. Tumregelmetoder Bodediagram (Kompenseringsfilter) Simulering MATLAB-programmet
TSIU61: Reglerteknik. Frekvensbeskrivning Bodediagram. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 5 Frekvensbeskrivning Bodediagram Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 5 Gustaf Hendeby HT1 2017 1 / 1 Innehåll föreläsning 5 ˆ Sammanfattning av föreläsning
Välkomna till TSRT19 Reglerteknik Föreläsning 5. Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram
Välkomna till TSRT19 Reglerteknik Föreläsning 5 Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram Sammanfattning av förra föreläsningen 2 Givet ett polpolynom med en varierande parameter, och
Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort
TSIU61: Reglerteknik. de(t) dt + K D. Sammanfattning från föreläsning 4 (2/3) Frekvensbeskrivning. ˆ Bodediagram. Proportionell }{{} Integrerande
TSIU6 Föreläsning 5 Gustaf Hendeby HT 207 / 25 Innehåll föreläsning 5 TSIU6: Reglerteknik Föreläsning 5 Frekvensbeskrivning Bodediagram Gustaf Hendeby ˆ Sammanfattning av föreläsning 4 ˆ Introduktion till
TSIU61: Reglerteknik. Poler och nollställen Stabilitet Blockschema. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 3 Poler och nollställen Stabilitet Blockschema Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 3 Gustaf Hendeby HT1 2017 1 / 26 Innehåll föreläsning 3 ˆ Sammanfattning
Lösningsförslag till tentamen i Reglerteknik (TSRT19)
Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )
6. Stabilitet. 6. Stabilitet. 6. Stabilitet. 6.1 Stabilitetsdefinitioner. 6. Stabilitet. 6.2 Poler och stabilitet. 6.1 Stabilitetsdefinitioner
Såsom framgått i de två inledande kapitlen förutsätter en lyckad regulatordesign kompromisser mellan prestanda ( snabbhet ) och stabilitet. Ett system som oreglerat är stabilt kan bli instabilt genom för
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
Elektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Övningar i Reglerteknik
Övningar i Reglerteknik Stabilitet hos återkopplade system Ett system är stabilt om utsignalen alltid är begränsad om insignalen är begränsad. Linjära tidsinvarianta system är stabila precis då alla poler
Välkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning föreläsning 8 2 F(s) Lead-lag design:
Reglerteknik AK, FRT010
Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Välkomna till TSRT19 Reglerteknik M Föreläsning 7. Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet
Välkomna till TSRT19 Reglerteknik M Föreläsning 7 Framkoppling Koppling mellan öppna systemets Bodediagram och slutna systemets stabilitet Framkoppling 2 Anledningen till att vi pratar om framkoppling
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Reglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 6 Jonas Mårtensson, kursansvarig Senaste två föreläsningarna Frekvensbeskrivning, Bodediagram Stabilitetsmarginaler Specifikationer (tids-/frekvensplan, slutna/öppna
TENTAMEN Reglerteknik 3p, X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
Tentamen i Reglerteknik, 4p för D2/E2/T2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, 4p för D2/E2/T2 Tid: Måndagen den 28 maj kl.9.-13. 27 Sal: R1122 Tillåtna hjälpmedel: Valfri
ERE103 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
Övningar i Automationsteknik FK
Övningar i Automationsteknik FK Tidsdiskret reglering: Diskretisering av analoga regulatorer 3.. Införs beteckningen i(t t 0 e(τdτ så blir Euler-bakåt på i(t i(t i(t h+he(t, t kh, k 0,,2,... Egentligen
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.
Tentamen i Reglerteknik, för D2/E2/T2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Lördagen den 15 Augusti kl.9.-13. 29 Sal: Tillåtna hjälpmedel: Valfri
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar
6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)
TENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Välkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0
Övning 5 Introduktion Varmt välkomna till femte övningen i glerteknik AK! Håkan Terelius hakante@kth.se petition lativ dämpning För ett andra ordningens system utan nollställen, där överföringsfunktionen
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Övningar i Automationsteknik FK
Övningar i Automationsteknik FK Tidsdiskret reglering: Diskretisering av analoga regulatorer Det mest grundläggande när det gäller tidsdiskret reglering är att på ett enkelt och rättframt sätt översätta
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Från tidigare: Systemets poler (rötterna till kar. ekv.) påverkar egenskaperna hos diffekvationens lösning.
Föreläsning 4 Stabilitet (2.5) Från tidigare: Systemets poler (rötterna till kar. ekv.) påverkar egenskaperna hos diffekvationens lösning. Definition av insignal-utsignalstabilitet: OH-bild Sats 2.1: OH-bild
Undersökning av inställningsmetoder för PID-regulatorer
Undersökning av inställningsmetoder för PID-regulatorer A study of methods for tuning PID-controllers Examensarbete i Elektroingenjörsprogrammet SUSANNE LUNDELL Institutionen för Signaler och System CHALMERS
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3.
TSIU6 Föreläsning 4 Gustaf Hendeby HT 207 / 22 Innehåll föreläsning 4 TSIU6: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se ˆ Sammanfattning av föreläsning
TENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 4 Gustaf Hendeby HT1 2017 1 / 22 Innehåll föreläsning 4 ˆ Sammanfattning av föreläsning
Tentamen i Reglerteknik, för D2/E2/T2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Torsdagen den 3 Juni kl.9.-13. 21 Sal: R1122 Tillåtna hjälpmedel: Valfri
Tentamen i Tillämpningar av fysik och dynamik i biologiska system, 7p
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Åke Fransson Stefan Berglund Björn Ekenstam Bo Tannfors Tentamen i Tillämpningar av fysik och dynamik i biologiska system, 7p Datum: 2001-08-31, kl 9.00-15.00,
TENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp för X3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
TENTAMEN Reglerteknik I 5hp
TENTAMEN Reglerteknik I 5hp Tid: Tisdag 8 juni 00, kl 8.00 3.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Kjartan Halvorsen, tel 08-473070. Kjartan kommer och svarar på frågor ungefär kl 9.30 och
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
TSRT91 Reglerteknik: Föreläsning 11
Föreläsningar / 5 TSRT9 Reglerteknik: Föreläsning Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
TSRT91 Reglerteknik: Föreläsning 2
Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Välkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Reglerteknik AK. Tentamen kl
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
Lösningar till övningar i Reglerteknik
Lösningar till övningar i Reglerteknik Stabilitet hos återkopplade system 5. Ett polynom av andra ordningen har båda rötterna i vänstra halvplanet (Res < ) precis då alla (3) koefficienterna har samma
Välkomna till TSRT19 Reglerteknik Föreläsning 7
Välkomna till TSRT19 Reglerteknik Föreläsning 7 Sammanfattning av föreläsning 6 Kretsformning Lead-lag design Labförberedande exempel Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet)
Reglerteknik Z / Bt/I/Kf/F
Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre