Signaler och system, IT3
|
|
- Isak Falk
- för 6 år sedan
- Visningar:
Transkript
1 Signaler och system, IT3 Vad är signalbehandling? 1 Detta dokument utgör introduktionsföreläsningen för kursen Signaler och system för IT3 period 2. Kursen utvecklades år 2002 av Mathias Johansson. 1
2 Vad är signalbehandling? Verktyg för modellering, analys, manipulering av signaler 2 Modellering: För att hitta en enklare beskrivning av en signal, t ex komprimering av tal i GSM-systemet. Analys: Exempelvis Fouriertransformering av en tidsserie för att få en inblick i systemets frekvensegenskaper, prediktera framtida utvecklingen av en tidsserie, estimera en jordbävnings epicentrum, etc. Manipulering: Reducera ljudet från en fläkttrumma i en punkt genom att skicka ut ljud i motfas. 2
3 Vad är då en signal? En signal överför information från en avsändare till en mottagare Introduktionsföreläsning Målet är att informationen i signalen skall påverkas så lite som möjligt. Problem: Signalen kan påverkas av kanalen mellan avsändaren och mottagaren på ett sätt som försvårar informationsextraktionen. 3 En avsändare kan vara vad som helst, dvs en människa, maskin, ett naturfenomen, etc. Samma sak gäller för mottagaren. Målet gäller informationen, inte signalen i sig. Således kan signalen förändras och omvandlas utan att informationen går förlorad. T ex kan signalen medvetet omvandlas för att underlätta informationsöverföringen. Försök hitta ett exempel på en sådan omvandling där originalinformationen t ex utgörs av musik! Kunskap om signalens struktur (matematisk beskrivning t ex), kanalen (dvs de möjliga signalförändringarna och hur sannolika de är), och annan information om t ex möjliga meddelanden, etc., ger oss förbättrade möjligheter att extrahera informationen. Utan någon som helst kunskap om signalen blir detekteringen i princip omöjlig. 3
4 Tre huvudproblem Introduktionsföreläsning Klassificering Dela in signaler/information i olika fördefinierade klasser. Detektering Upptäcka om en signal är närvarande i en given datasekvens Estimering Bestämma en eller flera parametrar för en mottagen signal 4 Klassificering: Ex. Taligenkänning i mobiltelefoner (Matcha tal mot fördefinierade nummer) Detektering: Ex. Jodie Foster lyssnar efter utomjordingar i filmen Närkontakt Estimering: Ex. Bestämning av avståndet till en framförvarande bil 4
5 Matematisk modellering Introduktionsföreläsning Används för att kunna analysera signaler och system samt deras samverkan Ex. Nätspänning Syftet är att fånga de relevanta egenskaperna hos signalen/systemet 5 Nätspänningsmodellen tar ej hänsyn till varíationer pga belastning i nätet. 5
6 Stokastisk modellering Hur modellerar vi ett EKG? T ex anpassning av modellfunktioner + omodellerade variationer Introduktionsföreläsning Omodellerade variationer (t ex normalfördelat brus) 6 Ju mer information vi har om de omodellerade variationerna desto bättre kan vi modellera dem. Men så länge det finns ett mått av osäkerhet kvar, så måste vi använda modeller av stokastisk natur. En stokastisk modell skall modellera det vi faktiskt vet och lämna övriga möjligheter så öppna som möjligt. Ofta görs modeller i frekvensdomänen, dvs med frekvens i stället för tid som oberoende variabel. 6
7 Klassificering av signalmodeller Deterministiska Från tidigare observationer kan det framtida beteendet bestämmas exakt. Specialfall: Periodiska signalmodeller: Stokastiska Från tidigare observationer kan vi inte entydigt bestämma det framtida beteendet. 7 Grundfrekvensen för en periodisk signal(-modell) x(t) bestäms av den största perioden T0 med vilken sambandet x(t) = x(t+t0) gäller. Periodiska signaler illustreras med exempel på tavlan. 7
8 Klassificering av signalmodeller Stokastiska modeller är stationära om de stokastiska parametrarna inte förändras med tiden. En stationär modell sägs vara ergodisk om tidsmedelvärden är lika med ensemblemedelvärden. Ex. Mät bruset i en resistor vid n tidpunkter alt. mät bruset i n resistorer samtidigt 8 Obs! Alla verkliga signaler är stokastiska (dvs går inte att förutsäga med sannolikhet 1) och icke-stationära (dvs förändras med tiden). 8
9 Kontinuerliga och diskreta signaler Tidskontinuerliga signaler Amplitudkontinuerliga Amplituddiskreta Tidsdiskreta signaler Amplitudkontinuerliga Amplituddiskreta Digital = tidsdiskret och amplituddiskret 9 Bild sid 24 Svärdström illustrerar koncepten. Tidsdiskret = amplituden bestämd endast vid vissa betämda tidpunkter. De flesta signaler i naturen kan anses vara kontinuerliga. Övergång från kontinuerlig till diskret form medför kvantiseringsfel. Hur påverkas informationsinnehållet? (Svar senare i kursen) 9
10 Fundamentala signalmodeller Dirac-pulsen Enhetssteget (Heaviside-funktionen) Sinusformade signaler Exponentiellt dämpade signaler 10 Signalmodellerna presenteras på tavlan i såväl kontinuerlig som diskret tid. 10
11 Energi och effekt Ändlig energi = energisignal Introduktionsföreläsning Ändlig effekt = effektsignal (oändlig energi) Ex. Periodiska signaler är ej energisignaler 11 Energi har sort [amplitud^2 * s], eller om x(t) är ström eller spänning och R=1 Ohm [Ws]. Effekt har sort [W] om effekten utvecklas över R=1 Ohm. Begreppen illustreras på tavlan med exempel. 11
12 Signal-till-brusförhållandet Eng. Signal-to-Noise Ratio = SNR Mätning av SNR problematiskt. Hur mäta signalen utan brus? 12 Mäter man först bruset för sig och sedan summan av brus och signal fås 10log( (PS+PN)/PN ) = 10 log(ps/pn + 1) vilket ger litet fel vid höga SNR och vice versa. Exempel på SNR-krav och bandbredder för olika system (s. 52 Svärdström) ger en bild av vad olika SNR-nivåer betyder. 12
13 Sampling Diskretisering av en analog signal kallas sampling och innebär att man avläser signalens amplitud vid vissa bestämda tidpunkter. Hur påverkas informationen av att signalen samplas? Finns all information kvar efter samplingen? (svar senare i kursen) 13 När man samplar signalen kvantiserar man den oftast i amplitud såväl som tid. En berömd sats, samplingssatsen, säger att tidsdiskretisering kan genomföras under ett enkelt villkor utan att information förloras. Detta gås igenom under senare delar av kursen. Vi ska först studera hur amplituddiskretisering (kvantisering) påverar informationsinnehållet. 13
14 Kvantisering Kvantisering i amplitud innebär att man tappar noggranhet Allmänt: ju fler kvantiseringsnivåer desto bättre avbildning. Antalet kvantiseringsnivåer bestäms av antalet bitar i A/D-omvandlaren Ex. N=8 bitar motsvarar 2^8=256 nivåer. Amplituddiskretisering 14 14
15 Kvantisering och kvantiseringsbrus Tumregel (överkurs): För varje extra bit i omvandlingen förbättras förhållandet signal-till-kvantiseringsbrus med 6 db. Överslagsräkning: SNR ~ 6N db (Se beräkningar s Svärdström) 15 15
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Läs merLjudteknik. Digital representation. Vad är ljud?
Ljudteknik Digital representation Vad är ljud? 1 3 grundstenar för ljud» Alstring» Överföring» Mottagning Örat Hörseln» Lufttrycksvariationer ger mekaniska vibrationer i trumhinnan» Hörselbenet växlar
Läs merUlrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merUlrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merSpektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Läs merTeori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Läs merAD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1
AD-DA-omvandlare Mätteknik Ville Jalkanen ville.jalkanen@tfe.umu.se Inledning Analog-digital (AD)-omvandling Digital-analog (DA)-omvandling Varför AD-omvandling? analog, tidskontinuerlig signal Givare/
Läs merKapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast
Läs merKapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast
Läs merKapitel 2 o 3. Att skicka signaler på en länk. (Maria Kihl)
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd äd 11001000101 värd äd Tåd Två datorer som skall kllkommunicera.
Läs merKapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Att sända information mellan datorer. Information och binärdata
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår
Läs merElektronik. Dataomvandlare
Elektronik Dataomvandlare Johan Wernehag Institutionen för elektro- och informationsteknik Lunds universitet 2 Översikt Analoga och digitala signaler Nyquistteorem Kvantiseringsfel i analog-till-digital
Läs merSignaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla
Läs merElektronik Dataomvandlare
Elektronik Översikt Analoga och digitala signaler Dataomvandlare Pietro Andreani Institutionen för elektro- och informationsteknik Lunds universitet Nyquistteorem Kvantiseringsfel i analog-till-digital
Läs merKapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att göra Kursombud Williams bok???? Kolla schemat: Övningar flyttade Labanmälan ska funka nu 2 Att sända information
Läs merElektronik Dataomvandlare
Elektronik Översikt Analoga och digitala signaler Dataomvandlare Pietro Andreani Institutionen för elektro- och informationsteknik Lunds universitet Nyquistteorem Kvantiseringsfel i analog-till-digital
Läs merElektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-
Analogt och Digital Bertil Larsson Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter
Läs merDigital signalbehandling Digitalt Ljud
Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1
Läs merDigital kommunikation. Maria Kihl
Digital kommunikation Maria Kihl Läsanvisningar Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2 2 Protokoll När människor kommunicerar använder vi ett språk.
Läs merAD-/DA-omvandlare. Digitala signaler, Sampling och Sample-Hold
AD-/DA-omvandlare Digitala signaler, Sampling och Sample-Hold Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt - Digitalt Analogt få komponenter
Läs merFrekvensplanet och Bode-diagram. Frekvensanalys
Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,
Läs merDigital kommunikation. Maria Kihl
Digital kommunikation Maria Kihl Läsanvisningar Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 8.1, 8.2 Forouzan 5th: 3.1-3.4, 3.6, 4.1-4.2, 5.1, 6.1.1, 6.1.3 2 Protokoll
Läs merSignal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner
Signal- och Bildbehandling FÖRELÄSNING Inrodukion. Signaler och Sysem. Vad är en signal och e sysem? Eempel på olika signaler. Vad kan man anända signalbehandling ill? Eempel på olika illämpningar Klassificering
Läs mer7. Sampling och rekonstruktion av signaler
Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid
Läs merGrundläggande ljud- och musikteori
Grundläggande ljud- och musikteori Jan Thim Magnus Eriksson Lektionens syfte Syftet med denna lektion är är att att ge ge förståelse för för decibelbegreppet, spektrum, digitalisering och och olika olika
Läs merProjekt 1 (P1) Problembeskrivning och uppdragsspecifikation
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare
Läs merA/D- och D/A- omvandlare
A/D- och D/A- omvandlare Jan Carlsson 1 Inledning Om vi tänker oss att vi skall reglera en process så ställer vi in ett börvärde, det är det värde som man vill processen skall åstadkomma. Sedan har vi
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Läs merAnalys/syntes-kodning
Analys/syntes-kodning Många talkodare bygger på en princip som kallas analys/syntes-kodning. Istället för att koda en vågform, som man normalt gör i generella ljudkodare och i bildkodare, så har man parametrisk
Läs merResttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Läs merKompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
Läs merHemtenta 2 i Telekommunikation
Hemtenta 2 i Telekommunikation Tentamen omfattar 4*4=16 poäng. För godkänt krävs minst 8 poäng. Individuell Inlämning senast 2005-10-07 till Jan-Åke Olofsson jan-ake.olofsson@tfe.umu.se eller Björn Ekenstam,
Läs merKonvertering. (Conversion chapter 3, Watkinson) Sebastian Olsson Anders Stenberg Mattias Stridsman Antonios Vakaloudis Henrik Wrangel
Konvertering (Conversion chapter 3, Watkinson) Sebastian Olsson Anders Stenberg Mattias Stridsman Antonios Vakaloudis Henrik Wrangel Introduktion Input: videovågform med kontinuerlig tid och en kontinuerlig
Läs merSammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
Läs merTentamen i Elektronik - ETIA01
Tentamen i Elektronik - ETIA01 Institutionen för elektro- och informationsteknik LTH, Lund University 2015-10-21 8.00-13.00 Uppgifterna i tentamen ger totalt 60 poäng. Uppgifterna är inte ordnade på något
Läs merMVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Läs merÄmnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle
Institutionen för hälsovetenskap och medicin Kod: Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Datum 2013-08-19 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna
Läs merGRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
Läs merKan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
Läs merEnchipsdatorns gränssnitt mot den analoga omvärlden
Enchipsdatorns gränssnitt mot den analoga omvärlden Erik Larsson Analog/Digital (A/D) och Digital/Analog (D/A) omvandling AD omvandling DA omvandling Motivation - -.2.4.6.8 -.2.4.6.8 - -.2.4.6.8 Analog/Digital
Läs merEn generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen
Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få
Läs merBildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Läs merVäxelström i frekvensdomän [5.2]
Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer
Läs merINTRODUKTION TILL SYSTEM- OCH REGLERTEKNIK (3 sp) TIDIGARE: GRUNDKURS I REGLERING OCH INSTRUMENTERING 3072 (2sv) Hannu Toivonen
INTRODUKTION TILL SYSTEM- OCH REGLERTEKNIK 419106 (3 sp) TIDIGARE: GRUNDKURS I REGLERING OCH INSTRUMENTERING 3072 (2sv) Föreläsare 2007: Hannu Toivonen LITTERATUR KOMPENDIUM: Kompendium och övrig information
Läs merLinjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare
Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen
Läs merFöreläsning 2. Transmissionslänk. Repetition: Internetprotokollens skikt. Mål
Föreläsning Mål Behandla utbredningsmedium Förstå störningar som kan påverka signalen Förstå hur man digitaliserar information Förse exempel av digitala dataformat Förstå varför källkodning är nyttigt
Läs merA/D D/A omvandling. Lars Wallman. Lunds Universitet / LTH / Institutionen för Mätteknik och Industriell Elektroteknik
A/D D/A omvandling Lars Wallman Innehåll Repetition binära tal Operationsförstärkare Principer för A/D omvandling Parallellomvandlare (Flash) Integrerande (Integrating Dual Slope) Deltapulsmodulation (Delta
Läs merEXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG
FÖRELÄSNING EXEMPEL : ARTVARIATION Kurs- och transform-översikt. Kursintroduktion med typiska signalbehandlingsproblem och kapitelöversikt. Rep av transformer 3. Rep av aliaseffekten Givet: data med antal
Läs merKihl & Andersson: , 3.1-2, (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2
Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2 Hej Hej Vad är klockan? 14.00 Hej då New connection Connection approved Request for data Data transfer End connection
Läs merSignal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Läs merEnchipsdatorns gränssnitt mot den analoga omvärlden
Agenda Enchipsdatorns gränssnitt mot den analoga omvärlden Erik Larsson Analog/Digital (AD) omvandling Digital/Analog (DA) omvandling Sampling, upplösning och noggrannhet Laborationsuppgift.5 Motivation.5.5
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
Läs merTentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Läs merSpektralanalys - konsten att hitta frekvensinnehållet i en signal
Spektralanalys - konsten att hitta frekvensinnehållet i en signal Bengt Carlsson, Erik Gudmundson och Marcus Björk Systems and Control Dept. of Information Technology, Uppsala University 7 november 013
Läs merKapitel 3 o 4 Att skicka signaler på en länk Tillförlitlig dataöverföring. Att göra. Att sända information mellan datorer
Kapitel 3 o 4 Att skicka signaler på en länk Tillförlitlig dataöverföring Jens A Andersson (Maria Kihl) Att göra Kursombud 2 Att sända information mellan datorer 11001000101 värd värd Två datorer som skall
Läs merVäxelström i frekvensdomän [5.2]
Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer
Läs merTSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
Läs merAnaloga och Digitala Signaler. Analogt och Digitalt. Analogt. Digitalt. Analogt få komponenter låg effektförbrukning
Analoga och Digitala Signaler Analogt och Digitalt Analogt 00000000000000000000000000000000000 t Digitalt Analogt kontra Digitalt Analogt å komponenter låg eektörbrukning verkliga signaler Digitalt Hög
Läs merEtt urval D/A- och A/D-omvandlare
Ett urval D/A- och A/D-omvandlare Om man vill ansluta en mikrodator (eller annan digital krets) till sensorer och givare så är det inga problem så länge givarna själva är digitala. Strömbrytare, reläer
Läs merAnalogt och Digital. Viktor Öwall. Elektronik
Analogt och Digital Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter låg effektförbrukning
Läs merSIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1
SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk
Läs merF9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Läs merSvängningar och frekvenser
Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att
Läs merSamtidig visning av alla storheter på 3-fas elnät
Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna
Läs merElektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-
Analogt och Digital Bertil Larsson Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter
Läs merGrundläggande A/D- och D/A-omvandling. 1 Inledning. 2 Digital/analog(D/A)-omvandling
Grundläggande A/D- och D/A-omvandling. 1 Inledning Datorer nns nu i varje sammanhang. Men eftersom vår värld är analog, behöver vi något sätt att omvandla t.ex. mätvärden till digital form, för att datorn
Läs merKundts rör - ljudhastigheten i luft
Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merFöreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
Läs merTSRT62 Modellbygge & Simulering
TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1
Läs merFlerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
Läs merMätning av biopotentialer
1. Inledning Inom dagens sjukvård är tekniken en självklar och viktig faktor. De allra flesta diagnoser, analyser och behandlingar grundar sig på information från ett flertal tekniska utrustningar och
Läs merKomparatorn, AD/DA, överföringsfunktioner, bodediagram
Krets- och mätteknik, FK Komparatorn, AD/DA, överföringsfunktioner, bodediagram Johan Wernehag Institutionen för elektro- och informationsteknik Lunds universitet Översikt Komparatorn Open-collector Schmittrigger
Läs merFysiska lagret. Kanal. Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus)
Fysiska lagret Sändare Digital information Kanal Mottagare Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus) Kanalens kapacitet
Läs merTentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR 1 Bandbredd anger maximal frekvens som oscilloskopet kan visa. Signaler nära denna
Läs merAtt fånga den akustiska energin
Att fånga den akustiska energin När vi nu har en viss förståelse av vad ljud egentligen är kan vi börja sätta oss in i hur det kan fångas upp och efterhand lagras. När en ljudvåg sprider sig är det inte
Läs merFöreläsning: Digitalt Ljud. signalbehandling. Elektronik - digital signalbehandling. Signal och spektrum. PC-ljud. Ton från telefonen.
Elektronik - digital signalbehandling Föreläsning: Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2010-10-01 1 2008-10-06 Elektronik - digital
Läs merREGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
Läs merElektronik Elektronik 2019
2019 Analogt Digital Erik Lind Viktor Öwall Bertil Larsson 2019 Analogt Digital Hur kommunicerar digitala system (0101010) med analoga signaler v o t? Komplicerat! Kräver kunskap om signalbehandling, analog
Läs merPoisson Drivna Processer, Hagelbrus
Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer
Läs merKapitel 3 o 4. Tillförlitlig dataöverföring. (Maria Kihl)
Kapitel 3 o 4 Att skicka signaler på en länk Tillförlitlig dataöverföring Jens A Andersson (Maria Kihl) Att sända information mellan datorer 11001000101 värd värd Två datorer som skall kommunicera. Datorer
Läs merElektro och Informationsteknik LTH. Laboration 6 A/D- och D/A-omvandling. Elektronik för D ETIA01
Elektro och Informationsteknik LTH Laboration 6 A/D- och D/A-omvandling Elektronik för D ETIA01 Peter Hammarberg Anders J Johansson Lund April 2008 Mål Efter laborationen skall du ha studerat följande:
Läs merMätningar med avancerade metoder
Svante Granqvist 2008-11-12 13:41 Laboration i DT2420/DT242V Högtalarkonstruktion Mätningar på högtalare med avancerade metoder Med datorerna och signalprocessningens intåg har det utvecklats nya effektivare
Läs merTSTE93 Analog konstruktion
Komponentval Flera aspekter är viktiga Noggranhet TSTE9 Analog konstruktion Fysisk storlek Tillgänglighet Pris Begränsningar pga budget Föreläsning 5 Kapacitanstyper Kent Palmkvist Resistansvärden ES,
Läs merStokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Läs merFiltrering av matningsspänningar för. känsliga analoga tillämpningar
1-1 Filtrering av matningsspänningar för -5-6 -7-8 känsliga analoga tillämpningar SP Devices -9 215-2-25-1 1 4 1 5 1 6 1 7 1 8 1 Problemet Ibland behöver man en matningsspänning som har extra lite störningar
Läs merDIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran
DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):
Läs merPsykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå(loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den.
Psykoakustik Ljudtrycksnivå Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen (kvantiseringsbruset) så att det
Läs merStröm- och Effektmätning
CODEN:LUTEDX/(TEIE-7227)/1-4/(2008) Industrial Electrical Engineering and Automation Ström- och Effektmätning Johan Björnstedt Dept. of Industrial Electrical Engineering and Automation Lund University
Läs merElektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-
Analogt och Digital Viktor Öwall Bertil Larsson Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter
Läs merLab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation
TSEI67 Telekommunikation Lab 4: Digital transmission Redigerad av Niclas Wadströmer Mål Målet med laborationen är att bekanta sig med transmission av binära signaler. Det innebär att du efter laborationen
Läs merFöreläsning 1: Bild- och ljudkodning
Föreläsning 1: Bild- och ljudkodning 1. Kursöversikt 2. Introduktion till bild- och ljudkodning - syfte - historik - antal bitar per bildpunkter/sampel 3. Två principiella klasser : distorsionsfri och
Läs merPerformance QoS Köteori. Jens A Andersson (Maria Kihl)
Performance QoS Köteori Jens A Andersson (Maria Kihl) Internet Består av ett antal sammankopplade nät som utbyter data enligt egna trafikavtal. Alla delnät som utgör Internet har en gemensam nämnare: Alla
Läs merElektronik Elektronik 2017
Analogt Digital Erik Lind Viktor Öwall Bertil Larsson AD/DA Laboration flyttad 1 Februari -> 9 Februari 3 Februari -> 16 Februari 7 Februari Labförberedelser i handledningen (nästa vecka) Dugga! Analoga
Läs merDIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Läs merP(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1
Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen
Läs merTillförlitlig dataöverföring Egenskaper hos en länk Accessmetoder. Jens A Andersson
Tillförlitlig dataöverföring Egenskaper hos en länk Accessmetoder Jens A Andersson Digitalisering av ljud Omvandling av ljud till binär data sker i tre steg: 1) Sampling 2) Kvantisering 3) Kodning Detta
Läs merStokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
Läs merSignalbehandling, förstärkare och filter F9, MF1016
Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, inledning Förstärkning o Varför förstärkning. o Modell för en förstärkare. Inresistans och utresistans o Modell för operationsförstärkaren
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs mer