Signaler och system, IT3

Storlek: px
Starta visningen från sidan:

Download "Signaler och system, IT3"

Transkript

1 Signaler och system, IT3 Vad är signalbehandling? 1 Detta dokument utgör introduktionsföreläsningen för kursen Signaler och system för IT3 period 2. Kursen utvecklades år 2002 av Mathias Johansson. 1

2 Vad är signalbehandling? Verktyg för modellering, analys, manipulering av signaler 2 Modellering: För att hitta en enklare beskrivning av en signal, t ex komprimering av tal i GSM-systemet. Analys: Exempelvis Fouriertransformering av en tidsserie för att få en inblick i systemets frekvensegenskaper, prediktera framtida utvecklingen av en tidsserie, estimera en jordbävnings epicentrum, etc. Manipulering: Reducera ljudet från en fläkttrumma i en punkt genom att skicka ut ljud i motfas. 2

3 Vad är då en signal? En signal överför information från en avsändare till en mottagare Introduktionsföreläsning Målet är att informationen i signalen skall påverkas så lite som möjligt. Problem: Signalen kan påverkas av kanalen mellan avsändaren och mottagaren på ett sätt som försvårar informationsextraktionen. 3 En avsändare kan vara vad som helst, dvs en människa, maskin, ett naturfenomen, etc. Samma sak gäller för mottagaren. Målet gäller informationen, inte signalen i sig. Således kan signalen förändras och omvandlas utan att informationen går förlorad. T ex kan signalen medvetet omvandlas för att underlätta informationsöverföringen. Försök hitta ett exempel på en sådan omvandling där originalinformationen t ex utgörs av musik! Kunskap om signalens struktur (matematisk beskrivning t ex), kanalen (dvs de möjliga signalförändringarna och hur sannolika de är), och annan information om t ex möjliga meddelanden, etc., ger oss förbättrade möjligheter att extrahera informationen. Utan någon som helst kunskap om signalen blir detekteringen i princip omöjlig. 3

4 Tre huvudproblem Introduktionsföreläsning Klassificering Dela in signaler/information i olika fördefinierade klasser. Detektering Upptäcka om en signal är närvarande i en given datasekvens Estimering Bestämma en eller flera parametrar för en mottagen signal 4 Klassificering: Ex. Taligenkänning i mobiltelefoner (Matcha tal mot fördefinierade nummer) Detektering: Ex. Jodie Foster lyssnar efter utomjordingar i filmen Närkontakt Estimering: Ex. Bestämning av avståndet till en framförvarande bil 4

5 Matematisk modellering Introduktionsföreläsning Används för att kunna analysera signaler och system samt deras samverkan Ex. Nätspänning Syftet är att fånga de relevanta egenskaperna hos signalen/systemet 5 Nätspänningsmodellen tar ej hänsyn till varíationer pga belastning i nätet. 5

6 Stokastisk modellering Hur modellerar vi ett EKG? T ex anpassning av modellfunktioner + omodellerade variationer Introduktionsföreläsning Omodellerade variationer (t ex normalfördelat brus) 6 Ju mer information vi har om de omodellerade variationerna desto bättre kan vi modellera dem. Men så länge det finns ett mått av osäkerhet kvar, så måste vi använda modeller av stokastisk natur. En stokastisk modell skall modellera det vi faktiskt vet och lämna övriga möjligheter så öppna som möjligt. Ofta görs modeller i frekvensdomänen, dvs med frekvens i stället för tid som oberoende variabel. 6

7 Klassificering av signalmodeller Deterministiska Från tidigare observationer kan det framtida beteendet bestämmas exakt. Specialfall: Periodiska signalmodeller: Stokastiska Från tidigare observationer kan vi inte entydigt bestämma det framtida beteendet. 7 Grundfrekvensen för en periodisk signal(-modell) x(t) bestäms av den största perioden T0 med vilken sambandet x(t) = x(t+t0) gäller. Periodiska signaler illustreras med exempel på tavlan. 7

8 Klassificering av signalmodeller Stokastiska modeller är stationära om de stokastiska parametrarna inte förändras med tiden. En stationär modell sägs vara ergodisk om tidsmedelvärden är lika med ensemblemedelvärden. Ex. Mät bruset i en resistor vid n tidpunkter alt. mät bruset i n resistorer samtidigt 8 Obs! Alla verkliga signaler är stokastiska (dvs går inte att förutsäga med sannolikhet 1) och icke-stationära (dvs förändras med tiden). 8

9 Kontinuerliga och diskreta signaler Tidskontinuerliga signaler Amplitudkontinuerliga Amplituddiskreta Tidsdiskreta signaler Amplitudkontinuerliga Amplituddiskreta Digital = tidsdiskret och amplituddiskret 9 Bild sid 24 Svärdström illustrerar koncepten. Tidsdiskret = amplituden bestämd endast vid vissa betämda tidpunkter. De flesta signaler i naturen kan anses vara kontinuerliga. Övergång från kontinuerlig till diskret form medför kvantiseringsfel. Hur påverkas informationsinnehållet? (Svar senare i kursen) 9

10 Fundamentala signalmodeller Dirac-pulsen Enhetssteget (Heaviside-funktionen) Sinusformade signaler Exponentiellt dämpade signaler 10 Signalmodellerna presenteras på tavlan i såväl kontinuerlig som diskret tid. 10

11 Energi och effekt Ändlig energi = energisignal Introduktionsföreläsning Ändlig effekt = effektsignal (oändlig energi) Ex. Periodiska signaler är ej energisignaler 11 Energi har sort [amplitud^2 * s], eller om x(t) är ström eller spänning och R=1 Ohm [Ws]. Effekt har sort [W] om effekten utvecklas över R=1 Ohm. Begreppen illustreras på tavlan med exempel. 11

12 Signal-till-brusförhållandet Eng. Signal-to-Noise Ratio = SNR Mätning av SNR problematiskt. Hur mäta signalen utan brus? 12 Mäter man först bruset för sig och sedan summan av brus och signal fås 10log( (PS+PN)/PN ) = 10 log(ps/pn + 1) vilket ger litet fel vid höga SNR och vice versa. Exempel på SNR-krav och bandbredder för olika system (s. 52 Svärdström) ger en bild av vad olika SNR-nivåer betyder. 12

13 Sampling Diskretisering av en analog signal kallas sampling och innebär att man avläser signalens amplitud vid vissa bestämda tidpunkter. Hur påverkas informationen av att signalen samplas? Finns all information kvar efter samplingen? (svar senare i kursen) 13 När man samplar signalen kvantiserar man den oftast i amplitud såväl som tid. En berömd sats, samplingssatsen, säger att tidsdiskretisering kan genomföras under ett enkelt villkor utan att information förloras. Detta gås igenom under senare delar av kursen. Vi ska först studera hur amplituddiskretisering (kvantisering) påverar informationsinnehållet. 13

14 Kvantisering Kvantisering i amplitud innebär att man tappar noggranhet Allmänt: ju fler kvantiseringsnivåer desto bättre avbildning. Antalet kvantiseringsnivåer bestäms av antalet bitar i A/D-omvandlaren Ex. N=8 bitar motsvarar 2^8=256 nivåer. Amplituddiskretisering 14 14

15 Kvantisering och kvantiseringsbrus Tumregel (överkurs): För varje extra bit i omvandlingen förbättras förhållandet signal-till-kvantiseringsbrus med 6 db. Överslagsräkning: SNR ~ 6N db (Se beräkningar s Svärdström) 15 15

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

Ljudteknik. Digital representation. Vad är ljud?

Ljudteknik. Digital representation. Vad är ljud? Ljudteknik Digital representation Vad är ljud? 1 3 grundstenar för ljud» Alstring» Överföring» Mottagning Örat Hörseln» Lufttrycksvariationer ger mekaniska vibrationer i trumhinnan» Hörselbenet växlar

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1

AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1 AD-DA-omvandlare Mätteknik Ville Jalkanen ville.jalkanen@tfe.umu.se Inledning Analog-digital (AD)-omvandling Digital-analog (DA)-omvandling Varför AD-omvandling? analog, tidskontinuerlig signal Givare/

Läs mer

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast

Läs mer

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast

Läs mer

Kapitel 2 o 3. Att skicka signaler på en länk. (Maria Kihl)

Kapitel 2 o 3. Att skicka signaler på en länk. (Maria Kihl) Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd äd 11001000101 värd äd Tåd Två datorer som skall kllkommunicera.

Läs mer

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Att sända information mellan datorer. Information och binärdata

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Att sända information mellan datorer. Information och binärdata Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår

Läs mer

Elektronik. Dataomvandlare

Elektronik. Dataomvandlare Elektronik Dataomvandlare Johan Wernehag Institutionen för elektro- och informationsteknik Lunds universitet 2 Översikt Analoga och digitala signaler Nyquistteorem Kvantiseringsfel i analog-till-digital

Läs mer

Signaler & Signalanalys

Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla

Läs mer

Elektronik Dataomvandlare

Elektronik Dataomvandlare Elektronik Översikt Analoga och digitala signaler Dataomvandlare Pietro Andreani Institutionen för elektro- och informationsteknik Lunds universitet Nyquistteorem Kvantiseringsfel i analog-till-digital

Läs mer

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att göra Kursombud Williams bok???? Kolla schemat: Övningar flyttade Labanmälan ska funka nu 2 Att sända information

Läs mer

Elektronik Dataomvandlare

Elektronik Dataomvandlare Elektronik Översikt Analoga och digitala signaler Dataomvandlare Pietro Andreani Institutionen för elektro- och informationsteknik Lunds universitet Nyquistteorem Kvantiseringsfel i analog-till-digital

Läs mer

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden- Analogt och Digital Bertil Larsson Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter

Läs mer

Digital signalbehandling Digitalt Ljud

Digital signalbehandling Digitalt Ljud Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1

Läs mer

Digital kommunikation. Maria Kihl

Digital kommunikation. Maria Kihl Digital kommunikation Maria Kihl Läsanvisningar Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2 2 Protokoll När människor kommunicerar använder vi ett språk.

Läs mer

AD-/DA-omvandlare. Digitala signaler, Sampling och Sample-Hold

AD-/DA-omvandlare. Digitala signaler, Sampling och Sample-Hold AD-/DA-omvandlare Digitala signaler, Sampling och Sample-Hold Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt - Digitalt Analogt få komponenter

Läs mer

Frekvensplanet och Bode-diagram. Frekvensanalys

Frekvensplanet och Bode-diagram. Frekvensanalys Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,

Läs mer

Digital kommunikation. Maria Kihl

Digital kommunikation. Maria Kihl Digital kommunikation Maria Kihl Läsanvisningar Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 8.1, 8.2 Forouzan 5th: 3.1-3.4, 3.6, 4.1-4.2, 5.1, 6.1.1, 6.1.3 2 Protokoll

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner Signal- och Bildbehandling FÖRELÄSNING Inrodukion. Signaler och Sysem. Vad är en signal och e sysem? Eempel på olika signaler. Vad kan man anända signalbehandling ill? Eempel på olika illämpningar Klassificering

Läs mer

7. Sampling och rekonstruktion av signaler

7. Sampling och rekonstruktion av signaler Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid

Läs mer

Grundläggande ljud- och musikteori

Grundläggande ljud- och musikteori Grundläggande ljud- och musikteori Jan Thim Magnus Eriksson Lektionens syfte Syftet med denna lektion är är att att ge ge förståelse för för decibelbegreppet, spektrum, digitalisering och och olika olika

Läs mer

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation

Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare

Läs mer

A/D- och D/A- omvandlare

A/D- och D/A- omvandlare A/D- och D/A- omvandlare Jan Carlsson 1 Inledning Om vi tänker oss att vi skall reglera en process så ställer vi in ett börvärde, det är det värde som man vill processen skall åstadkomma. Sedan har vi

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Analys/syntes-kodning

Analys/syntes-kodning Analys/syntes-kodning Många talkodare bygger på en princip som kallas analys/syntes-kodning. Istället för att koda en vågform, som man normalt gör i generella ljudkodare och i bildkodare, så har man parametrisk

Läs mer

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.

Läs mer

Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi

Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte

Läs mer

Hemtenta 2 i Telekommunikation

Hemtenta 2 i Telekommunikation Hemtenta 2 i Telekommunikation Tentamen omfattar 4*4=16 poäng. För godkänt krävs minst 8 poäng. Individuell Inlämning senast 2005-10-07 till Jan-Åke Olofsson jan-ake.olofsson@tfe.umu.se eller Björn Ekenstam,

Läs mer

Konvertering. (Conversion chapter 3, Watkinson) Sebastian Olsson Anders Stenberg Mattias Stridsman Antonios Vakaloudis Henrik Wrangel

Konvertering. (Conversion chapter 3, Watkinson) Sebastian Olsson Anders Stenberg Mattias Stridsman Antonios Vakaloudis Henrik Wrangel Konvertering (Conversion chapter 3, Watkinson) Sebastian Olsson Anders Stenberg Mattias Stridsman Antonios Vakaloudis Henrik Wrangel Introduktion Input: videovågform med kontinuerlig tid och en kontinuerlig

Läs mer

Sammanfattning TSBB16

Sammanfattning TSBB16 Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).

Läs mer

Tentamen i Elektronik - ETIA01

Tentamen i Elektronik - ETIA01 Tentamen i Elektronik - ETIA01 Institutionen för elektro- och informationsteknik LTH, Lund University 2015-10-21 8.00-13.00 Uppgifterna i tentamen ger totalt 60 poäng. Uppgifterna är inte ordnade på något

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle

Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Institutionen för hälsovetenskap och medicin Kod: Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Datum 2013-08-19 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna

Läs mer

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.

Läs mer

Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet?

Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering

Läs mer

Enchipsdatorns gränssnitt mot den analoga omvärlden

Enchipsdatorns gränssnitt mot den analoga omvärlden Enchipsdatorns gränssnitt mot den analoga omvärlden Erik Larsson Analog/Digital (A/D) och Digital/Analog (D/A) omvandling AD omvandling DA omvandling Motivation - -.2.4.6.8 -.2.4.6.8 - -.2.4.6.8 Analog/Digital

Läs mer

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få

Läs mer

Bildbehandling i frekvensdomänen. Erik Vidholm

Bildbehandling i frekvensdomänen. Erik Vidholm Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

INTRODUKTION TILL SYSTEM- OCH REGLERTEKNIK (3 sp) TIDIGARE: GRUNDKURS I REGLERING OCH INSTRUMENTERING 3072 (2sv) Hannu Toivonen

INTRODUKTION TILL SYSTEM- OCH REGLERTEKNIK (3 sp) TIDIGARE: GRUNDKURS I REGLERING OCH INSTRUMENTERING 3072 (2sv) Hannu Toivonen INTRODUKTION TILL SYSTEM- OCH REGLERTEKNIK 419106 (3 sp) TIDIGARE: GRUNDKURS I REGLERING OCH INSTRUMENTERING 3072 (2sv) Föreläsare 2007: Hannu Toivonen LITTERATUR KOMPENDIUM: Kompendium och övrig information

Läs mer

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen

Läs mer

Föreläsning 2. Transmissionslänk. Repetition: Internetprotokollens skikt. Mål

Föreläsning 2. Transmissionslänk. Repetition: Internetprotokollens skikt. Mål Föreläsning Mål Behandla utbredningsmedium Förstå störningar som kan påverka signalen Förstå hur man digitaliserar information Förse exempel av digitala dataformat Förstå varför källkodning är nyttigt

Läs mer

A/D D/A omvandling. Lars Wallman. Lunds Universitet / LTH / Institutionen för Mätteknik och Industriell Elektroteknik

A/D D/A omvandling. Lars Wallman. Lunds Universitet / LTH / Institutionen för Mätteknik och Industriell Elektroteknik A/D D/A omvandling Lars Wallman Innehåll Repetition binära tal Operationsförstärkare Principer för A/D omvandling Parallellomvandlare (Flash) Integrerande (Integrating Dual Slope) Deltapulsmodulation (Delta

Läs mer

EXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG

EXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG FÖRELÄSNING EXEMPEL : ARTVARIATION Kurs- och transform-översikt. Kursintroduktion med typiska signalbehandlingsproblem och kapitelöversikt. Rep av transformer 3. Rep av aliaseffekten Givet: data med antal

Läs mer

Kihl & Andersson: , 3.1-2, (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2

Kihl & Andersson: , 3.1-2, (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2 Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2 Hej Hej Vad är klockan? 14.00 Hej då New connection Connection approved Request for data Data transfer End connection

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats

Läs mer

Enchipsdatorns gränssnitt mot den analoga omvärlden

Enchipsdatorns gränssnitt mot den analoga omvärlden Agenda Enchipsdatorns gränssnitt mot den analoga omvärlden Erik Larsson Analog/Digital (AD) omvandling Digital/Analog (DA) omvandling Sampling, upplösning och noggrannhet Laborationsuppgift.5 Motivation.5.5

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)

Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63) Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution

Läs mer

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt

Läs mer

Spektralanalys - konsten att hitta frekvensinnehållet i en signal

Spektralanalys - konsten att hitta frekvensinnehållet i en signal Spektralanalys - konsten att hitta frekvensinnehållet i en signal Bengt Carlsson, Erik Gudmundson och Marcus Björk Systems and Control Dept. of Information Technology, Uppsala University 7 november 013

Läs mer

Kapitel 3 o 4 Att skicka signaler på en länk Tillförlitlig dataöverföring. Att göra. Att sända information mellan datorer

Kapitel 3 o 4 Att skicka signaler på en länk Tillförlitlig dataöverföring. Att göra. Att sända information mellan datorer Kapitel 3 o 4 Att skicka signaler på en länk Tillförlitlig dataöverföring Jens A Andersson (Maria Kihl) Att göra Kursombud 2 Att sända information mellan datorer 11001000101 värd värd Två datorer som skall

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

TSBB16 Datorövning A Samplade signaler Faltning

TSBB16 Datorövning A Samplade signaler Faltning Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna

Läs mer

Analoga och Digitala Signaler. Analogt och Digitalt. Analogt. Digitalt. Analogt få komponenter låg effektförbrukning

Analoga och Digitala Signaler. Analogt och Digitalt. Analogt. Digitalt. Analogt få komponenter låg effektförbrukning Analoga och Digitala Signaler Analogt och Digitalt Analogt 00000000000000000000000000000000000 t Digitalt Analogt kontra Digitalt Analogt å komponenter låg eektörbrukning verkliga signaler Digitalt Hög

Läs mer

Ett urval D/A- och A/D-omvandlare

Ett urval D/A- och A/D-omvandlare Ett urval D/A- och A/D-omvandlare Om man vill ansluta en mikrodator (eller annan digital krets) till sensorer och givare så är det inga problem så länge givarna själva är digitala. Strömbrytare, reläer

Läs mer

Analogt och Digital. Viktor Öwall. Elektronik

Analogt och Digital. Viktor Öwall. Elektronik Analogt och Digital Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter låg effektförbrukning

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Svängningar och frekvenser

Svängningar och frekvenser Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att

Läs mer

Samtidig visning av alla storheter på 3-fas elnät

Samtidig visning av alla storheter på 3-fas elnät Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna

Läs mer

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden- Analogt och Digital Bertil Larsson Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter

Läs mer

Grundläggande A/D- och D/A-omvandling. 1 Inledning. 2 Digital/analog(D/A)-omvandling

Grundläggande A/D- och D/A-omvandling. 1 Inledning. 2 Digital/analog(D/A)-omvandling Grundläggande A/D- och D/A-omvandling. 1 Inledning Datorer nns nu i varje sammanhang. Men eftersom vår värld är analog, behöver vi något sätt att omvandla t.ex. mätvärden till digital form, för att datorn

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 13: Multipel Regression

Föreläsning 13: Multipel Regression Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på

Läs mer

TSRT62 Modellbygge & Simulering

TSRT62 Modellbygge & Simulering TSRT62 Modellbygge & Simulering Föreläsning 4 Christian Lyzell Avdelningen för Reglerteknik Institutionen för Systemteknik Linköpings Universitet C. Lyzell (LiTH) TSRT62 Modellbygge & Simulering 2013 1

Läs mer

Flerdimensionella signaler och system

Flerdimensionella signaler och system Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här

Läs mer

Mätning av biopotentialer

Mätning av biopotentialer 1. Inledning Inom dagens sjukvård är tekniken en självklar och viktig faktor. De allra flesta diagnoser, analyser och behandlingar grundar sig på information från ett flertal tekniska utrustningar och

Läs mer

Komparatorn, AD/DA, överföringsfunktioner, bodediagram

Komparatorn, AD/DA, överföringsfunktioner, bodediagram Krets- och mätteknik, FK Komparatorn, AD/DA, överföringsfunktioner, bodediagram Johan Wernehag Institutionen för elektro- och informationsteknik Lunds universitet Översikt Komparatorn Open-collector Schmittrigger

Läs mer

Fysiska lagret. Kanal. Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus)

Fysiska lagret. Kanal. Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus) Fysiska lagret Sändare Digital information Kanal Mottagare Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus) Kanalens kapacitet

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR

Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR 1 Bandbredd anger maximal frekvens som oscilloskopet kan visa. Signaler nära denna

Läs mer

Att fånga den akustiska energin

Att fånga den akustiska energin Att fånga den akustiska energin När vi nu har en viss förståelse av vad ljud egentligen är kan vi börja sätta oss in i hur det kan fångas upp och efterhand lagras. När en ljudvåg sprider sig är det inte

Läs mer

Föreläsning: Digitalt Ljud. signalbehandling. Elektronik - digital signalbehandling. Signal och spektrum. PC-ljud. Ton från telefonen.

Föreläsning: Digitalt Ljud. signalbehandling. Elektronik - digital signalbehandling. Signal och spektrum. PC-ljud. Ton från telefonen. Elektronik - digital signalbehandling Föreläsning: Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2010-10-01 1 2008-10-06 Elektronik - digital

Läs mer

REGLERTEKNIK Laboration 5

REGLERTEKNIK Laboration 5 6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,

Läs mer

Elektronik Elektronik 2019

Elektronik Elektronik 2019 2019 Analogt Digital Erik Lind Viktor Öwall Bertil Larsson 2019 Analogt Digital Hur kommunicerar digitala system (0101010) med analoga signaler v o t? Komplicerat! Kräver kunskap om signalbehandling, analog

Läs mer

Poisson Drivna Processer, Hagelbrus

Poisson Drivna Processer, Hagelbrus Kapitel 6 Poisson Drivna Processer, Hagelbrus Poissonprocessen (igen) Vi har använt Poissonprocessen en hel del som exempel. I den här föreläsningen kommer vi att titta närmare på den, och även andra processer

Läs mer

Kapitel 3 o 4. Tillförlitlig dataöverföring. (Maria Kihl)

Kapitel 3 o 4. Tillförlitlig dataöverföring. (Maria Kihl) Kapitel 3 o 4 Att skicka signaler på en länk Tillförlitlig dataöverföring Jens A Andersson (Maria Kihl) Att sända information mellan datorer 11001000101 värd värd Två datorer som skall kommunicera. Datorer

Läs mer

Elektro och Informationsteknik LTH. Laboration 6 A/D- och D/A-omvandling. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 6 A/D- och D/A-omvandling. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 6 A/D- och D/A-omvandling Elektronik för D ETIA01 Peter Hammarberg Anders J Johansson Lund April 2008 Mål Efter laborationen skall du ha studerat följande:

Läs mer

Mätningar med avancerade metoder

Mätningar med avancerade metoder Svante Granqvist 2008-11-12 13:41 Laboration i DT2420/DT242V Högtalarkonstruktion Mätningar på högtalare med avancerade metoder Med datorerna och signalprocessningens intåg har det utvecklats nya effektivare

Läs mer

TSTE93 Analog konstruktion

TSTE93 Analog konstruktion Komponentval Flera aspekter är viktiga Noggranhet TSTE9 Analog konstruktion Fysisk storlek Tillgänglighet Pris Begränsningar pga budget Föreläsning 5 Kapacitanstyper Kent Palmkvist Resistansvärden ES,

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

Filtrering av matningsspänningar för. känsliga analoga tillämpningar

Filtrering av matningsspänningar för. känsliga analoga tillämpningar 1-1 Filtrering av matningsspänningar för -5-6 -7-8 känsliga analoga tillämpningar SP Devices -9 215-2-25-1 1 4 1 5 1 6 1 7 1 8 1 Problemet Ibland behöver man en matningsspänning som har extra lite störningar

Läs mer

DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran

DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):

Läs mer

Psykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå(loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den.

Psykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå(loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den. Psykoakustik Ljudtrycksnivå Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen (kvantiseringsbruset) så att det

Läs mer

Ström- och Effektmätning

Ström- och Effektmätning CODEN:LUTEDX/(TEIE-7227)/1-4/(2008) Industrial Electrical Engineering and Automation Ström- och Effektmätning Johan Björnstedt Dept. of Industrial Electrical Engineering and Automation Lund University

Läs mer

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden- Analogt och Digital Viktor Öwall Bertil Larsson Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter

Läs mer

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation TSEI67 Telekommunikation Lab 4: Digital transmission Redigerad av Niclas Wadströmer Mål Målet med laborationen är att bekanta sig med transmission av binära signaler. Det innebär att du efter laborationen

Läs mer

Föreläsning 1: Bild- och ljudkodning

Föreläsning 1: Bild- och ljudkodning Föreläsning 1: Bild- och ljudkodning 1. Kursöversikt 2. Introduktion till bild- och ljudkodning - syfte - historik - antal bitar per bildpunkter/sampel 3. Två principiella klasser : distorsionsfri och

Läs mer

Performance QoS Köteori. Jens A Andersson (Maria Kihl)

Performance QoS Köteori. Jens A Andersson (Maria Kihl) Performance QoS Köteori Jens A Andersson (Maria Kihl) Internet Består av ett antal sammankopplade nät som utbyter data enligt egna trafikavtal. Alla delnät som utgör Internet har en gemensam nämnare: Alla

Läs mer

Elektronik Elektronik 2017

Elektronik Elektronik 2017 Analogt Digital Erik Lind Viktor Öwall Bertil Larsson AD/DA Laboration flyttad 1 Februari -> 9 Februari 3 Februari -> 16 Februari 7 Februari Labförberedelser i handledningen (nästa vecka) Dugga! Analoga

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1

P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1 Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen

Läs mer

Tillförlitlig dataöverföring Egenskaper hos en länk Accessmetoder. Jens A Andersson

Tillförlitlig dataöverföring Egenskaper hos en länk Accessmetoder. Jens A Andersson Tillförlitlig dataöverföring Egenskaper hos en länk Accessmetoder Jens A Andersson Digitalisering av ljud Omvandling av ljud till binär data sker i tre steg: 1) Sampling 2) Kvantisering 3) Kodning Detta

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

Signalbehandling, förstärkare och filter F9, MF1016

Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, inledning Förstärkning o Varför förstärkning. o Modell för en förstärkare. Inresistans och utresistans o Modell för operationsförstärkaren

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer