Bildbehandling En introduktion. Mediasignaler

Storlek: px
Starta visningen från sidan:

Download "Bildbehandling En introduktion. Mediasignaler"

Transkript

1 Bildbehandling En introdktion Mediasignaler

2 Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän

3 Vad är bildbehandling? Förbättring Image enhancement Återställning Image restoration Analys Image analysis

4 Vad är en digital bild? Ett 2-dimensionellt fält som innehåller värden

5 Pixel Innehållet i en bild 14 Mpixel = 14 miljoner pixlar 14*3 =42 miljoner värden Gråskala 8 bitar Färg 24 bitar 0=svart 255=vit 3*8 bitar 2^24 = 1678 miljoner färger

6 Färgsystem färgrymder Färgkomponenter Trefärgssystem Lminanskomponenter Gråskala Intensitetskomponenter Färg RGB HSV YCbCr

7 RGB Röd Grön Blå Motsvarar konerna i det mänskliga ögat Används i kameror tv etc. Vanligaste färgrymden 8 bitars pplösning 2 8 R * 2 8 G * 2 8 B = 2 24 = 167 millioner färger 16 bitars pplösning 2 16 R * 2 16 G * 2 16 B = 2 48 = ~ obegränsat antal färger RGB

8 CMYK Cyan Ljsblå Magenta Lila Gl Svart Används i t.ex. skrivare Varför svart? En blandning av CMY är inte riktigt svart Det mesta som skrivs t är svart Tre färger kan göra papperet vått CMYK

9 YUV YCbCr Y är lminans gråskala U och V är färginformation Y = 0.299R G B U = R G B V = 0.615R G B Y är mycket viktigare än U & V för det mänskliga ögat Det mänskliga ögat är mera känsligt för förändringar i ljsstyrka än färg Sbsampling av U & V Y Y Y Y U V Y Y Y Y Y Y Y Y U U V V Y Y Y Y U U V V 4:2:0 4:1:1 4:2:2

10 HSV HSI HSB Färgton He Mättnad Satration 0-100% Intensitet Vale 0-100%

11 Färgblandning Färger genereras genom att blanda grndfärger Röd Grön Blå - RGB Additiv färgblandning Sbtraktiv färgblandning Blandning av små tätt placerade färgelement Bildskärm TV tskrift mm

12 Photonspektrm

13 Kombinerat spektra Olika frekvensband ger helt olika bilder av samma objekt Alla frekvensband visas med synligt ljs

14 Andra typer av energier Ljd Ultraljd 1-5 MHz Medicinska bilder

15 Närhet adjacency Två pixlar räknas som grannar på olika sätt 4-adjacency 8-adjacency

16 Avstånd p har koordinaterna x y q har koordinaterna s t Avståndet mellan p och q Eklidiska avståndet det mest natrliga i R2 D e p q = [x-s 2 + y-t 2 ] ½ x D 4 avstånd D 4 p q = x-s + y-t x

17 Avstånd D 8 avstånd - "schackbrädeavstånd D 8 p q = max x-s y-t Alla D 8 -grannar x y har avstånd x Kvartersavstånd City block distance Antal hs på vägen x

18 Foriertransform Foriertransformen används för att konvertera mellan det spatiala planet och frekvensplanet Foriertransformen är oftast komplex även om originalbilden är reell. F v FReell v FImaginär v

19 Foriertransform Forier transform Reell del Magnitdmatris Bild Imaginär del Fasmatris

20 Foriertransform Foriertransformaen innehåller både positiva och negativa frekvenser Den är komplex

21 Foriertransform Komplexa tal Verklig + imaginär del Polära koordinater Magnitd / spektrm Fasvinkel / fas spektrm Effektspektrm / spektraltäthet Mått av energi j e F F Im Re 2 2 F Re Im tan 1 Im Re F P

22 Foriertransform Smalt Brett Brett Smalt

23 2-D Foriertransform 2-D Foriertransform Separabel i x- and y-riktning dx dy e y x f e dy dx e y x f e dxdy e y x f v F yv j x j x j yv j yv x j

24 2-D Diskret Foriertransform / / / / M x N y N yv M x j M x N y N yv M x j e v F y x f...n- v and M e y x f MN v F

25 2-D DFT Centrera i mitten mltiplicera bilden med -1 x+y x y f x y 1 F M / 2 v N / 2 F00 hamnar mitt i bilden =M/2+1 v=n/2+1 I MATLAB fftshift efter fft2 Medelvärde Ingen frekvens dvs. ingen ändring 1 F00 MN M 1N 1 x0 y0 f x y

26 2-D FFT Originalbild Centrerad Foriertransform Ocentrerad Foriertransform

27 2-D FFT Skalning Addition Shiftning Faltning v af y x af 1 b v a F ab by ax f v G v F y x g y x f / / 2 v F e b y a x f N bv M a j * * v G v F y x g y x f v G v F y x g y x f

28 2-D FFT Inverstransformering behöver både magnitd och fasmatris Magnitd Fasvinkel Originalbild Invers med bara magnitd Invers med bara fas

29 Filtrering Spatialdomän Filtrering av pixlar Frekvensdomän Filtrering av frekvenser Kan ha samma effekt Olik effektivitet

30 Spatial filtrering Operation på pixlar Områden av pixlar 5x5 filterkärna = 25 pixlar Linjära filter Samma effekt på hela bilden Olinjära filter Effekten beror på bilden Adaptiva filter Effekten förändras Bild Yttre förtsättningar

31 Filterkärnor Varje fält i filtret har ett värde Smman blir 1 För att inte ändra medelvärdet / / /5

32 Faltning Filterkärnan faltas med bilden Spegelvänd filtret Bilden kan även speglas Flytta filtret över alla pixlar i bilden Beräkna ett nytt värde för den mittersta pixeln

33 Faltning

34 Faltning /9=38/9=4

35 Faltning /9=51/9=567

36 Faltning /9=23/9=256 23/4=575

37 Linjära filter Lågpassfilter Medelvärdesfilter Gör bilden sddigare Minskar effekten av brs Högpassfilter Kantdetektering Framhäver brs

38 Lågpassfilter Alla pixlar i kärnan har lika stort värde Stora förändringar förminskas Små förändringar ändras inte Filterkärnans storlek bestämmer effektens storlek 3x3 5x5

39 Högpassfilter Vissa filter hittar kanter i en bara en riktning Sobel Prewitt Andra filter hittar kanter i båda riktningar Laplace

40 Sobel Prewitt Svart kant

41 Laplace

42 Öka skärpan Sharpening = =

43 Olika medelvärdesfilter Aritmetiskt medelvärdesfilter S xy representerar pixlar i en rektanglär del av bilden som har storlek mxn Geometriskt medelvärdesfilter Tenderar att förlora mindre bilddetaljer jämfört med ett aritmetiskt filter fˆ x y 1 mn s t g s t S xy fˆ x y s t S g s t xy 1 mn

44 Original Med störning Arithmetiskt medelvärdesfilter Geometriskt medelvärdesfilter

45 Olinjära filter Filter vars svar baseras på pixlarna som finns i området av filtret Medianfilter Max och min filter Mittpnktsfilter Alfa-trimmade medelvärdesfilter

46 Medianfilter Tom filterkärna Effekten beror på pixlarna i bilden

47 Medianfilter Tom filterkärna Effekten beror på pixlarna i bilden

48 Medianfilter

49 Filtrering i frekvensdomänen Dämpa vissa frekvenser Lämna andra oförändrade Mltiplicera med ett filter Elementvis mltiplikation Gv = FvHv Filtrera både reell och imaginär del Ändrar inte fasen

50 LP- och HP-filter

51 Idealt lågpassfilter Ta bort alla frekvenser högre än gränsfrekvensen D 0 D v är avståndet från origo i ett centrerat spektrm D v D if D v D if v H / 2 / N v M v D

52 Idealt lågpassfilter

53 Idealt lågpassfilter Tydliga ringningseffekter Faltningsteoremet Filtrering i frekvensdomänen motsvarar faltning med filtrets invers i spatialdomänen

54 Gassiskt LP-filter Dv=avstånd från mitten Radien σ får vara brytfrekvens D 0 Inversen är också Gassisk inga ringningseffekter / v D e H / 2 D v D e H

55 Gassiskt HP-filter Motsatsen till ett Gassiskt lågpass-filter H 1 e D Inga ringningseffekter 2 v/ 2D 2 0

56 Dämpa ett visst frekvensområde Lämna resten oförändrat W D v D W D v D W D W D v D v H Bandspärrfilter

57 Ta bort en frekvens Lätt att ta bort vissa frekvenser Exempel: Ta bort den genomsnittliga grånivån Ställ medelvärde till noll F 00 = 0 F M / 2 N / 2 om centrerat H v 0 1 if else v M / 2 N / 2 Notch-filter

58 Bandspärrfilter

59 Spatialdomän vs. frekvensdomän Faltning vs. Mltiplikation Stora filter Mltiplikation effektivare än faltning Snabbare mindre operationer mindre energiåtgång Små filter Färre antal operationer i spatialdomänen Frekvenseffekt Omöjligt att skapa i spatialdomänen

60 Bildkvalité Peak Signal-To-Noise Ratio PSNR Mått på hr lika två bilder är Objektiv Baserad på pixellikhet Mean Sqare Error MSE MSE = 1 MN M i=0 PSNR = 10 log 10 MAX 2 PSNR = 20 log 10 N j=0[or i j Rec i j ] 2 MSE MAX MSE

Bildbehandling i frekvensdomänen. Erik Vidholm

Bildbehandling i frekvensdomänen. Erik Vidholm Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras

Läs mer

Bildbehandling i spatialdomänen och frekvensdomänen

Bildbehandling i spatialdomänen och frekvensdomänen Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys

Läs mer

Spektrala Transformer för Media

Spektrala Transformer för Media Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)

Läs mer

Spektrala Transformer för Media

Spektrala Transformer för Media Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler

Läs mer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer

Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys

TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?

Läs mer

Bildbehandling, del 1

Bildbehandling, del 1 Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex

Läs mer

Flerdimensionella signaler och system

Flerdimensionella signaler och system Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här

Läs mer

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation

Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas

Läs mer

Färglära. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger.

Färglära. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger. Människans öga är känsligt för rött, grönt och blått ljus och det är kombinationer

Läs mer

TEM Projekt Transformmetoder

TEM Projekt Transformmetoder TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering

Läs mer

Bildförbättring i frekvensdomänen (kap.4)

Bildförbättring i frekvensdomänen (kap.4) Bildörbättring i rekensdomänen kap.4 Föreläsning a Mer om iltrering Jämörelse med spatialdomänen Filterdesign Lågpassilter ögpassilter omomor iltrering Korrelation OBS!!! Alla bilder rån öreläsningen är

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1

Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1 Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor

Läs mer

TSBB31 Medicinska bilder Föreläsning 3

TSBB31 Medicinska bilder Föreläsning 3 TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor

Läs mer

Signaler, information & bilder, föreläsning 14

Signaler, information & bilder, föreläsning 14 Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se

Läs mer

BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA

BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA Author: Stefan Olsson Published on IPQ website: April 10, 2015 Föreliggande uppfinning avser en metod för bildbehandling

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad

Läs mer

Signaler, information & bilder, föreläsning 13

Signaler, information & bilder, föreläsning 13 Signaler, inormation & bilder, öreläsning 3 Michael Felsberg och Maria Magnusson Computer Vision Laboratory (atorseende) epartment o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se

Läs mer

Signaler, information & bilder, föreläsning 14

Signaler, information & bilder, föreläsning 14 Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor

Läs mer

Signaler, information & bilder, föreläsning 12

Signaler, information & bilder, föreläsning 12 Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,

Läs mer

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum

Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum 1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)

Läs mer

TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1

TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1 TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,

Läs mer

Signaler, information & bilder, föreläsning 15

Signaler, information & bilder, föreläsning 15 Signaler, information & bilder, föreläsning 5 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering michael.felsberg@liu.se Översikt Histogram och tröskelsättning Histogramutjämning

Läs mer

Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering

Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande

Läs mer

Signaler, information & bilder, föreläsning 13

Signaler, information & bilder, föreläsning 13 Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,

Läs mer

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling

Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig

Läs mer

Tentamen Bildanalys (TDBC30) 5p

Tentamen Bildanalys (TDBC30) 5p Tentamen Bildanalys (TDBC30) 5p Skrivtid: 9-15 Hjälpmedel: kursboken Digital Image Processing Svara på alla frågor på nytt blad. Märk alla blad med namn och frågenummer. Disponera tiden mellan frågorna

Läs mer

Laplace, Fourier och resten varför alla dessa transformer?

Laplace, Fourier och resten varför alla dessa transformer? Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information

Läs mer

Innehåll. Innehåll. sida i

Innehåll. Innehåll. sida i 1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

7 MÖNSTERDETEKTERING

7 MÖNSTERDETEKTERING 7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden

Läs mer

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys

TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping Bildbehandling och bildanalys - Bildbehandling Kan kort sammanfattas som signalbehandling

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se

Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se Föreläsning i webbdesign Bilder och färger Rune Körnefors Medieteknik 1 2012 Rune Körnefors rune.kornefors@lnu.se Exempel: Bilder på några webbsidor 2 Bildpunkt = pixel (picture element) Bilder (bitmap

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga

Läs mer

Ansiktsigenkänning med MATLAB

Ansiktsigenkänning med MATLAB Ansiktsigenkänning med MATLAB Avancerad bildbehandling Christoffer Dahl, Johannes Dahlgren, Semone Kallin Clarke, Michaela Ulvhammar 12/2/2012 Sammanfattning Uppgiften som gavs var att skapa ett system

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1

TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1 TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor

Läs mer

Laboration 4: Digitala bilder

Laboration 4: Digitala bilder Objektorienterad programmering, Z : Digitala bilder Syfte I denna laboration skall vi återigen behandla transformering av data, denna gång avseende digitala bilder. Syftet med laborationen är att få förståelse

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Så skapas färgbilder i datorn

Så skapas färgbilder i datorn Så skapas färgbilder i datorn 31 I datorn skapas såväl text som bilder på skärmen av små fyrkantiga punkter, pixlar, som bygger upp bilden. Varje punkt har sin unika färg som erhålls genom blandning med

Läs mer

Tillämpning av komplext kommunikationssystem i MATLAB

Tillämpning av komplext kommunikationssystem i MATLAB (Eller: Vilken koppling har Henrik Larsson och Carl Bildt?) 1(5) - Joel Nilsson joelni at kth.se Martin Axelsson maxels at kth.se Sammanfattning Kommunikationssystem används för att överföra information,

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

Digital bildhantering

Digital bildhantering Digital bildhantering En analog bild blir digital när den scannas. Bilden delas upp i småbitar, fyrkanter, pixlar. En pixel = den digitala bildens minsta byggsten. Hur detaljrik bilden blir beror på upplösningen

Läs mer

Histogram över kanter i bilder

Histogram över kanter i bilder Histogram över kanter i bilder Metod Både den svartvita kanstdetekteringen och detekteringen av färgkanter följer samma metod. Först görs en sobelfiltrering i både vertikal och horisontell led. De pixlar

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

Laplace, Fourier och resten varför alla dessa transformer?

Laplace, Fourier och resten varför alla dessa transformer? Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets

Läs mer

Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström

Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Signal- och bildbehandling TSBB03 och TSEA70

Signal- och bildbehandling TSBB03 och TSEA70 Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Grafik. För enklare datorsystem

Grafik. För enklare datorsystem Grafik För enklare datorsystem Grafik förr VGA-signalen Direktdriven grafik eller bildminne Bitmap-grafik Tile/teckenbaserad grafik Spritebaserad grafik Kollisionskontroll Rörelse : Hastighet / riktning

Läs mer

Ett enkelt OCR-system

Ett enkelt OCR-system P r o j e k t i B i l d a n a l y s Ett enkelt OCR-system av Anders Fredriksson F98 Fredrik Rosqvist F98 Handledare: Magnus Oskarsson Lunds Tekniska Högskola 2001-11-29 - Sida 1 - 1.Inledning Många människor

Läs mer

Elektronik 2018 EITA35

Elektronik 2018 EITA35 Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan

Läs mer

6 2D signalbehandling. Diskret faltning.

6 2D signalbehandling. Diskret faltning. D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad

Läs mer

Grafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing

Grafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing Grafiska system Signalbehandling och aliasing Gustav Taxén gustavt@nada.kth.se Processor Minne Frame buffer 2D1640 Grafik och Interaktionsprogrammering VT 2006 Färgblandning Pigmentblandning för f att

Läs mer

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI

Läs mer

2F1120 Spektrala transformer för Media Tentamen

2F1120 Spektrala transformer för Media Tentamen F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad

Läs mer

Hambley avsnitt

Hambley avsnitt Föreläsning 0 Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Vid kommunikation används tidsharmoniska signaler. Dessa har ett visst frekvensband centrerad kring en bärfrekvens. Som exempel kan en sändare

Läs mer

Fingerprint Matching

Fingerprint Matching Fingerprint Matching Björn Gustafsson bjogu419 Linus Hilding linhi307 Joakim Lindborg joali995 Avancerad bildbehandling TNM034 Projektkurs Biometri 2006 1 Innehållsförteckning 1 Innehållsförteckning 2

Läs mer

Det finns två sätt att generera ljus på. Ge exempel på dessa och förklara vad som skiljer dem åt.

Det finns två sätt att generera ljus på. Ge exempel på dessa och förklara vad som skiljer dem åt. DEL 1 Bild Vi har alla sett en solnedgång färga himlen röd, men vad är det egentligen som händer? Förklara varför himlen är blå om dagen och går mot rött på kvällen. (Vi förutsätter att det är molnfritt)

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,

Läs mer

Projekt 3: Diskret fouriertransform

Projekt 3: Diskret fouriertransform Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

DIGITAL FÄRGRASTRERING

DIGITAL FÄRGRASTRERING DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral

Läs mer

DIGITAL FÄRGRASTRERING FÄRG. SPD Exempel. Sasan Gooran (HT 2003) En blåaktig färg

DIGITAL FÄRGRASTRERING FÄRG. SPD Exempel. Sasan Gooran (HT 2003) En blåaktig färg DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral

Läs mer

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder

Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad

Läs mer

HELA KEDJAN. Videoteknik. från kamera till bildskärm. Nils Wennerstrand P. KTH NADA Medieteknik. Gunnar Kihlander, Anders Nyberg

HELA KEDJAN. Videoteknik. från kamera till bildskärm. Nils Wennerstrand P. KTH NADA Medieteknik. Gunnar Kihlander, Anders Nyberg Videoteknik KTH NADA Medieteknik Nils Wennerstrand P Gunnar Kihlander, Anders Nyberg HELA KEDJAN från kamera till bildskärm DV JPEG MPEG VGA Insamling Bearbetning Utsändning Presentation Y/C PAL RGB Kompatibilitet

Läs mer

MR-laboration: design av pulssekvenser

MR-laboration: design av pulssekvenser MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

DIGITAL RASTRERING. Sasan Gooran. 1/8/15 Grafisk teknik 1

DIGITAL RASTRERING. Sasan Gooran. 1/8/15 Grafisk teknik 1 DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto ppi: Antalet sampel per tum Digital bild 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):

Läs mer

Flerdimensionell analys i bildbehandling

Flerdimensionell analys i bildbehandling Flerdimensionell analys i bildbehandling Erik Melin 27 november 2006 1. Förord Målet med den här lilla uppsatsen är att ge några exempel på hur idéer från kursen flerdimensionell analys kan användas i

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)

Läs mer

Grafik. För enklare datorsystem

Grafik. För enklare datorsystem Grafik För enklare datorsystem Grafik förr VGA-signalen Direktdriven grafik eller bildminne Bitmap-grafik Tile/teckenbaserad grafik Spritebaserad grafik Kollisionskontroll Rörelse : Hastighet / riktning

Läs mer

Grundläggande bildteori. EXTG01 Medicinska bildgivande system Michael Ljungberg

Grundläggande bildteori. EXTG01 Medicinska bildgivande system Michael Ljungberg Grundläggande bildteori EXTG01 Medicinska bildgivande system Michael Ljungberg Olika modaliteter inom sjukhusfysik Michael.Ljungberg@med.lu.se 2 Exempel på digitala bilder Michael.Ljungberg@med.lu.se 3

Läs mer

Tentamen i TSKS21 Signaler, information och bilder

Tentamen i TSKS21 Signaler, information och bilder 1(12) Tentamen i TSKS21 Signaler, information och bilder Provkod: TEN1 Tid: 2017-06-09 Kl: 8:00 13:00 Lokal: G36 Lärare: Mikael Olofsson, tel: 281343 Besöker salen: 9 och 11 Administratör: Institution:

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet

Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats

Läs mer

1.1 Verktygslådan översikt

1.1 Verktygslådan översikt 1.1 Verktygslådan översikt Markeringsramverktygen markerar rektanglar, ellipser samt enstaka rader eller kolumner. Flytta-verktyget flyttar markeringar, lager och stödlinjer. Lassoverktygen skapar frihandsmarkeringar,

Läs mer

DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran

DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

DIGITAL RASTRERING. Sasan Gooran (HT 2003) Grafisk teknik 1

DIGITAL RASTRERING. Sasan Gooran (HT 2003) Grafisk teknik 1 DIGITAL RASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2006-08-18 Grafisk teknik 2 ppi (pixels per inch)

Läs mer

DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran (HT 2003)

DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran (HT 2003) DIGITAL RASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2006-08-18 Grafisk teknik 2 ppi (pixels per inch)

Läs mer

TNMK054 - LJUDTEKNIK 1 FILTER OCH VCF

TNMK054 - LJUDTEKNIK 1 FILTER OCH VCF TNMK054 - LJUDTEKNIK 1 FILTER OCH VCF NÅGRA FREKVENSER Bastrumma Kropp 60-80Hz, snärt 2,5kHz Virveltrumma Kropp 240Hz, krispighet 5kHz HiHat & cymbaler Gongljud 200Hz, briljans 7,5-12kHz Hängpuka Kropp

Läs mer

Övervakningssystem. -skillnader i bilder. Uppsala Universitet Signaler och System ht Lärare: Mathias Johansson

Övervakningssystem. -skillnader i bilder. Uppsala Universitet Signaler och System ht Lärare: Mathias Johansson Uppsala Universitet Signaler och System ht 02 2002-12-07 Övervakningssystem -skillnader i bilder Lärare: Mathias Johansson Gruppen: Jakob Brundin Gustav Björcke Henrik Nilsson 1 Sammanfattning Syftet med

Läs mer

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013) Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade

Läs mer

Hambley avsnitt

Hambley avsnitt Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

DT1120 Spektrala transformer för Media Tentamen

DT1120 Spektrala transformer för Media Tentamen DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer