Bildbehandling En introduktion. Mediasignaler
|
|
- Anna Åkesson
- för 7 år sedan
- Visningar:
Transkript
1 Bildbehandling En introdktion Mediasignaler
2 Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän
3 Vad är bildbehandling? Förbättring Image enhancement Återställning Image restoration Analys Image analysis
4 Vad är en digital bild? Ett 2-dimensionellt fält som innehåller värden
5 Pixel Innehållet i en bild 14 Mpixel = 14 miljoner pixlar 14*3 =42 miljoner värden Gråskala 8 bitar Färg 24 bitar 0=svart 255=vit 3*8 bitar 2^24 = 1678 miljoner färger
6 Färgsystem färgrymder Färgkomponenter Trefärgssystem Lminanskomponenter Gråskala Intensitetskomponenter Färg RGB HSV YCbCr
7 RGB Röd Grön Blå Motsvarar konerna i det mänskliga ögat Används i kameror tv etc. Vanligaste färgrymden 8 bitars pplösning 2 8 R * 2 8 G * 2 8 B = 2 24 = 167 millioner färger 16 bitars pplösning 2 16 R * 2 16 G * 2 16 B = 2 48 = ~ obegränsat antal färger RGB
8 CMYK Cyan Ljsblå Magenta Lila Gl Svart Används i t.ex. skrivare Varför svart? En blandning av CMY är inte riktigt svart Det mesta som skrivs t är svart Tre färger kan göra papperet vått CMYK
9 YUV YCbCr Y är lminans gråskala U och V är färginformation Y = 0.299R G B U = R G B V = 0.615R G B Y är mycket viktigare än U & V för det mänskliga ögat Det mänskliga ögat är mera känsligt för förändringar i ljsstyrka än färg Sbsampling av U & V Y Y Y Y U V Y Y Y Y Y Y Y Y U U V V Y Y Y Y U U V V 4:2:0 4:1:1 4:2:2
10 HSV HSI HSB Färgton He Mättnad Satration 0-100% Intensitet Vale 0-100%
11 Färgblandning Färger genereras genom att blanda grndfärger Röd Grön Blå - RGB Additiv färgblandning Sbtraktiv färgblandning Blandning av små tätt placerade färgelement Bildskärm TV tskrift mm
12 Photonspektrm
13 Kombinerat spektra Olika frekvensband ger helt olika bilder av samma objekt Alla frekvensband visas med synligt ljs
14 Andra typer av energier Ljd Ultraljd 1-5 MHz Medicinska bilder
15 Närhet adjacency Två pixlar räknas som grannar på olika sätt 4-adjacency 8-adjacency
16 Avstånd p har koordinaterna x y q har koordinaterna s t Avståndet mellan p och q Eklidiska avståndet det mest natrliga i R2 D e p q = [x-s 2 + y-t 2 ] ½ x D 4 avstånd D 4 p q = x-s + y-t x
17 Avstånd D 8 avstånd - "schackbrädeavstånd D 8 p q = max x-s y-t Alla D 8 -grannar x y har avstånd x Kvartersavstånd City block distance Antal hs på vägen x
18 Foriertransform Foriertransformen används för att konvertera mellan det spatiala planet och frekvensplanet Foriertransformen är oftast komplex även om originalbilden är reell. F v FReell v FImaginär v
19 Foriertransform Forier transform Reell del Magnitdmatris Bild Imaginär del Fasmatris
20 Foriertransform Foriertransformaen innehåller både positiva och negativa frekvenser Den är komplex
21 Foriertransform Komplexa tal Verklig + imaginär del Polära koordinater Magnitd / spektrm Fasvinkel / fas spektrm Effektspektrm / spektraltäthet Mått av energi j e F F Im Re 2 2 F Re Im tan 1 Im Re F P
22 Foriertransform Smalt Brett Brett Smalt
23 2-D Foriertransform 2-D Foriertransform Separabel i x- and y-riktning dx dy e y x f e dy dx e y x f e dxdy e y x f v F yv j x j x j yv j yv x j
24 2-D Diskret Foriertransform / / / / M x N y N yv M x j M x N y N yv M x j e v F y x f...n- v and M e y x f MN v F
25 2-D DFT Centrera i mitten mltiplicera bilden med -1 x+y x y f x y 1 F M / 2 v N / 2 F00 hamnar mitt i bilden =M/2+1 v=n/2+1 I MATLAB fftshift efter fft2 Medelvärde Ingen frekvens dvs. ingen ändring 1 F00 MN M 1N 1 x0 y0 f x y
26 2-D FFT Originalbild Centrerad Foriertransform Ocentrerad Foriertransform
27 2-D FFT Skalning Addition Shiftning Faltning v af y x af 1 b v a F ab by ax f v G v F y x g y x f / / 2 v F e b y a x f N bv M a j * * v G v F y x g y x f v G v F y x g y x f
28 2-D FFT Inverstransformering behöver både magnitd och fasmatris Magnitd Fasvinkel Originalbild Invers med bara magnitd Invers med bara fas
29 Filtrering Spatialdomän Filtrering av pixlar Frekvensdomän Filtrering av frekvenser Kan ha samma effekt Olik effektivitet
30 Spatial filtrering Operation på pixlar Områden av pixlar 5x5 filterkärna = 25 pixlar Linjära filter Samma effekt på hela bilden Olinjära filter Effekten beror på bilden Adaptiva filter Effekten förändras Bild Yttre förtsättningar
31 Filterkärnor Varje fält i filtret har ett värde Smman blir 1 För att inte ändra medelvärdet / / /5
32 Faltning Filterkärnan faltas med bilden Spegelvänd filtret Bilden kan även speglas Flytta filtret över alla pixlar i bilden Beräkna ett nytt värde för den mittersta pixeln
33 Faltning
34 Faltning /9=38/9=4
35 Faltning /9=51/9=567
36 Faltning /9=23/9=256 23/4=575
37 Linjära filter Lågpassfilter Medelvärdesfilter Gör bilden sddigare Minskar effekten av brs Högpassfilter Kantdetektering Framhäver brs
38 Lågpassfilter Alla pixlar i kärnan har lika stort värde Stora förändringar förminskas Små förändringar ändras inte Filterkärnans storlek bestämmer effektens storlek 3x3 5x5
39 Högpassfilter Vissa filter hittar kanter i en bara en riktning Sobel Prewitt Andra filter hittar kanter i båda riktningar Laplace
40 Sobel Prewitt Svart kant
41 Laplace
42 Öka skärpan Sharpening = =
43 Olika medelvärdesfilter Aritmetiskt medelvärdesfilter S xy representerar pixlar i en rektanglär del av bilden som har storlek mxn Geometriskt medelvärdesfilter Tenderar att förlora mindre bilddetaljer jämfört med ett aritmetiskt filter fˆ x y 1 mn s t g s t S xy fˆ x y s t S g s t xy 1 mn
44 Original Med störning Arithmetiskt medelvärdesfilter Geometriskt medelvärdesfilter
45 Olinjära filter Filter vars svar baseras på pixlarna som finns i området av filtret Medianfilter Max och min filter Mittpnktsfilter Alfa-trimmade medelvärdesfilter
46 Medianfilter Tom filterkärna Effekten beror på pixlarna i bilden
47 Medianfilter Tom filterkärna Effekten beror på pixlarna i bilden
48 Medianfilter
49 Filtrering i frekvensdomänen Dämpa vissa frekvenser Lämna andra oförändrade Mltiplicera med ett filter Elementvis mltiplikation Gv = FvHv Filtrera både reell och imaginär del Ändrar inte fasen
50 LP- och HP-filter
51 Idealt lågpassfilter Ta bort alla frekvenser högre än gränsfrekvensen D 0 D v är avståndet från origo i ett centrerat spektrm D v D if D v D if v H / 2 / N v M v D
52 Idealt lågpassfilter
53 Idealt lågpassfilter Tydliga ringningseffekter Faltningsteoremet Filtrering i frekvensdomänen motsvarar faltning med filtrets invers i spatialdomänen
54 Gassiskt LP-filter Dv=avstånd från mitten Radien σ får vara brytfrekvens D 0 Inversen är också Gassisk inga ringningseffekter / v D e H / 2 D v D e H
55 Gassiskt HP-filter Motsatsen till ett Gassiskt lågpass-filter H 1 e D Inga ringningseffekter 2 v/ 2D 2 0
56 Dämpa ett visst frekvensområde Lämna resten oförändrat W D v D W D v D W D W D v D v H Bandspärrfilter
57 Ta bort en frekvens Lätt att ta bort vissa frekvenser Exempel: Ta bort den genomsnittliga grånivån Ställ medelvärde till noll F 00 = 0 F M / 2 N / 2 om centrerat H v 0 1 if else v M / 2 N / 2 Notch-filter
58 Bandspärrfilter
59 Spatialdomän vs. frekvensdomän Faltning vs. Mltiplikation Stora filter Mltiplikation effektivare än faltning Snabbare mindre operationer mindre energiåtgång Små filter Färre antal operationer i spatialdomänen Frekvenseffekt Omöjligt att skapa i spatialdomänen
60 Bildkvalité Peak Signal-To-Noise Ratio PSNR Mått på hr lika två bilder är Objektiv Baserad på pixellikhet Mean Sqare Error MSE MSE = 1 MN M i=0 PSNR = 10 log 10 MAX 2 PSNR = 20 log 10 N j=0[or i j Rec i j ] 2 MSE MAX MSE
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Läs merBildbehandling i spatialdomänen och frekvensdomänen
Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys
Läs merSpektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)
Läs merSpektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler
Läs merBildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer
Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra
Läs merBildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Läs merTNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?
Läs merBildbehandling, del 1
Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex
Läs merFlerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
Läs merProjekt 2 (P2) Problembeskrivning och uppdragsspecifikation
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas
Läs merFärglära. Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger.
Ljus är en blandning av färger som tillsammans upplevs som vitt. Färg är reflektion av ljus. I ett mörkt rum inga färger. Människans öga är känsligt för rött, grönt och blått ljus och det är kombinationer
Läs merTEM Projekt Transformmetoder
TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering
Läs merBildförbättring i frekvensdomänen (kap.4)
Bildörbättring i rekensdomänen kap.4 Föreläsning a Mer om iltrering Jämörelse med spatialdomänen Filterdesign Lågpassilter ögpassilter omomor iltrering Korrelation OBS!!! Alla bilder rån öreläsningen är
Läs merSignal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Läs merTSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Läs merSignaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Läs merBILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA
BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA Author: Stefan Olsson Published on IPQ website: April 10, 2015 Föreliggande uppfinning avser en metod för bildbehandling
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Läs merSignaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael Felsberg och Maria Magnusson Computer Vision Laboratory (atorseende) epartment o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Läs merSignaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
Läs merSignaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Läs merMedicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
Läs merTIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Läs merSignaler, information & bilder, föreläsning 15
Signaler, information & bilder, föreläsning 5 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering michael.felsberg@liu.se Översikt Histogram och tröskelsättning Histogramutjämning
Läs merLågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering
Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande
Läs merSignaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Läs merLösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
Läs merTentamen Bildanalys (TDBC30) 5p
Tentamen Bildanalys (TDBC30) 5p Skrivtid: 9-15 Hjälpmedel: kursboken Digital Image Processing Svara på alla frågor på nytt blad. Märk alla blad med namn och frågenummer. Disponera tiden mellan frågorna
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Läs merSpektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Läs merInnehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Läs mer7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
Läs merTNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping Bildbehandling och bildanalys - Bildbehandling Kan kort sammanfattas som signalbehandling
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merDIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merFöreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se
Föreläsning i webbdesign Bilder och färger Rune Körnefors Medieteknik 1 2012 Rune Körnefors rune.kornefors@lnu.se Exempel: Bilder på några webbsidor 2 Bildpunkt = pixel (picture element) Bilder (bitmap
Läs merSpektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
Läs merAnsiktsigenkänning med MATLAB
Ansiktsigenkänning med MATLAB Avancerad bildbehandling Christoffer Dahl, Johannes Dahlgren, Semone Kallin Clarke, Michaela Ulvhammar 12/2/2012 Sammanfattning Uppgiften som gavs var att skapa ett system
Läs merSpektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merTSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1
TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Läs merLaboration 4: Digitala bilder
Objektorienterad programmering, Z : Digitala bilder Syfte I denna laboration skall vi återigen behandla transformering av data, denna gång avseende digitala bilder. Syftet med laborationen är att få förståelse
Läs merLaboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Läs merSå skapas färgbilder i datorn
Så skapas färgbilder i datorn 31 I datorn skapas såväl text som bilder på skärmen av små fyrkantiga punkter, pixlar, som bygger upp bilden. Varje punkt har sin unika färg som erhålls genom blandning med
Läs merTillämpning av komplext kommunikationssystem i MATLAB
(Eller: Vilken koppling har Henrik Larsson och Carl Bildt?) 1(5) - Joel Nilsson joelni at kth.se Martin Axelsson maxels at kth.se Sammanfattning Kommunikationssystem används för att överföra information,
Läs merFÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Läs merDigital bildhantering
Digital bildhantering En analog bild blir digital när den scannas. Bilden delas upp i småbitar, fyrkanter, pixlar. En pixel = den digitala bildens minsta byggsten. Hur detaljrik bilden blir beror på upplösningen
Läs merHistogram över kanter i bilder
Histogram över kanter i bilder Metod Både den svartvita kanstdetekteringen och detekteringen av färgkanter följer samma metod. Först görs en sobelfiltrering i både vertikal och horisontell led. De pixlar
Läs merSignal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
Läs merDT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merTeori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Läs merProjekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Läs merSignal- och bildbehandling TSBB03 och TSEA70
Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Läs merGrafik. För enklare datorsystem
Grafik För enklare datorsystem Grafik förr VGA-signalen Direktdriven grafik eller bildminne Bitmap-grafik Tile/teckenbaserad grafik Spritebaserad grafik Kollisionskontroll Rörelse : Hastighet / riktning
Läs merEtt enkelt OCR-system
P r o j e k t i B i l d a n a l y s Ett enkelt OCR-system av Anders Fredriksson F98 Fredrik Rosqvist F98 Handledare: Magnus Oskarsson Lunds Tekniska Högskola 2001-11-29 - Sida 1 - 1.Inledning Många människor
Läs merElektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Läs mer6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Läs merGrafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing
Grafiska system Signalbehandling och aliasing Gustav Taxén gustavt@nada.kth.se Processor Minne Frame buffer 2D1640 Grafik och Interaktionsprogrammering VT 2006 Färgblandning Pigmentblandning för f att
Läs merKompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Läs mer2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Läs merHambley avsnitt
Föreläsning 0 Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Vid kommunikation används tidsharmoniska signaler. Dessa har ett visst frekvensband centrerad kring en bärfrekvens. Som exempel kan en sändare
Läs merFingerprint Matching
Fingerprint Matching Björn Gustafsson bjogu419 Linus Hilding linhi307 Joakim Lindborg joali995 Avancerad bildbehandling TNM034 Projektkurs Biometri 2006 1 Innehållsförteckning 1 Innehållsförteckning 2
Läs merDet finns två sätt att generera ljus på. Ge exempel på dessa och förklara vad som skiljer dem åt.
DEL 1 Bild Vi har alla sett en solnedgång färga himlen röd, men vad är det egentligen som händer? Förklara varför himlen är blå om dagen och går mot rött på kvällen. (Vi förutsätter att det är molnfritt)
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Läs merProjekt 3: Diskret fouriertransform
Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.
Läs merMedicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
Läs merUlrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merUlrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merDIGITAL FÄRGRASTRERING
DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral
Läs merDIGITAL FÄRGRASTRERING FÄRG. SPD Exempel. Sasan Gooran (HT 2003) En blåaktig färg
DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral
Läs merMedicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Läs merHELA KEDJAN. Videoteknik. från kamera till bildskärm. Nils Wennerstrand P. KTH NADA Medieteknik. Gunnar Kihlander, Anders Nyberg
Videoteknik KTH NADA Medieteknik Nils Wennerstrand P Gunnar Kihlander, Anders Nyberg HELA KEDJAN från kamera till bildskärm DV JPEG MPEG VGA Insamling Bearbetning Utsändning Presentation Y/C PAL RGB Kompatibilitet
Läs merMR-laboration: design av pulssekvenser
MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space
Läs merUppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merDIGITAL RASTRERING. Sasan Gooran. 1/8/15 Grafisk teknik 1
DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto ppi: Antalet sampel per tum Digital bild 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):
Läs merFlerdimensionell analys i bildbehandling
Flerdimensionell analys i bildbehandling Erik Melin 27 november 2006 1. Förord Målet med den här lilla uppsatsen är att ge några exempel på hur idéer från kursen flerdimensionell analys kan användas i
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Läs merGrafik. För enklare datorsystem
Grafik För enklare datorsystem Grafik förr VGA-signalen Direktdriven grafik eller bildminne Bitmap-grafik Tile/teckenbaserad grafik Spritebaserad grafik Kollisionskontroll Rörelse : Hastighet / riktning
Läs merGrundläggande bildteori. EXTG01 Medicinska bildgivande system Michael Ljungberg
Grundläggande bildteori EXTG01 Medicinska bildgivande system Michael Ljungberg Olika modaliteter inom sjukhusfysik Michael.Ljungberg@med.lu.se 2 Exempel på digitala bilder Michael.Ljungberg@med.lu.se 3
Läs merTentamen i TSKS21 Signaler, information och bilder
1(12) Tentamen i TSKS21 Signaler, information och bilder Provkod: TEN1 Tid: 2017-06-09 Kl: 8:00 13:00 Lokal: G36 Lärare: Mikael Olofsson, tel: 281343 Besöker salen: 9 och 11 Administratör: Institution:
Läs merSignal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Läs mer1.1 Verktygslådan översikt
1.1 Verktygslådan översikt Markeringsramverktygen markerar rektanglar, ellipser samt enstaka rader eller kolumner. Flytta-verktyget flyttar markeringar, lager och stödlinjer. Lassoverktygen skapar frihandsmarkeringar,
Läs merDIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran
DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Läs merDIGITAL RASTRERING. Sasan Gooran (HT 2003) Grafisk teknik 1
DIGITAL RASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2006-08-18 Grafisk teknik 2 ppi (pixels per inch)
Läs merDIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran (HT 2003)
DIGITAL RASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2006-08-18 Grafisk teknik 2 ppi (pixels per inch)
Läs merTNMK054 - LJUDTEKNIK 1 FILTER OCH VCF
TNMK054 - LJUDTEKNIK 1 FILTER OCH VCF NÅGRA FREKVENSER Bastrumma Kropp 60-80Hz, snärt 2,5kHz Virveltrumma Kropp 240Hz, krispighet 5kHz HiHat & cymbaler Gongljud 200Hz, briljans 7,5-12kHz Hängpuka Kropp
Läs merÖvervakningssystem. -skillnader i bilder. Uppsala Universitet Signaler och System ht Lärare: Mathias Johansson
Uppsala Universitet Signaler och System ht 02 2002-12-07 Övervakningssystem -skillnader i bilder Lärare: Mathias Johansson Gruppen: Jakob Brundin Gustav Björcke Henrik Nilsson 1 Sammanfattning Syftet med
Läs merGrafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)
Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade
Läs merHambley avsnitt
Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Läs merDT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs mer