Spektrala Transformer för Media
|
|
- Roland Hedlund
- för 6 år sedan
- Visningar:
Transkript
1 Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow
2 Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering) Kant-detektion Omsampling (anti-aliasing) Bildkomprimering (JPEG) mm... DT2/3 Spektrala Transformer Jonas Beskow
3 Filtrering i D Exempel Signal med högfrekvent störning Skapa ny signal genom att medelvärdesbilda över 5 punkter i taget Kallas moving-average / rullande medlevärde DT2/3 Spektrala Transformer Jonas Beskow
4 Filtrering i 2D DT2/3 Spektrala Transformer Jonas Beskow
5 Filtrering i 2D Inbild [N x M] f(x,y) Kärna [n x m] w(x,y) g( x, a = y) ( m Faltning * a b = s= at= b ) / 2, b = w( s, t) ( n Utbild [N x M] g(x,y) ) / f ( x + 2 s, y + t) DT2/3 Spektrala Transformer Jonas Beskow
6 Filtrering i 2D kärna, PSF Filtrering innebär faltning (convolution) med en kärna (kernel, mask) Kärnan är filtrets 2-dimensionella impulssvar Kallas även PSF (point spread function) dvs. hur en punkt sprids av filtret DT2/3 Spektrala Transformer Jonas Beskow
7 Filtrering i 2D: lågpass Lågpassfiltrering ger utjämning/ oskärpa (smoothing/ blur) Användning: brusreducering, nedsampling (anti-alias) mm. Motsvarar integrering 9 Exempel: moving average (7x7) Matlab: I2=conv2(I,ones(7)); DT2/3 Spektrala Transformer Jonas Beskow
8 Filtrering i 2D: högpass Högpassfiltrering förstärker kanter i bilden (edge detection) - Undertrycker jämna partier Motsvarar 2:a ordningens derivering DT2/3 Spektrala Transformer Jonas Beskow
9 Exempel: sharpening (sharpening, edge enhancement) Kombination av originalbild och högpass förstärker bildens kanter k = - + k = -k -k -k +8k -k -k -k -k -k DT2/3 Spektrala Transformer Jonas Beskow
10 Cirkulärt symmetrisk kärna En cirkulärt symmetrisk filterkärna är ofta önskvärd Modifierar bilden likformigt i alla riktningar DT2/3 Spektrala Transformer Jonas Beskow
11 Faltning i 2D - beräkningar N x M bild n x m kärna Kräver N x M x n x m multiplikationer Exempel: x bild * x kärna mult. Sökes: metod för snabbare faltning! DT2/3 Spektrala Transformer Jonas Beskow
12 Separerbar filterkärna Om filterkärnan w(x,y) = g(x)h(y) så är den separerbar i x och y. Faltningen kan då göras med N x M x (n + m) multiplikationer Gauss-funktionen är både separerbar och cirkulärt symmetrisk DT2/3 Spektrala Transformer Jonas Beskow
13 DFT i 2D 2D DFT beräknas med D FFT längs rader och kolumner (eller omvänt) D DFT D DFT D DFT D DFT D DFT D DFT D DFT D DFT D DFT D DFT D DFT D DFT 2D DFT DT2/3 Spektrala Transformer Jonas Beskow
14 2D DFT exempel 2D DFT DT2/3 Spektrala Transformer Jonas Beskow
15 Filtrering i frekvensdomänen Inbild [N x M] f(x,y) Utbild [N x M] g(x,y) F(u,v) DFT Filterfunktion H(u,v) H(u,v)F(u,v) IDFT DT2/3 Spektrala Transformer Jonas Beskow
16 Filtrering i frekvensdomänen Inbild [N x M] f(x,y) Kärna [n x m] h(x,y) Utbild [N x M] g(x,y) DFT F(u,v) DFT Filterfunktion H(u,v) H(u,v)F(u,v) IDFT DT2/3 Spektrala Transformer Jonas Beskow
17 Filtrering i frekvensdomänen Bygger på faltningsteoremet (2D-upplagan): Faltning i spatialdomänen Multiplikation i frekvensdomänen f ( x, y) h( x, y) F( u, v) H ( u, v) DT2/3 Spektrala Transformer Jonas Beskow
18 Gauss - lågpassfilter Gauss spektralt gauss spatialt Motsvarar spridningen i en lins H ( u, v) = e ( u 2 + v 2 )/ 2D Cirkulär symmetri Separerbar i x och y-led DT2/3 Spektrala Transformer Jonas Beskow
19 Discrete Cosine Transform (DCT) Nära släkting till DFT n Endast cosinus basfunktioner Helt reell Beskriver ickeperiodiska signaler bättre än DFT n Kan beräknas effektivt ur FFT n N / ) X k = x n cos " # % N n + &, + ( k. * $ 2' - n = Används ofta för data-kompression MP3 (kodar koefficientrörelser ) JPEG DT2/3 Spektrala Transformer Jonas Beskow
20 DCT basfunktioner (N=8) ) cos " # N n + &, + % ( k. * $ 2' DT2/3 Spektrala Transformer Jonas Beskow
21 DCT basfunktioner i 2D (8x8) DT2/3 Spektrala Transformer Jonas Beskow
22 Slutsatser 2D-filtrering är resurskrävande för icketriviala filterkärnor Faltningen kan snabbas upp genom att använda separerbara filterkärnor Faltningen kan göras som en multiplikation i frekvensdomänen DCT-transformen är en DFT-släkting som används för att beskriva/komprimera ickeperiodiska signaler DT2/3 Spektrala Transformer Jonas Beskow
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer
Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
Bildbehandling En introduktion. Mediasignaler
Bildbehandling En introdktion Mediasignaler Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän Vad är bildbehandling? Förbättring Image enhancement Återställning
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Bildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Bildbehandling i spatialdomänen och frekvensdomänen
Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering
Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande
Bildbehandling, del 1
Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas
Flerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping Bildbehandling och bildanalys - Bildbehandling Kan kort sammanfattas som signalbehandling
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?
7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
Innehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
Spektrala transformer Laboration: JPEG-kodning
Spektrala transformer Laboration: JPEG-kodning 1 Introduktion I denna laboration kommer du att få experimentera med transfom-baserad bildkompression enligt JPEG-metoden. Du kommer att implementera en förenklad
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Signaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
SIGNALANALYS I FREKVENSRUMMET
SIGNALANALYS I FREKVENSRUMMET Fourierserie och Fouriertransform Föreläsning 4 Mätsystem och Mätmetoder, HT-2016 Florian Schmidt Department of Applied Physics and Electronics Umeå University LECTURE OUTLINE
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Spektrala transformer Laboration: JPEG-kodning
Spektrala transformer Laboration: JPEG-kodning 1 Introduktion I denna laboration kommer du att få experimentera med transfom-baserad bildkompression enligt JPEG-metoden. Du kommer att implementera en förenklad
BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA
BILDBEHANDLINGSMETOD INNEFATTANDE BRUSREDUCERING I BILD MED LOKALT ADAPTIV FILTERKÄRNA Author: Stefan Olsson Published on IPQ website: April 10, 2015 Föreliggande uppfinning avser en metod för bildbehandling
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Elektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ Nyckelord: Sampling, kvantisering, upplösning, geometriska operationer, fotometriska operationer, målning, filtrering 'LJLWDOUHSUHVHQWDWLRQR KODJULQJDYELOGHU En
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Lab 1: Operationer på gråskalebilder
Lab 1: Operationer på gråskalebilder Maria Magnusson, 2016, 2017 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet 1 Introduktion Läs igenom häftet innan laborationen.
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
TEM Projekt Transformmetoder
TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
1) Automatisk igenkänning av siffror. Miniprojektuppgifter ppg för Signal- och Bildbehandling. av siffror. Klassificering av virusceller.
Miniprojektuppgifter ppg för Signal- och Bildbehandling TSBB14 2015 2 x 4h lab-tillfälle reserverat 3 pers/grupp bäst (2 pers/grupp okej) Redovisning med powerpoint Redovisning med 3-4 grupper åt gången
Signal- och bildbehandling TSBB03 och TSEA70
Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling
1(9) Signal- och bildbehandling Programkurs 6 hp Signal and Image Processing TSBB14 Gäller från: 2018 VT Fastställd av Programnämnden för kemi, biologi och bioteknik, KB Fastställandedatum LINKÖPINGS UNIVERSITET
DT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Yrkeshögskolan Novia Utbildningsprogrammet i elektroteknik
Grunderna i programmeringsteknik 1. Vad är Känna till nämnda programmering, begrepp. Kunna kompilera högnivå språk, och köra program i det i kompilering, kursen använda tolkning, virtuella programmeringsspråket.
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Tentamen i TSKS21 Signaler, information och bilder
1(12) Tentamen i TSKS21 Signaler, information och bilder Provkod: TEN1 Tid: 2017-06-09 Kl: 8:00 13:00 Lokal: G36 Lärare: Mikael Olofsson, tel: 281343 Besöker salen: 9 och 11 Administratör: Institution:
Grafiska system. Färgblandning. Samspel mellan ytor. Ögats. fysionomi. Ljusenergi. Signalbehandling och aliasing
Grafiska system Signalbehandling och aliasing Gustav Taxén gustavt@nada.kth.se Processor Minne Frame buffer 2D1640 Grafik och Interaktionsprogrammering VT 2006 Färgblandning Pigmentblandning för f att
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
TSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Tillämpning av komplext kommunikationssystem i MATLAB
(Eller: Vilken koppling har Henrik Larsson och Carl Bildt?) 1(5) - Joel Nilsson joelni at kth.se Martin Axelsson maxels at kth.se Sammanfattning Kommunikationssystem används för att överföra information,
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 23--8 Sal T Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Medicinska Bilder Institution ISY Antal uppgifter som
Ulrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Ulrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Frekvensplanet och Bode-diagram. Frekvensanalys
Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Föreläsning 7: Bild- och videokodning
Föreläsning 7: Bild- och videokodning Inledning - varför bildkodning - tillämpningar - grundprinciper Förlustfri kodning - Variabellängdskodning - Skurländskodning - Huffmankodning Irreversibla kodningsmetoder
Reglerteknik, TSIU61. Föreläsning 2: Laplacetransformen
Reglerteknik, TSIU61 Föreläsning 2: Laplacetransformen Reglerteknik, ISY, Linköpings Universitet Innehåll 2(13) 1. Sammanfattning av föreläsning 1 2. Hur löser man differentialekvationer på ett arbetsbesparande
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Tillämpad Fysik Och Elektronik 1
FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1
TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
DIGITALA FILTER DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1
DIGITALA FILTER TILLÄMPAD FYIK OCH ELEKTRONIK, UMEÅ UNIVERITET 1 DIGITALA FILTER Digitala filter förekommer t.ex.: I Photoshop och andra PC-programvaror som filtrerar. I apparater med signalprocessorer,
Flervariabelanalys, inriktning bildbehandling, datorövning 3
Matematiska institutionen, LTH, December 2, 2004 Flervariabelanalys, inriktning bildbehandling, datorövning 3 Matlab Gå till underkatalogen matlab (skapa den om den inte redan finns) av din rotkatalog.
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB, -- Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande D signalbehandling Uppgift (p) a) Filtret
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2017-10-19 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL 1: Grundläggande 2D signalbehandling Uppgift 1 (4p) a) f(x, y) = 30 Π(x/40, y/20)
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
Signalbehandling och aliasing. Gustav Taxén
Signalbehandling och aliasing Gustav Taxén gustavt@csc.kth.se 2D1640 Grafik och Interaktionsprogrammering VT 2007 Grafiska system Processor Minne Frame buffer Färgblandning Pigmentblandning för f att åstadkomma
i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen
Projekt 3: Diskret fouriertransform
Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 209-06-07 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Victoriahallen, Victoriahallen 2A Hjälpmedel: Viktigt:
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael Felsberg och Maria Magnusson Computer Vision Laboratory (atorseende) epartment o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att
Laboration 2: Filtreringsoperationer
Skolan för Datavetenskap och Kommunikation, KTH Danica Kragic DD2422 Bildbehandling och Datorseende gk: Laboration 2: Filtreringsoperationer Målet med denna laboration är att du skall få bekanta dig med
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
7 SIGNALER I TRE DIMENSIONER
7 SIGNALER I TRE DIMENSIONER 7.1 Tredimensionell signalbehandling Endimensionell signalteori och signalbehandling är möjlig att utvidga inte bara till tvådimensionella signaler och funktioner utan i princip
Laboration 3 Sampling, samplingsteoremet och frekvensanalys
Laboration 3 Sampling, samplingsteoremet och frekvensanalys 1 1 Introduktion Syftet med laborationen är att ge kunskaper i att tolka de effekter (speglingar, svävningar) som uppkommer vid sampling av en
Fig. Exempel på en B-mode ultraljudsbild av ett hjärta.
Ultraljudslaboration TSBB3 Medicinska Bilder Utvecklad av: Mats Andersson (fd IMT) 4 Uppdaterad av: Maria Magnusson (CVL, ISY) 6 Contents Uppgiften Läsa in RF-data En RF skannstråle och dess fouriertransform
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Signaler några grundbegrepp
Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett
Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler
Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler Anders Gustavsson 1997, Maria Magnusson 1998-2018 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet