Signaler, information & bilder, föreläsning 14
|
|
- Charlotta Engström
- för 5 år sedan
- Visningar:
Transkript
1 Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor Snonmer Lågpassiltrerade Faltningskärna Deriverande Filterkärna Högpassiltrerade Filter Omsampling Operator Kärna Introduktion D omsampling med olika interpolationsunktioner: linjär, närmsta granne, sinc, cubic Teori: Kap. 3.7, 3.8, 3.9, 3., Bgger på Maria Magnussons öreläsningar p. Vad är D ouriertransormen av /? Sätt dirac-spikar d(,)=d()d() på varje element i altningskärnan: Antag sampelavstånd D. Detta ger h, d D d d Dd / Tag D kontinuerlig Fouriertransorm H u, v e e v / cosdu / cos Du / D Hur beräknas D DFT:n av? Här är altningskärnan som [n,m]: Sätt in [n,m] i smmetriska varianten av DFT-ormeln: F j nk / N ml / M k, l n, m e e j... e.5cos N / n N / m N / k N l M j k N l M j M / k N l M e / k / N.5 cos k / N / m n...
2 Lågpassiltrerande altningskärna i -led (u-led) cos Du D här v / Fig. 3. u Lågpassiltrerande altningskärna i -led (v-led) cos Dv D här Fig. 3. v u / Lågpassiltrerande altningskärna i - och -led (u- och v-led) cos Du cos Dv D här = /6 * / / Dämpar höga rekvenser Fig. 3. Mer lågpassiltrerande altningskärna i - och -led (u- och v-led) D ucos Dv 6 cos binomialilter 66 D här (appro. Gauss-ilter) = 66 6 /56 * /6 /6 Fig. 3.
3 Lågpassiltrering Jämör med Fig. 3.3 * /56 Lågpassiltrering i Fourierdomänen Jm Fig. 3.3 Derivering kan ses som altning med en deriveringsoperator Derivering = Faltning med deriveringsoperator! Antag att ouriertransormen av Fu ju Fu ju Fu ju Fouriertransormen av en deriveringsoperator är en rät linje! är F u, dvs En altningskärna vars ouriertransorm liknar en rät linje i ourierdomänen kan användas som deriveringsoperator! Motivering i spatialdomänen att är en deriveringsoperator - /D Från gmnasiet: Faltning, g=d*: D D D g samma! D D D D 3
4 Motivering i ourierdomänen att är en deriveringsoperator - /D Sätta dirac-impulser på varje element i altningskärnan med sampelavstånd D h, d D d D d / Tag kontinuerlig Fouriertransorm H D u, v e e v / D j sindu / D ju då u Den liknar en rät linje ör låga rekvenser. Den beräknar derivatan bra ör låga rekvenser och dämpar höga rekvenser. Deriverande (och lågpassiltrerande) altningskärna i -led (u-led) j sin Du D här - /D / D, v centrala -dierenser Fig. 3.7 u Deriverande (och lågpassiltrerande) altningskärna i -led (v-led) j sin Dv D här - /D centrala -dierenser / D, v Fig. 3.7 u Deriverande altningskärna i -led (u-led) med lågpass-eekt i båda ledder Sobel- - - = - /8D - * /D /D Du cos Dv j sin D här / D, Fig. 3.7
5 -8=svart 7=vitt =svart 55=vitt Deriverande altningskärna i -led (v-led) med lågpass-eekt i båda ledder Sobel- = /8D * /D - /D Dv cos Du j sin D här / D, Fig. 3.7 Deriverande altning, gråskale - bipolär ärgtabell: ärgtabell: svart -8 blå 7 grå vit 55 vit 7 röd alta med /8D /8D,, Beloppet av gradienten tar ram kanter i bilden Inbild Beloppet av gradienten Derivering och kantdetektering Jm Fig. 3.8 :original,,,,,,, 5
6 Rotationsinvarians önskvärt: derivata-ilter-par är rotationsinvariant kantstrkan, absolutbeloppet av gradienten, inte bero av kantens rotationsläge,,, Med centrala dierenser Med Sobelparet Färgtabell: Vit = Svart = positivt värde Olika derivata-ilter - /D /8D - /D Ett ilter med centrum mellan pilarna Fig. 3.5 Linjär diskret altning då centrum är mellan pilarna - * = - /D / /D * = - /D / basilter (Haar wavelets) - /D Ett idealt Laplace-ilter beräknar :aderivatan i - och -led Laplaceoperatorn: Fouriertransorm:, u v är ett kratigt högpassilter i,, u v - och - led 6
7 Faltningskärna som approimerar det ideala Laplace-iltret,, / D e e / D cosdu / D sin Du / D - = /D - /D + - /D sin Du sin Dv D Fig multiplicerat på det approimativa Laplace-iltret ger ett högpassilter - - = - /D Spatialdomän - - /D Laplace, negativ /D Fourierdomän Fig. 3.9 E) användning av Laplace, negativ: Erhåll en bild med tdligare detaljer Introduktion: Generell omsampling Fig. 3. Sådana här distorsioner har t e Satellitbilder Vissa mikroskop Vissa röntgenbildörstärkare Vidvinkelkamerabilder Fig.. 7
8 Omsampling består av... ) Faltning med en interpolations-unktion på den samplade signalen ger en kontinuerlig signal. ) Sampling av den kontinuerliga signalen. Fig.. (Linjär) Interpolation Sätt D=. Fltta interpolationsunktionen till den intressanta positionen. Interpolationsunktioner är jämna => betrakta bara avstånd värde I verkligheten beräknas den kontinuerliga unktionen endast i den omsamplade signalens samplingspunkter. Notera att samplen viktas med - avståndet! Fig..5 p. 3 p. 3 E) Linjär interpolation E) Närmsta granne interpolation Uppsampling en aktor 3 Uppsampling en aktor 3 8
9 Fig..6 Fig..7 Uppsampling, ideal Fouriertransormen av linjära och närmsta granne interpolationsunktionerna D Dsinc Du Fouriertransormen av sinc Ger lågpassiltering D DsincDu Fouriertransormen av sinc Kan ge vikningsdistorsion eter omsampling p. 36 Interpolationsunktioner Närmsta granne interpolation Linjär interpolation Trunkerad sinc interpolation Sinc interpolation bättre snabbare Men cubic spline interpolation kan vara både snabbare och bättre än trunkerad sinc interpolation! E) Cubic spline interpolation Uppsampling en aktor 3 9
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
Lågpassfiltrering. Signal- och Bildbehandling FÖRELÄSNING 8. Lågpassfiltrering
Signal- och Bildbehandling FÖRELÄSIG 8 signalbehandling (bildbehandling) orts. Lågpassilter, orts. Snonmer Cirkulär och Faltningskärna Linjär altning, orts Filterkärna Faltningskärnor: 3 Filter eriverande
Signaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
TSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael elsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Signaler, information & bilder, föreläsning 15
Översikt Signaler, inormation & bilder, öreläsning 5 Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
TSBB31. En bild är en 2D signal. Exempel på färginnehåll i bilder p. 4. För en digital bild gäller. vitt. Fig. 1.1
TSBB3 Medicinska bilder Föreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Signaler, information & bilder, föreläsning 13
Signaler, inormation & bilder, öreläsning 3 Michael Felsberg och Maria Magnusson Computer Vision Laboratory (atorseende) epartment o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler
Signal- och bildbehandling TSBB03 och TSEA70
Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer
Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signaler, information & bilder, föreläsning 15
Signaler, information & bilder, föreläsning 5 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering michael.felsberg@liu.se Översikt Histogram och tröskelsättning Histogramutjämning
Signal- och bildbehandling
1(9) Signal- och bildbehandling Programkurs 6 hp Signal and Image Processing TSBB14 Gäller från: 2018 VT Fastställd av Programnämnden för kemi, biologi och bioteknik, KB Fastställandedatum LINKÖPINGS UNIVERSITET
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Bildbehandling, del 1
Bildbehandling, del Andreas Fhager Kapitelhänvisningar till: Image Processing, Analysis and Machine Vision, 3rd ed. by Sonka, Hlavac and Boyle Representation av en bild Så här kan vi plotta en bild tex
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal 1D: f(t) är en funktion f som beror av tiden t. För en digital bild gäller
Sinal- och Bildbehandlin ÖRELÄSNING 7 D sinalbehandlin (bildbehandlin) Den diitala bilden, ärtabeller D kontinuerli ouriertransorm och D DT D samplin D diskret altnin Låpassiltrerande D altninskärnor Teori:
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Bildförbättring i frekvensdomänen (kap.4)
Bildörbättring i rekensdomänen kap.4 Föreläsning a Mer om iltrering Jämörelse med spatialdomänen Filterdesign Lågpassilter ögpassilter omomor iltrering Korrelation OBS!!! Alla bilder rån öreläsningen är
Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska
TNM030 Tentasammanfattning (frågor) Nathalie Ek, Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping 1 I det mänskliga ögats näthinna finns två typer av ljussensorer. a) Vad kallas de två typerna?
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 207-0-9 Sal (2) Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
Bildbehandling En introduktion. Mediasignaler
Bildbehandling En introdktion Mediasignaler Innehåll Grndläggande bildbehandling Foriertransformering Filtrering Spatialdomän Frekvensdomän Vad är bildbehandling? Förbättring Image enhancement Återställning
Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler
Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Försättsblad till skriftlig tentamen vid Linköpings universitet G34
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 205-0-29 Sal () G34 Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 205-0-29 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (6p) a) 2 2 2 2 4 6 4 4 4 6 4 4 4 6 2
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
Tentamen i TSKS21 Signaler, information och bilder
1(12) Tentamen i TSKS21 Signaler, information och bilder Provkod: TEN1 Tid: 2017-06-09 Kl: 8:00 13:00 Lokal: G36 Lärare: Mikael Olofsson, tel: 281343 Besöker salen: 9 och 11 Administratör: Institution:
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ
'LJLWDODELOGHUR KGLJLWDOELOGPDQLSXOHULQJ Nyckelord: Sampling, kvantisering, upplösning, geometriska operationer, fotometriska operationer, målning, filtrering 'LJLWDOUHSUHVHQWDWLRQR KODJULQJDYELOGHU En
Flervariabelanalys, inriktning bildbehandling, datorövning 3
Matematiska institutionen, LTH, December 2, 2004 Flervariabelanalys, inriktning bildbehandling, datorövning 3 Matlab Gå till underkatalogen matlab (skapa den om den inte redan finns) av din rotkatalog.
Histogramberäkning på en liten bild
Signal- och Bildbehandling FÖRELÄSNING Histogram och tröskelsättning Binär bildbehandling Morfologiska operationer Dilation (Expansion) och Erosion () och kombinationer Avståndskartor Mäta avstånd i bilder
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 24--3 Sal (2) R4 U5 Tid 4-8 Kurskod Provkod Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB, -- Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande D signalbehandling Uppgift (p) a) Filtret
Bildbehandling i spatialdomänen och frekvensdomänen
Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
Bildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 23--8 Sal T Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Medicinska Bilder Institution ISY Antal uppgifter som
Sammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
TNM030 -Sammanfattning Nathalie Ek, 2011. Sammanfattning. TNM030 - Bildbehandling och bildanalys
Sammanfattning TNM030 - Bildbehandling och bildanalys Nathalie Ek (natek725), MT -07 2011, LIU Campus Norrköping Bildbehandling och bildanalys - Bildbehandling Kan kort sammanfattas som signalbehandling
DT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
TSBB31 Medicinska bilder Föreläsning 1
TSBB3 Medicinska bilder Föreläsnin Inormaion hp://www.cvl.isy.liu.se/educaion/underraduae/sbb3 Repeiion (och lie ny?) av D Fourierransorm Vikia sinaler (unkioner) Tolknin Teorem Eenskaper Linjär sysem
TSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2017-10-19 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL 1: Grundläggande 2D signalbehandling Uppgift 1 (4p) a) f(x, y) = 30 Π(x/40, y/20)
MASKINDIAGNOSTIK. Rullningslager = 2. Φ d α, diameter mellan rullkontaktpunkterna z st. rullkroppar. Φ D m. ω RH. Φ d α. ω I
0-09-7/HJo MASKNDAGNOSTK Rullningslager Φ d, diameter mellan rullkontaktpunkterna st. rullkroppar Använda beteckningar: Antal rullkroppar, Antal rullkroppar per radian blir Rullkropparnas kontaktvinkel,
7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
11 Dubbelintegraler: itererad integration och variabelsubstitution
Nr, april -5, Amelia ubbelintegraler: itererad integration och variabelsubstitution. Itererad integration tterligare eempel Eempel (97k) Beräkna ( ) och ( ). ( 8) dd om begränsas av, 5 3.75.5.5.5.5 3.75
Lab 1: Operationer på gråskalebilder
Lab 1: Operationer på gråskalebilder Maria Magnusson, 2016, 2017 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet 1 Introduktion Läs igenom häftet innan laborationen.
LAB 3: Operationer på gråskalebilder
LAB 3: Operationer på gråskalebilder Maria Magnusson, uppdaterad av Michael Felsberg Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Februari 2016 1 Introduktion En
Signal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 00-08-8 Lokaler: TER Ansvarig lärare: Klas Nordberg besöker lokalen kl. 5.00 och 7.00 el 8634 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 202-0-25 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
eller uttryckt med funktionerna Lektion 5, Flervariabelanalys den 26 januari 2000 t + f t = f
Lektion 5, Flervariabelanals den 26 januari 2000 12.5.2 Beäm om f,,, där gs, hs, t och kt. eller uttrckt med funktionerna f h + f dk dt. Vi ska för bena ut hur variablerna beror av varandra genom att rita
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 22--25 Sal TER2 Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Analys av funktioner och dess derivata i Matlab.
Analys av unktioner oc dess derivata i Matlab. 5B47 Envariabelanalys Ludvig Adlercreutz, ME Hans Lindgren, IT Stockolm den 7 mars 7 Kursledare: Karim Dao Inneåll Uppgit 5...3 Uppgit 6...5 Uppgit 7...7
T1-modulen Lektionerna 16-18. Radioamatörkurs OH6AG - 2011
T1-modulen Lektionerna 16-18 Radioamatörkurs - 2011 Bearbetning och översättning: Thomas Anderssén, OH6NT Original: Antti Seppänen, OH3HMI Heikki Lahtivirta, OH2LH 1 Filter Filtrens unktion i radiotekniken
EXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG
FÖRELÄSNING EXEMPEL : ARTVARIATION Kurs- och transform-översikt. Kursintroduktion med typiska signalbehandlingsproblem och kapitelöversikt. Rep av transformer 3. Rep av aliaseffekten Givet: data med antal
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Formelsamling. i kursen Medicinska Bilder, TSBB31. 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm
Formelsamling i kursen Medicinska Bilder, TSBB31 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm Maria Magnusson, maria.magnusson@liu.se 27 oktober 2016 1 1-D Tidskontinuerliga Fouriertransformer
Kursanvisningar. Lektion 1 1 Repetition av vektoranalysens grunder. Skalära fält och vektorfält. KREYSZIG 9: Kapitel Kompendiet: Kapitel 1
Kursanvisningar Teorikrav: 1. Att kunna samtliga ingående definitioner och satser, samt kunna bevisa följande satser (KREYSZIG 9): Kapitel 9.7: Sats 1 (s. 405) Kapitel 10.2: Sats 1 (s. 426) Sats 3 ( s.
Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning
Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon
Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
Teorifra gor kap
Teorira gor kap. 5. 9.3 Repetition ) Härled ormeln ör partiell integration ur nedanstående samband: d F x g x = x g x + F x g x dx ) Vilken typ av elementär unktion brukar man otast välja att derivera
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15
TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:
Innehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Mätningar med avancerade metoder
Svante Granqvist 2008-11-12 13:41 Laboration i DT2420/DT242V Högtalarkonstruktion Mätningar på högtalare med avancerade metoder Med datorerna och signalprocessningens intåg har det utvecklats nya effektivare
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2014-01-10 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL 1: Grundläggande 2D signalbehandling Uppgift
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel: