eller uttryckt med funktionerna Lektion 5, Flervariabelanalys den 26 januari 2000 t + f t = f

Storlek: px
Starta visningen från sidan:

Download "eller uttryckt med funktionerna Lektion 5, Flervariabelanalys den 26 januari 2000 t + f t = f"

Transkript

1 Lektion 5, Flervariabelanals den 26 januari Beäm om f,,, där gs, hs, t och kt. eller uttrckt med funktionerna f h + f dk dt. Vi ska för bena ut hur variablerna beror av varandra genom att rita upp variablerna i ett träd där en variabel i en högre nivå beror av de variabler som den är förbunden med i den lägre nivån. s s t t När vi ska beräkna ska vi förbinda med alla t i trädet. Varje ig från till t ger upphov till en term i uttrcket för. Varje sådan term är i sin tur en produkt av partialderivator av de variabler som ingår i igen. I detta fall finns två t:n i trädet och två igar som sammanbinder respektive t med. s s t t t s s t t t Den föra igen går via, så motsvarande term blir. Den andra igen går via och ger termen d dt. Notera att vi skriver d dt iället för. Detta brukar man göra när funktionen enda beror av en variabel. Vår sökta partialderivata är alltså + d dt, Om f,,, där g, och h, beräkna d d, och., Vi börjar med att rita upp variabelträdet. Den föra nivån är f,, och ger oss föra delen av trädet Sambandet g, ger i sin tur Notera här att och nu förekommer i två olika nivåer i trädet. Vi ska återkomma till vilka problem detta leder till. Sambandet h ger oss det slutgiltiga trädet

2 Ett uttrck för d d får vi genom att förbinda alla i trädet med. Var och en av dessa igar ger upphov till en term i uttrcket för d d. Stigen läng till väner ger termen f 1 g 1 h 1, där f 1 betder att vi partialderiverar f med avseende på den föra variabeln. Stigen nä läng till väner ger termen De två följande igarna ger termerna Alltså är f 1 g 2. f 2 h och f 3. d d f 1g 1 h 1 + f 1 g 2 + f 2 h + f 3. Det traditionella sättet att skriva denna formel är d d Notera skillnaden mellan d d d och. Med d menar vi att enbart är en funktion av, d.v.s. att vi deriverar funktionen f gh,, h,. Beteckningen betder å andra sidan att vi, i vårt fall, betraktar och som konanter och partialderiverar,, f,, med avseende på, d.v.s. f 3. Ett mer tdligt sätt att skriva detta på är,, där vi indikerar att förutom betraktar vi och som variabler som vi håller konanta under partialderiveringen. Med kan man nämligen också mena att man bara håller fi men låter h och partialderiverar, f, h, med avseende på, d.v.s. att vi beräknar. Med kedjeregeln får vi denna derivata till f 2 h + f 3 fi Ett tredje sätt att tolka är att vi håller fi men låter g, och partialderiverar, f g,,, med avseende på, m.a.o. beräknar I detta fall ger kedjeregeln att. f 1 g 2 + f 3. fi Beteckningen är alltså otdlig eftersom vi inte riktigt säkert vet vilka orheter som vi betraktar som variabler. När uttrcket dker upp i en formel, som den gjorde i, måe vi utifrån sammanhanget avgöra hur vi ska tolka fi.

3 Använd två olika metoder för att beräkna om u där e och 1 + s 2 cos t. Sammanlagt får vi e s 2 cos t s 2 e s 2 cos t s 2 cos t 2 s2 sin t s e2 s 2 sin t s 4 cos t sin t s 2 cos t 2. Variabelträdet har i detta fall utseendet Derivatan där vi har att u s t s t tolkar vi som. Med kedjeregeln får vi att s +, e s 2 cos t 2 e s e s 2 cos t s 2 cos t s 2 cos t s 2 sin t Det andra sättet är att direkt oppa in och uttrckta i s och t, i u, och derivera u s 2 cos t s 2 cos t e s 2 cos t 2s e s 2 cos t s 2 sin t 2 s e2 s 2 sin t s 4 cos t sin t s 2 cos t 2 Anm. Notera att egentligen råder inga tveksamheter om att tolka som. Andra s tolkningar såsom och är mer långsökta. Hade emellertid variabelträdet haft utseendet u t s t s t så hade det varit svårare att avgöra om, eller betdde. s

4 Beräkna f2, 3 om funktionen f, har kontinuerliga föra ordningens partialderivator Beräkna f f, t, f, t om funktionen f, har kontinuerliga föra ordningens partialderivator. Det korrekta sättet att tolka formeln i uppgifteten är att för införa namn på de två argumenten till f. Om vi döper dessa till u och v, så ska vi alltså beräkna fu, v där u 2 och v 3. Variabelträdet är därmed f Vi döper de två argumenten till det ttre f:et till u f, t, v f, t. Argumentet u kan dessutom skrivas u om vi sätter f, t. u v Ritar vi upp variabelträdet får vi f Kedjeregeln ger f fu, v v dv d f 2u, v 3 f 2 2, 3 3. Anm. Uppgifteten försöker faktiskt blanda bort korten genom att kalla funktionen för f, och på så sätt antda att möjligen skulle kunna vara en partialderivering med avseende på den föra variabeln. Hade formeln varit f 2, 3 så hade detta också varit vad som avsetts. För att öka tdligheten skulle man iället kunnat skriva [ ] f2, 3. Kedjeregeln ger att f f + f v v u v t f 1 u, v + f 2 u, v f 1, t t f 1 f, t, f, t f, t + f2 f, t, f, t f1, t.

5 Antag att f har kontinuerliga partiella derivator av alla ordningar. Om f,, där 2s + 3t och 3s 2t, beräkna a b c 2 s, 2 2 s, 2. 2 Dessa andra ordningens partialderivator kan skrivas som Vi börjar därför med att beämma s Variabelträdet blir i detta fall Kedjeregeln ger att 2 s 2 s s, 2 s s, 2 2. och. s t s t s s + s f 1, 2 + f 2, 3, + f 1, 3 + f 2, 2. a Linjariteten gör att vi kan dela upp den sökta derivatan i två termer 2 s 2 f 1, 2 + f 2, 3 s 2 s f 1, + 3 s f 2,. Båda termerna har samma variabelberoende som, så kedjeregeln ger s f 1 f 1 s + f 1 s f 11, 2 + f 12, 3 s f 2 f 2 s + f 2 s f 21, 2 + f 22, 3 Eftersom andra ordningens partialderivator är kontinuerliga är f 12 f 21 och vi får att b Vi får 2 s 2 4 f 11, + 12f 12, + 9f 12,. 2 s s f 1, 3 + f 2, 2 s f1 3 s + f 1 f2 2 s s + f 2 s 3 f 11, 2 + f 12, 3 2 f 21, 2 + f 22, 3 { f 12 f 21 } 6f11, + 5f 12, 6f 22, Som en etra kontroll kan man också räkna ut som ska vara lika med ovanående. s c Den sia derivatan får vi på motsvarande sätt 2 2 f 1, 3 + f 2, 2 f1 3 + f 1 f2 2 + f 2 3 f 11, 3 + f 12, 2 2 f 21, 3 + f 22, 2 { f 12 f 21 } 9f11, 12f 12, + 4f 22,.

6 Om f, är harmonisk, visa att även är harmonisk. Att f är harmonisk betder att Om vi sätter så ska vi alltså visa att f 2 + 2, Om vi ritar upp variabelträdet så får vi Kedjeregeln ger att f f + f v v f 1 u, v f, + f, u 2 + 2, v 2 + 2, 2 2 fu, v + fu, v u f v f 2u, v f 1 u, v f 2 u, v f 1 u, v f 2 2u, v f f + f v v f 1 u, v f 2u, v f 1 u, v f 1 u, v Ytterligare en derivering ger 2 2 f f 1 u, v f u, v f 2u, v + f 2 u, v f f u, v f f 2 2u, v f1 + f 1 v v f 1 u, v f2 + + f 2 v 2 v f 2 u, v f 11 u, v f u, v f 1 u, v f 21 u, v + f 2 u, v f 22u, v

7 f 11 u, v f 12u, v f 21 u, v f 22 u, v f 1 u, v f 2u, v f f 1 u, v f f u, v f 1u, v + f f 2u, v f1 + f 1 v 2 v f 1 u, v f2 + + f 2 v v f 2 u, v f 11 u, v f u, v f 1 u, v f 21 u, v + f 2 u, v f 11 u, v f 22u, v f 12u, v f 21 u, v f 22 u, v f 1 u, v f 2 u, v Sammanlagt har vi 2 2 fu, v fu, v f u, v + f 22 u, v vilket betder att vi visat Uttrck { f harmonisk f 11 + f 22 0 } 0, 3 f2 + 3, 2 i termer av f:s partialderivator som alla är kontinuerliga. Om vi döper f:s två argument till så har f variabelträdet Med kedjeregeln får vi f f + f v v f 1 u, v 3 + f 2 u, v u v u f v

8 2 f 2 3f 1 u, v + f 2 u, v f1 3 + f 1 v f2 + v + f 2 v v 3 f 11 u, v 3 + f 12 u, v + f 21 u, v 3 + f 22 u, v { f 12, f 21 kontinuerliga f 12 f 21 } 9f 11 u, v + 6f 12 u, v + 2 f 22 u, v 3 f 2 9f 11 u, v + 6f 12 u, v + 2 f 22 u, v f f 11 v v f12 + 6f 12 u, v f 12 v v + 2f 22 u, v + 2 f 22 + f 22 v v 9 f 111 u, v 2 + f f 12 u, v + 6 f 121 u, v 2 + f 122 u, v + 2f 22 u, v + 2 f 221 u, v 2 + f 222 u, v { f 112 f 121 ; f 122 f 221 } 18f 111 u, v f 112 u, v + 6f 12 u, v f 122 u, v + 2f 22 u, v + 2 f 222 u, v Använd en lämplig linjarisering av funktionen f, arctan för att beräkna ett approimativt värde av funktionen i punkten 3,01; 2,99. Eftersom punkten befinner sig nära 3, 3 och f och dess derivator är enkla att räkna ut i 3, 3 så väljer vi att linjarisera f i punkten 3, 3. Talors formel ger att f f 3 f, f3, 3 + 3, 3 3, 3 + R 3 2 3, 3 där Alltså är f3, 3 arctan π, f 3, /6, f /6. f, 1 4 π + 1/6 1/6 3 + R 3 2 3, π R 2 3, 3. Ett approimativt värde av f3,01; 2,99 får vi om vi bortser från retermen som förhoppningsvis är liten f3,01; 2, π 1 6 0, ,01 0, Notera att vi inte har någon skattning av retermen R 2, så vår approimation är osäker.

9 Använd en lämplig linjarisering av funktionen f, e +2 för att beräkna ett approimativt värde av funktionen i punkten 2,05; 3, Beäm Jacobimatrisen Dg1, 3, 3 till transformationen från R 3 till R 3 som ges av gr, s, t r 2 s, r 2 t, s 2 t 2 och använd resultatet för att beräkna ett approimativt värde av g0,99; 3,02; 2,97. Eftersom punkten befinner sig nära 2, 4 där f är enkel att räkna ut så väljer vi att linjarisera f i punkten 2, 4. Talors formel ger att f f 2 f, f2, 4 + 2, 4 2, 4 + R , + 4, där Alltså är f2, 4 2 e , f e , 4 f 2 e f, R , R 2 2, + 4. Ett approimativt värde av f2,05; 3,92 får vi om vi bortser från retermen som förhoppningsvis är liten f2,05; 3, , ,08 2,61. Vi måe göra samma anmärkning som efter förra uppgiften. Eftersom vi inte har någon skattning av retermen så är approimationen osäker. Jacobimatrisen till ges av formeln där I punkten r, s, t 1, 3, 3 är Alltså är g 1 r, s, t r 2 s gr, s, t g 2 r, s, t r 2 t g 3 r, s, t s 2 t 2 Dg g 1 r g 2 r g 3 r g 1 s g 2 s g 3 s g 1 g 2 g 3 g 1 r 2rs g 1 s g 1 r2 0 g 2 r 2rt g 2 s 0 g 2 r2 g 3 r 0 g 3 s 2s g 3 2t. g 1 r 1, 3, 3 6 g 1 s 1, 3, 3 1 g 1 1, 3, 3 0 g 2 r 1, 3, 3 6 g 2 s 1, 3, 3 0 g 2 1, 3, 3 1 g 3 r 1, 3, 3 0 g 3 s 1, 3, 3 6 g 3 1, 3, 3 6. Dg1, 3,

10 För att beräkna ett approimativt värde av g0,99; 3,02; 2,97 linjariserar vi g i den närbelägna punkten 1, 3, 3 och approimerar g:s värde i 0,99; 3,02; 2,97 med linjariseringens värde i samma punkt. Talors formel ger att r 1 gr, s, t g1, 3, 3 + Dg1, 3, 3 s 3 + R 2 r 1, s 3, t 3 t r 1 s 3 + R 2 r 1, s 3, t t r s t r s t 3 + R r s 3 6 t r 1 + s r 1 + t 3 + R 2 6s 3 6t 3 Linjariseringens värde får vi genom att bortse från retermen ,01 + 0,02 g0,99; 3,02; 2, ,01 + 0,03 2,96 2, ,02 6 0,03 0,30 E u 2 P Q u 1 v Q Fortsättning av datorgrafikeemplet Ofta när man ritar i rummet vill man inte bara projicera punkter på skärmen utan också riktningar. Antag att vi har en riktning v utgående från punkten Q, vilken blir motsvarande riktningen utgående från Q på skärmen. Problemet är: Givet Q, E, P och u 1, u 2 samt v. Beäm riktningen i planets koordinatsem. Avbildningen från rummet till skärmens plan ges av uttrcket F1 Q 1 EQ P E u2 F : Q F 2 Q EQ u 1 u 2 EQ P E u 1 Den transformation som avbildar riktningar från rummet till riktningar i planet ges av differentialen df. Differentialen har matrisen F1 F 2. För att beräkna matrisen behöver vi följande räkneregler 1. EQ a b a b. 2. f g f g f g g 2

11 Vi får EQ P E u2 [ EQ P E u2 ] EQ u1 u 2 EQ P E u2 [ EQ u1 u 2 ] EQ u 1 u 2 EQ u1 u 2 2 P E u 2 EQ u1 u 2 u 1 u 2 EQ P E u2 EQ u1 u 2 2 EQ P E u1 [ EQ P E u1 ] EQ u1 u 2 EQ P E u1 [ EQ u1 u 2 ] EQ u 1 u 2 EQ u1 u 2 2 P E u 1 EQ u1 u 2 + u 1 u 2 EQ P E u1 EQ u1 u 2 2 Alltså har df 2 3-matrisen [ ] 1 EQ, u1 EQ u1 u 2, u 2 P E u2 [ ] EQ, P E, u2 u1 u 2 2 [ ] EQ, u1, u 2 P E u1 + [ ], EQ, P E, u1 u1 u 2 där vi använt oss av trippelproduktbeteckningen [ a, b, c ] a b c.

En normalvektor till g:s nivåyta i punkten ( 1, 1, f(1, 1) ) är gradienten. Lektion 6, Flervariabelanalys den 27 januari z x=y=1.

En normalvektor till g:s nivåyta i punkten ( 1, 1, f(1, 1) ) är gradienten. Lektion 6, Flervariabelanalys den 27 januari z x=y=1. Lektion 6, Flervariabelanals den 27 januari 2000 1272 Givet funktionen och punkten p 1, 1, beräkna a gradienten till f i p, f, + b en ekvation för tangentplanet till f:s graf i punkten p, fp, c en ekvation

Läs mer

Lektion 3, Flervariabelanalys den 20 januari 2000

Lektion 3, Flervariabelanalys den 20 januari 2000 Lektion 3, Flervariabelanals den januari.. Bestäm definitionsmängden till funktionen..5 Bestäm definitionsmängden till funktionen f, 4 + 9 36. f, Funktionen är definierad i alla punkter där argumentet

Läs mer

En skiss av kurvan blir alltså. Lektion 1, Flervariabelanalys den 18 januari 2000

En skiss av kurvan blir alltså. Lektion 1, Flervariabelanalys den 18 januari 2000 Lektion, Flervariabelanals den 8 januari 8.. Skissera parameterkurvan En skiss av kurvan blir alltså t + t t < och visa dess riktning med en pil. Eliminera sedan parametern och härled kurvans ekvation

Läs mer

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Tangentplan Linjära approimationer TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vara en dierentierbar unktion i punkten a b Då är N a b a b en normalvektor

Läs mer

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Lektion 3 Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Innehål 1. Partiella derivator (12.3) 2. Differentierbarhet och tangentplan till

Läs mer

1 Koordinattransformationer

1 Koordinattransformationer Nr 1, 21 feb -5, Amelia 2 Obs: "m.a.p." betyder "med avseende på". 1 Koordinattransformationer 1.1 Bakgrund (inte på denna föreläsning) 1.1.1 Från R till R 2, och R till R 3 Vi har sett att en funktion

Läs mer

1. Lös ut p som funktion av de andra variablerna ur sambandet

1. Lös ut p som funktion av de andra variablerna ur sambandet Matematiska institutionen Stockholms universitet Avd matematik Eaminator: Torbjörn Tambour Tentamensskrivning i Matematik för kemister K den 0 december 2003 kl 9.00-4.00 LÖSNINGAR. Lös ut p som funktion

Läs mer

Tavelpresentation. Gustav Hallberg Jesper Strömberg Anthon Odengard Nils Tornberg Fredrik Blomgren Alexander Engblom. Januari 2018

Tavelpresentation. Gustav Hallberg Jesper Strömberg Anthon Odengard Nils Tornberg Fredrik Blomgren Alexander Engblom. Januari 2018 Tavelpresentation Gustav Hallberg Jesper Strömberg Anthon Odengard Nils Tornberg Fredrik Blomgren Alexander Engblom Januari 2018 1 Partiella derivator och deriverbarhet Differentierbarhet i en variabel

Läs mer

I punkten x = 1 fås speciellt. Taylorpolynomet blir. f(x) = f(a) + f (a)(x a) + f (a)

I punkten x = 1 fås speciellt. Taylorpolynomet blir. f(x) = f(a) + f (a)(x a) + f (a) Dag 7. Taylors formel 4.8.7 Bestäm Taylorpolynomet av grad n till kring punkten =. + Rekommenderade uppgifter 4.8. Bestäm Taylorpolynomet till cos av grad 3 kring punkten = π/4. Taylors formel säger att

Läs mer

Lektion 6, Envariabelanalys den 14 oktober Låt oss krympa f:s definitionsmängd till en liten omgivning av x = x 2.

Lektion 6, Envariabelanalys den 14 oktober Låt oss krympa f:s definitionsmängd till en liten omgivning av x = x 2. Lektion 6, Envariabelanals den 4 oktober 999 Låt f vara en kontinuerligt deriverbar funktion vars graf är återgiven i figuren till höger. Besvara följande frågor. Låt oss krmpa f:s definitionsmängd till

Läs mer

Lösningsskisser för TATA

Lösningsskisser för TATA Lösningsskisser för TATA4 7-3-7. Funktionen f() 5 arctan + 4 arctan(/), med den föreskrivna definitionsmängden D f { R : > }, ar derivatan f () 5 + () + 4 ( / ) + (/) + 4 4 + + (4 + 6 ) ( + )( + 4 ) Detta

Läs mer

= 0 vara en given ekvation där F ( x,

= 0 vara en given ekvation där F ( x, DERIVERING AV IMPLICIT GIVNA FUNKTIONER Eempel. Vi betraktar som en funktion av och,,), given på implicit form genom + + 6 0. Bestäm partiella derivator och i punkten P,, ) a) med hjälp av implicit derivering

Läs mer

STABILITET FÖR ICKE-LINJÄRA SYSTEM

STABILITET FÖR ICKE-LINJÄRA SYSTEM Armin Halilovic: ETRA ÖVNINGAR SF1676 Stabilitet för icke linära sstem Sida 1 av 8 STABILITET FÖR ICE-LINJÄRA SYSTEM Linarisering och lokal stabilitet Låt d d ss 1 vara ett autonomt icke-linärt sstem där

Läs mer

3.1 Derivator och deriveringsregler

3.1 Derivator och deriveringsregler 3. Derivator och deriveringsregler Kort om derivator Eempel derivatans definition deriveringsregler numerisk derivering andraderivatan På höjden km kan lufttrcket mbar beskrivas med funktionen = 03 e 0,

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

18 Kurvintegraler Greens formel och potential

18 Kurvintegraler Greens formel och potential Nr 8, 6 april -5, Amelia 8 Kurvintegraler Greens formel och potential 8. Greens formel Vi studerar i detta avsnitt kurvor i planet, i R. En kurvintegral är som vi sett en integral på en kurva i planet.

Läs mer

R AKNE OVNING VECKA 2 David Heintz, 13 november 2002

R AKNE OVNING VECKA 2 David Heintz, 13 november 2002 RÄKNEÖVNING VECKA 2 David Heintz, 3 november 22 Innehåll Uppgift 29.4 2 Uppgift 29. 3 3 Uppgift 29.2 5 4 Uppgift 3. 7 5 Uppgift 3. 9 6 Uppgift 3.2 Uppgift 29.4 Prove that ln( + x) x for x >, and that ln(

Läs mer

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area?

3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area? Dagens 30 aug: a, 2, 3, 5, 6.. Låt Q vara antalet producerade enheter. Bestäm a. Marginalvinsten för vinstfunktionen π(q) = 3Q + Q + 2. Marginalintäkten för intäktsfunktionen R(Q) = ( + 2Q) 3/2. c. Marginalkostnaden

Läs mer

11 Dubbelintegraler: itererad integration och variabelsubstitution

11 Dubbelintegraler: itererad integration och variabelsubstitution Nr, april -5, Amelia ubbelintegraler: itererad integration och variabelsubstitution. Itererad integration tterligare eempel Eempel (97k) Beräkna ( ) och ( ). ( 8) dd om begränsas av, 5 3.75.5.5.5.5 3.75

Läs mer

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r.

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r. Lektion 4, Envariabelanals den 30 september 1999 där 0 < ξ 0 är högerledet alltid större än 2.6.2 Åskådliggör medelvärdessatsen genom att finna en punkt i det öppna intervallet (1, 2) där

Läs mer

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log.

Integration m.a.p. t av båda led ger. Lektion 13, Flervariabelanalys den 15 februari x(t) x(0) = log y(t) log y(0) = log. Lektion 13, Flervariabelanals den 15 februari 2 15.1.2 Skissera vektorfältet och bestäm dess fältlinjer. F, = e + e I varje punkt, har vektorfältet en vektor med komponenter,, d.v.s. vektorn utgående från

Läs mer

DERIVATA. = lim. x n 2 h h n. 2

DERIVATA. = lim. x n 2 h h n. 2 DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt

Läs mer

M0038M Differentialkalkyl, Lekt 17, H15

M0038M Differentialkalkyl, Lekt 17, H15 M0038M Differentialkalkyl, Lekt 17, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 38 Repetition Lekt 16 Uppskatta (8.2) 1/3 genom att använda differentialer. Svara på bråkform.

Läs mer

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag

SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och

Läs mer

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian. MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera

Läs mer

Datorövning 2 med Maple

Datorövning 2 med Maple Datorövning 2 med Maple Flerdimensionell analys, ht 2008, Lp1 15 september 2008 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator,

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkl ÖVN Lösningsförslag 0.04.0 4.0 6.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Tavelpresentation - Flervariabelanalys. 1E January 2017

Tavelpresentation - Flervariabelanalys. 1E January 2017 Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................

Läs mer

Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket.

Modul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket. Institutionen för Matematik SF625 Envariabelanalys Läsåret 27-28 Lars Filipsson Modul 5: Integraler Denna modul handlar om integraler. Det slås fast i en precis definition vad som menas med att en funktion

Läs mer

= 0 genom att införa de nya

= 0 genom att införa de nya UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.

Läs mer

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och

Läs mer

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22)

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22) Krzysztof Marciniak, ITN Linköings universitet tfn 0-36 33 0 krzma@itn.liu.se Lösningar till tentamen TEN i Envariabelanalys I (TNIU ) för BI 0--4 kl. 08.00 3.00. Enligt den geometriska betydelsen av derivatan

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer). Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p)

1. (a) Beräkna gränsvärdet (2p) e x + ln(1 x) 1 lim. (b) Beräkna integralen. 4 4 x 2 dx. x 3 (x 1) 2. f(x) = 3. Lös begynnelsevärdesproblemet (5p) Högskolan i Halmstad Tentamensskrivning ITE/MPE-lab MA2 Envariabelanalys 6 hp Mikael Hindgren Fredagen den 3 januari 27 35-6722 Skrivtid: 5.-2. Inga hjälpmedel. Fyll i omslaget fullständigt och skriv namn

Läs mer

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen: Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

Lektion 1. Kurvor i planet och i rummet

Lektion 1. Kurvor i planet och i rummet Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.

Läs mer

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation. SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:

Läs mer

6.2 Implicit derivering

6.2 Implicit derivering 6. Implicit derivering 6 ANALYS 6. Implicit derivering Gränsvärden, som vi just tittat på, är ju en fundamental del av begreppet derivata, och i mattekurserna i gymnasiet har vi roat oss med att hitta

Läs mer

Flervariabelanalys E2, Vecka 3 Ht08

Flervariabelanalys E2, Vecka 3 Ht08 Flervariabelanalys E2, Vecka 3 Ht8 Omfattning och innehåll 2.7 Gradienter och riktningsderivator. 2.8 Implicita funktioner 2.9 Taylorserier och approximationer 3. Extremvärden 3.2 Extremvärden under bivillkor

Läs mer

6. Samband mellan derivata och monotonitet

6. Samband mellan derivata och monotonitet 34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.

b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt. Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

Extra datorövning med Maple, vt2 2014

Extra datorövning med Maple, vt2 2014 Extra datorövning med Maple, vt2 2014 FMA430 Flerdimensionell analys Denna datorövning är avsett för självstudie där vi skall lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella

Läs mer

Endast kommenterade svar!!! OBS: Inte alla delsteg är redovisade!

Endast kommenterade svar!!! OBS: Inte alla delsteg är redovisade! MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Annemarie Luger Lösningsförslag Anals, problemlösning, 7.5 hp Matematik I den 5 februari 4 Endast kommenterade svar!!! OBS: Inte

Läs mer

SF1626 Flervariabelanalys Tentamen 14 mars 2011,

SF1626 Flervariabelanalys Tentamen 14 mars 2011, SF1626 Flervariabelanalys Tentamen 14 mars 2011, 08.00-13.00 Skrivtid: 5 timmar Inga tillåtna hjälpmedel Eaminator: Hans Thunberg Tentamen består av nio uppgifter som vardera ger maimalt fyra poäng. På

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod

Läs mer

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1

9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner Nr, feb -5, Amelia Funktioner från R n till R m, linjära, inversa och implicita funktioner.1 Funktioner från R n till R m Vi har i tidigare föreläsningar sett olika tolkningar av funktioner från R n till

Läs mer

För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999

För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999 Lektion 4, Envariabelanalys den november 999 6.. Beräkna d 4. Det första vi observerar i integralen är uttrycket i nämnaren, 4. När ett uttryck av den här typen förekommer i en rationell integrand kan

Läs mer

Flervariabelanalys E2, Vecka 2 Ht08

Flervariabelanalys E2, Vecka 2 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 2 Ht08 12.2 Gränsvärden och kontinuitet. 12.3 Partiella derivator, tangentplan och normaler till funktionsytor. 12.4 Högre ordningens derivator. 12.5

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

ENDIMENSIONELL ANALYS DELKURS A3/B kl HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS A/B 5 6 5 kl 8 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.. a) Bestäm Maclaurinpolynomet

Läs mer

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018 Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler

Institutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,

Läs mer

DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN SUBSTITUTIONER I DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Innehåll: I) Allmänt om substitutioner i förstaordningens DE II) Ekvationer av tpen ( ) F( ) ------------------------------------------------------------------------------------

Läs mer

MA2001 Envariabelanalys

MA2001 Envariabelanalys MA2001 Envariabelanalys Något om derivator del 1 Mikael Hindgren 11 november 2018 Derivatans definition Exempel 1 s-t-graf för ett föremål i rörelse. s(0) = 0. s s = v t Hastigeten konstant: Rät linje

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Lösningsförslag TATM

Lösningsförslag TATM Lösningsförslag TATM79 08-0-04 a Binomialsatsen medför att b Eftersom 5 = 3 + 4i 3 i 5 5 k 5 k k = 3 5 80 4 + 80 3 40 + 0 4i 3 = 3 + 4i3 + i 0 gäller att realdelen blir 9 4 + 3 = + i3 5 = 9 + i3, c Summan

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag.8. 8.. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna tentamen

Läs mer

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

e = (e 1, e 2, e 3 ), kan en godtycklig linjär

e = (e 1, e 2, e 3 ), kan en godtycklig linjär Linjära avbildningar II Förra gången visade vi att givet en bas i rummet, e = (e 1, e 2, e 3 ), kan en godtycklig linjär avbildning F : R 3 R 3 representeras av en matris: Om vi betecknar en vektor u:s

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF626 Flervariabelanals Bedömningskriterier till tentamen Onsdagen den 5 mars 207 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad

Läs mer

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2

Vi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2 Lektion 6, Flervariabelanals den februari 6.. Beräkna div F och rot F av F e + e. Divergensen och rotationen ges av div F F,,,, + + + +, rot F F,,,, e e e z, +,,,. rot F F,, e e e z z, z, z z z, + z, z

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2 SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19 LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Anals B för KB/TB (TATA9/TEN1 214-3-21 kl 14 19 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betgsgränser:

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004.

Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004. Institutionen för matematik. KTH Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 24. 1. Gausselimination ger: 2 3 5 2 1 5 6 b 1 2 3 3 1 2 3 1 1 1 1 3 b/3 1 8 1

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

15 Multipelintegraler, sfäriska koordinater, volymberäkningar

15 Multipelintegraler, sfäriska koordinater, volymberäkningar Nr 5, 9 april -5, Amelia 5 Multipelintegraler, sfäriska koordinater, volmberäkningar 5. Multipelintegraler et finns många tillämpningar där fler än tre variabler är aktuella. I statistik kan vi vilja undersöka

Läs mer

3 Parameterframställningar

3 Parameterframställningar 3 arameterframställningar Från och med nästa kapitel kommer mcket av vårt fokus ligga på olika integraluttrck med vektorvärda funktioner. Vi kommer eempelvis studera integreringen av vektorfält både längs

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU23

Studietips info r kommande tentamen TEN1 inom kursen TNIU23 Studietips info r kommande tentamen TEN inom kursen TNIU3 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer