Försättsblad till skriftlig tentamen vid Linköpings Universitet
|
|
- Jan-Erik Lundqvist
- för 6 år sedan
- Visningar:
Transkript
1 Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen Sal (2) R4 U5 Tid 4-8 Kurskod Provkod Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår i tentamen Jour/Kursansvarig Ange vem som besöker salen Telefon under skrivtiden TSBB3 TEN Medicinska bilder Skriftlig tentamen ISY 2 Maria Magnusson, Maria.Magnusson@liu.se 77786, Besöker salen ca klockan 5. och 6.5 Kursadministratör/kontaktperson (namn + tfnr + mailaddress) Tillåtna hjälpmedel Övrigt Antal exemplar i påsen 7 Carina Lindström, Carina.E.Lindstrom@liu.se Miniräknare Blank OH-film Medskickad formelsamling Physics Handbook Endast markeringar (under- och överstrykningar) är tillåtna Även små sidflikar (med något enstaka tecken på) är tillåtna. Transformteori sammanfattning formler & lexikon (blå färg) Lexikon, engelskt-svenskt Observera den medskickade formelsamlingen!
2 Anvisningar Tentamen består av 6 delar om totalt 5p: Del : Grundläggande 2D signalbehandling (3p) Del 2: Röntgen och CT (p) Del 3: Gamma-kamera, SPECT och PET (p) Del 4: Viktiga mätvärden och dess beräkning (4p) Del 5: Ultraljud (6p) Del 6: MRI (6p) Notera att del -6 har mycket gemensamt. Ibland kan en fråga passa in på era ställen. Tentamen innehåller frågor av olika typ: - Kortare frågor som innebär att kunna beskriva begrepp, fenomen. Svaren skrivs direkt under frågan i tentamen. - Längre fråga som innebär att kunna visa lite djupare förståelse, t ex redogörelser och räkneuppgifter. Svaren behöver ofta ges på lösa blad som bifogas tentamen. Betygsgränser: 3:a 2-3p 4:a 3-4p 3:a 4-5p
3 DEL : Grundläggande 2D signalbehandling Uppgift (2p) En reell signal f(x, y) har en hermitisk fouriertransform F (u, v). a) Vilket samband gäller då mellan F (u, v) och F ( u, v)? b) Vad gäller för Re[F (u, v)] och Im[F (u, v)] i termer om jämn och udda? Uppgift 2 (4p) Funktionen har en 2D fouriertransform f(x, y) = 2 sin (2π x) 2 sin (2π y), F (u, v) = Aδ(u + C, v + C) + Aδ(u C, v C) + Bδ(u + C, v C) + Bδ(u C, v + C), som visas som 4 små svarta punkter i guren nedan till vänster. (Tänk att punkterna är dirac-pulser som pekar upp från eller ner i pappret. F(u,v) v G(u,v) v C C u C C u Funktionen f(x, y) samplas med ett 2D impuls-tåg till g(x, y) = f(x, y) δ(x n/(3c)) δ(y m/(3c)), dvs samplingsavståndet är = /(3C) i båda riktningarna. a) Skissa G(u, v) i (u, v)-planet ovan till höger! (p) n b) Bestäm en regel för uttryckt som en funktion av C om vi vill undvika vikningdistorsion. (p) c) Bestäm F (u, v), dvs värdena på A, B och C. (2p) m LÖS UPPGIFTEN PÅ SEPARAT BLAD TSBB3 2 TEN, 24--3
4 Uppgift 3 (4p) Se nedanstående faltningskärnor, sobel x och sobel y, där nollan med fet stil () noterar kärnans centrum. sobel x = / 8, sobel y = / 8, Bilden f(x, y) nedan består av en liten kvadrat med 8:or. De tomma rutorna har värde. Värden utanför bilden har också värde f(x,y) gx(x,y) gy(x,y) f2(x,y) Falta bilden f(x, y) dels med sobel x och dels sobel y till g x (x, y) och g y (x, y). Beräkna också f 2 (x, y) = gx(x, 2 y) + gy(x, 2 y). Bilderna g x (x, y), g y (x, y), f 2 (x, y) visar 3 olika matematiska operationer utförda på bilden f(x, y). Vilka? Uppgift 4 (3p) På lab 2 hade vi en bild med texten The MATH WORKS Inc. som vi kallade im. Denna roterade vi π/5 till rotim. Denna tillbakaroterade vi π/5 till backrotim. Vi testade olika interpolationslter, närmsta granne, bilinjär interpolation och bicubisk interpolation. TSBB3 3 TEN, 24--3
5 För att kontrollera bildkvaliteten beräknade vi: SpatError = sum(sum((backrotim-im).*(backrotim-im))) Vi beräknade även fouriertransformerna av bilderna och kallade dessa IM och BACKROTIM. Vi beräknade även ett felmått i fourierdomänen: N = size(im) FouError=sum(sum((BACKROTIM-IM).*conj(BACKROTIM-IM)))/(N()*N(2)) a) Vilket samband gäller mellan SpatError och FouError och vad heter teoremet som vi behöver stödja oss på? b) Vilka spatiella frekvenser får lägst fel - de höga eller de låga? Motivera ditt svar! c) Vilken interpolationsmetod ger lägst fel - närmsta granne, bilinjär interpolation eller bicubisk interpolation? DEL 2: Röntgen och CT Uppgift 5 (2p) Figur A) visar ett objekt med 3 punkter, B) visar dess parallella projektioner, C) visar ramp-ltrerade projektioner, och D) visar den rekonstruerade bilden efter ltrerad återprojektion. a) Kalla punkterna P, P2, P3 där P är den översta, P2 mittemellan och P3 underst i bildens origo. Vad korresponderar dessa tre punkter mot i projektionsbilderna B) och C)? b) Anta att vi tar bort ramp-ltret. Vad kommer då att hända med rekonstruktionsresultatet i D)? r.5.5 A) objekt C) Rampfiltrerade projektioner θ r.5.5 B) Projektioner θ.5 D) Rekonstruerad bild TSBB3 4 TEN, 24--3
6 Uppgift 6 (2p) Figuren visar geometrin för fanbeam-projektioner. Vid rekonstruktion sker viktning, rampltrering, samt återprojektion. Indikera i guren hur denna återprojektion sker. X ray source γ β detector Uppgift 7 (2p) Figuren visar ett fanbeam-sinogram f(γ, β) som kan rebinnas till ett parallell-sinogram p(ρ, θ). De ekvationer som beskriver sambandet mellan dessa är θ = β + γ, ρ = D sin γ, där avståndet röntgenkälla-objektcentrum är D = 6mm. Fanbeam-sinogrammet är samplat med sampelavstånden γ =.2rad och β =.rad. Antag att f(.67,.6) = 2, f(.67 + γ,.6) = 3, f(.67,.6 + β ) = 4, f(.67 + γ,.6 + β ) = 5. Vilket värde erhåller p(ρ, θ) = p(, π/4) vid rebinningen? Använd närmsta granne interpolation! β inverse mapping γ fanbeam sinogram θ sinogram ρ LÖS UPPGIFTEN PÅ SEPARAT BLAD TSBB3 5 TEN, 24--3
7 Uppgift 8 (2p) På en datortomograf kan man välja bland många olika kernels, med olika MTF-funktioner. Figuren visar 4 olika kurvor A, B, C, D, som skulle kunna visa sådana MTF:er. A B C D u [frekvens] a) Antag att vi vill studera na detaljer i en ryggkota. Antag också att bilden inte blir speciellt brusig med någon av kurvorna. Vilken MTF-kurva väljer du? Motivera ditt svar! b) Antag att vi vill studera levern och annan mjukvävnad, Bilden blir ganska brusig för era av kurvorna (eftersom dosen var låg). Vilken MTF-kurva väljer du? Motivera ditt svar! Uppgift 9 (3p) Betrakta funktionen f(x, y) = e π((3x)2 +(3y) 2). Det gäller att projektionerna p(r, θ) är lika för alla vinklar θ, dvs p(r, θ) = 3 e π(3r)2. a) Bestäm 2D fouriertransformen F (u, v) av f(x, y). b) Bestäm D fouriertransformerna P (R, ) och P (R, π/4) för p(r, ) och p(r, π/4). (De är lika.) c) Visa att projektionsteoremet gäller för både θ = och θ = π/4. P (R, θ) = F (R cos θ, R sin θ) = F (u, v) LÖS UPPGIFTEN PÅ SEPARAT BLAD TSBB3 6 TEN, 24--3
8 DEL 3: Gamma-kamera, SPECT och PET Uppgift (2p) Vad är det för skillnad/likhet mellan en gamma-kamera och en SPECT-kamera? Svara kort - ta bara upp det absolut väsentligaste! Uppgift (2p) På SPECT-laborationen krympte vi bort ett voxel-lager på lungorna för att undvika kanteekter. Ni ska nu krympa bort ett pixellager på bilden a(x, y), se nedan till vänster. De tomma rutorna har värde. Värden utanför bilden har också värde. Använd struktur-elementet (ltret), s(x, y) =, där ettan med fet stil () noterar kärnans centrum. Utför faltning b(x, y) = a(x, y) s(x, y); Utför tröskelsättning med Matlab-kommandot c = b==9; och visa resultatet i guren markerad med c(x, y). a(x,y) b(x,y) c(x,y) Uppgift 2 (2p) På SPECT-laboration använde vi bilder från en CT-SPECT. Utgående från SPECT-bilderna kunde man se stor skillnad på funktionen hos lungor från friska och patienter med sjukdomen KOL, medan CT-bilderna gav information om patientens anatomi. Men CT-data är även användbart vid skapandet av SPECTbilder. På vilket sätt? TSBB3 7 TEN, 24--3
9 Uppgift 3 (2p) Varför måste man använda kollimatorer/blysepta i SPECT? Och varför kan man avsevärt reducera kollimatorer/blysepta i PET jämfört med SPECT? Uppgift 4 (2p) Iterativ rekonstruktion av SPECT-bilder görs ofta med OS-EM som är en variant av ML-EM. Vad är orsaken till att man hellre använder OS-EM än ML-EM? Förklara huvudtanken med Ordered Subsets (OS). DEL 4: Viktiga mätvärden och dess beräkning Uppgift 5 (4p) Tänk dig en -bild med en 5 5-kvadrat med värden 49. Kvadraten är omgiven av nollor. Bilden kan skapas med nedanstående Matlab-kod: im = zeros(,); im(25:74,25:74) = 49; Vi kan skapa approximativt Poisson-brus på bilden med koden: pnoiseim = im + sqrt(im).*randn(,); pnoiseim = mypoissonfix(pnoiseim); där funktionen randn är ett matlabkommando som ger normalfördelat brus med medelvärde och standardavvikelse. Däremot måste man skriva koden i funktionen MyPoissonFix själv. a) Vad görs i funktionen MyPoissonFix? b) Antag att du vill lägga på gaussiskt brus med medelvärde och standardavvikelse på bilden im istället för poisson-bruset. Ge matlab-kommando för detta ( rad). c) Ge ett exempel på där poissonbrus förekommer i verkligheten. d) Ge ett exempel på där gaussiskt brus förekommer i verkligheten. LÖS UPPGIFTEN PÅ SEPARAT BLAD TSBB3 8 TEN, 24--3
10 DEL 5: Ultraljud Uppgift 6 (2p) Förklara kortfattat hur Time Gain Compensation(TGC) fungerar. Vad skulle bli eekten om vi inte använde TGC? Uppgift 7 (2p) En skannstråle s(t) från en RF-signal samplas i 3 punkter med en samplingsfrekvens f s = 24MHz. Spektrum för skannstrålen beräknas på samma sätt som i labben. Uppskatta RF-pulsens frekvens, f, samt ange en lämplig centerfrekvens, u, för ett kvadraturlter som ska användas för envelopp-detektion. Kvadraturltret är av samma typ som vi använde på labben. Figur: Skannstråle s(t) och motsvarande spektrum för en ultraljudssignal. TSBB3 9 TEN, 24--3
11 Uppgift 8 (2p) Ljudhastigheten i fett är något lägre än för annan mjuk vävnad. Detta innebär att vi kan få en förskjutning i ultraljuds bilden för de områden som skuggas av fettrik vävnad. I bilden ser vi att ett exempel på detta där en fettansamling med tjockleken D i levern ger upphov till en förskjutning med avståndet d i den underliggande gränsytan. Beräkna hur stor d blir om vi vet att tjockleken på fettansamlingen är D = 5mm. Räkna med att ljudhastigheten i fett är v f = 45 m/s. I övrig mjuk vävnad är ljudhastighetern v = 5 m/s. Fett-artefakt pga ljudhastigheten är något lägre i fettvävnad. LÖS UPPGIFTEN PÅ SEPARAT BLAD DEL 6: MRI Uppgift 9 (2p) Avgör om följande påståenden är sanna eller falska. ger p, alla rätt ger 2p. Tre rätt a) Om vi ökar eld of view (FOV) behöver inte antalet sampel i k-space ökas om vi accepterar en sämre detaljåtergivning i den nya bilden. b) Nyquistfrekvensen är lika med 2 x den högsta Larmorfrekvensen. c) Storleken på gradienten i z-led (Gz) och RF-signalens bandbredd bestämmer hur tunn xy-slice vi kan exitera. d) Spatiell vikning uppkommer om man samplar för långt ut i k-space. TSBB3 TEN, 24--3
12 Uppgift 2 (2p) Inom MR anger T2 en egenskap hos hos olika vävnader. a) Vilken enhet har T2 och inom vilket intervall brukar T2 ligga för mänsklig vävnad vid B=.5 Tesla? (p) b) Vilken egenskap hos spinnen i en voxel är den fysikaliska orsaken till den eekt som T2 mäter? (p) Uppgift 2 (2p) Vad menas med anisotrop diusion? TSBB3 TEN, 24--3
Försättsblad till skriftlig tentamen vid Linköpings universitet G35(18) TER4(12)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 218-1-24 Sal (2) G35(18) TER4(12) Tid 8-12 Kurskod TSBB31 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Medicinska
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1(17) TERE(1)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 207-0-9 Sal (2) Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
Försättsblad till skriftlig tentamen vid Linköpings universitet R36 R37
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen -- Sal () R R Tid - Kurskod TSBB Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som ingår
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 203--0 Sal TER4 Tid 8-2 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 08-0-4 Maria Magnusson (maria.magnusson@liu.se) DEL : Grundläggande D signalbehandling Uppgift (6p) a och E: E LP-filtrerar mycket och ger en mycket suddig
Försättsblad till skriftlig tentamen vid Linköpings universitet G34
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 205-0-29 Sal () G34 Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2014-01-10 Sal TER2 Tid 14-18 Kurskod TSBB31 Provkod TEN1 Kursnamn/ Medicinska Bilder Benämning Institution ISY Antal
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2014-01-10 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL 1: Grundläggande 2D signalbehandling Uppgift
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 22--25 Sal TER2 Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Institution Antal uppgifter som ingår i tentamen
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 26--28 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (3p) Translationsteoremet säger att absolutvärdet
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB31, 2017-10-19 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL 1: Grundläggande 2D signalbehandling Uppgift 1 (4p) a) f(x, y) = 30 Π(x/40, y/20)
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 23--8 Sal T Tid 4-8 Kurskod TSBB3 Provkod TEN Kursnamn/ Benämning Medicinska Bilder Institution ISY Antal uppgifter som
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 203-0-08 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 205-0-29 Maria Magnusson (maria.magnusson@liu.se), Anders Eklund DEL : Grundläggande 2D signalbehandling Uppgift (6p) a) 2 2 2 2 4 6 4 4 4 6 4 4 4 6 2
Medicinska bilder. Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT. Fastställd av. Fastställandedatum
1(6) Medicinska bilder Programkurs 6 hp Medical Images TSBB31 Gäller från: 2018 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6)
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB, -- Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande D signalbehandling Uppgift (p) a) Filtret
Lösning till tentamen i Medicinska Bilder, TSBB31, DEL 1: Grundläggande 2D signalbehandling
Lösning till tentamen i Medicinska Bilder, TSBB3, 202-0-25 Maria Magnusson (maria.magnusson@liu.se), Hans Knutsson, Mats Andersson, Gustaf Johansson DEL : Grundläggande 2D signalbehandling Uppgift (2p)
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Försättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-03-16 Sal (2) T2 U1 Tid 14-18 Kurskod TSFS04 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Institution Antal
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab3: Mätvärden på Medicinska Bilder Maria Magnusson, Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet Introduktion I denna laboration ska vi göra
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
MR-laboration: design av pulssekvenser
MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
6 2D signalbehandling. Diskret faltning.
D signalbehandling. Diskret faltning. Aktella ekationer: Se formelsamlingen... D Diskret faltning. Beräkna g(x = (h f(x = λ= f(x = - - 0 - - och h(x = -. h(x λf(λ, där Centrm (positionen för x = 0 är markerad
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Facit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 01-08- Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som avses
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-6-7 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
Försättsblad till skriftlig tentamen vid Linköpings universitet TER1
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-12-09 Sal (1) TER1 Tid 14-18 Kurskod 729G06 Provkod TEN1 Kursnamn/benämning Provnamn/benämning Institution Antal
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 5--6 Sal () TER E, TER, TER (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 08-03-3 Sal (5) Tid 8- Kurskod TSEA Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-08-19 Sal KÅRA Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal uppgifter
Signal- och Bildbehandling FÖRELÄSNING 7. En bild är en 2D signal. För en digital bild gäller. Fig. 2.1
Signal- och Bildbehandling FÖRELÄSNING 7 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DFT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-12-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
Signal- och bildbehandling TSBB03 och TSEA70
Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
BMLV A, Fysiologisk undersökningsmetodik inom neuro och rörelse
BMLV A, Fysiologisk undersökningsmetodik inom neuro och rörelse Kurskod: BL1014 Kursansvarig: Maria Fernström Datum: 2014 12 05 Skrivtid: 3 timmar Totalpoäng: 51p CT och ultraljud 15p Teknik 16p Nuklearmedicin
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 214-1-24 Sal (1) TER1,TER2,TERE (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-10-23 Sal (1) TER1 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 014-06-11 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
TSBB31 Medicinska bilder Föreläsning 3
TSBB3 Medicinska bilder öreläsning 3 D signalbehandling (bildbehandling) Den digitala bilden, ärgtabeller D kontinuerlig ouriertransorm och D DT D sampling D diskret altning Lågpassiltrerande D altningskärnor
Tentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Formelsamling. i kursen Medicinska Bilder, TSBB31. 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm
Formelsamling i kursen Medicinska Bilder, TSBB31 1D och 2D Fouriertransformer, samt några formler för CT, SPECT, mm Maria Magnusson, maria.magnusson@liu.se 27 oktober 2016 1 1-D Tidskontinuerliga Fouriertransformer
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg och Maria Magnusson Computer Vision Laborator (Datorseende) Department o Electrical Engineering (ISY) michael.elsberg@liu.se, maria.magnusson@liu.se
Lösningar till utvalda uppgifter i kapitel 1
Lösningar till utvalda uppgifter i kapitel. Vi utnyttjar definitionen av skalärprodukt som ger att u v u v, där α är (minsta) vinkeln mellan u v. I vårt fall så får vi 7 =. Alltså är den sökta vinkeln
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 25-6-5 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Tentamen i TATA43 Flervariabelanalys
Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2012-12-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-03-17 Sal (1) Egypten, Asgård, Olympen (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal
x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
Grundläggande bildteori. EXTG01 Medicinska bildgivande system Michael Ljungberg
Grundläggande bildteori EXTG01 Medicinska bildgivande system Michael Ljungberg Olika modaliteter inom sjukhusfysik Michael.Ljungberg@med.lu.se 2 Exempel på digitala bilder Michael.Ljungberg@med.lu.se 3
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen
UPPSALA UNIVERSITET Matematiska institutionen Vera Djordjevic PROV I MATEMATIK Civilingenjörsprogrammen Ordinära differentialekvationer 2007-10-12 Skrivtid: 9-14. Tillåtna hjälpmedel: Mathematics Handbook
7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2009-11-19 Sal TER1 Tid 8-12 Kurskod 9NV221 Provkod STN1 Kursnamn/benämning Provnamn/benämning Kemi (16-30) Skriftlig
TSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2012-04-12 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2012-05-21 Sal KÅRA Tid 8-12 Kurskod TSFS04 Provkod TEN1 Kursnamn Elektriska drivsystem Institution ISY Antal uppgifter
CT bilddata, bildbearbetning och bildkvalitet Brus & Upplösning
CT bilddata, bildbearbetning och bildkvalitet Brus & Upplösning Strålning & Teknik I 2013-09-12 Mikael Gunnarsson Sjukhusfysiker Strålningsfysik, SuS Malmö Vad är bildkvalitet? Bildkvalitet Högkontrast
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,
Dugga 2 i Matematisk grundkurs
Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen 111 Sal KÅRA, T1 Tid 14-18 Kurskod Provkod Kursnamn/benämning BFL11 TEN1 Fysik A för tekniskt/naturvetenskapligt
Signaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7
TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-06-10 Sal (1) Egypten (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 Hjälpmedel: Handbok, kopior av avsnitt om Fouirertransformer och Fourieranalys
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör
MMA127 Differential och integralkalkyl II
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MMA17 Differential och integralkalkyl II Tentamen Lösningsförslag 9..19 8. 11. Hjälpmedel: Endast skrivmaterial (gradskiva tillåten).
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:
Kursens namn: Medicin, Strålningsfysik, teknik o metodik. Datum: Skrivtid: 3 timmar
Kursens namn: Medicin, Strålningsfysik, teknik o metodik OMTENTAMEN Kurskod: MC1036, Provkoderna 0101 och 0102 Kursansvarig: Eva Funk Examinator: Maud Lundén Datum: 2015-12-12 Skrivtid: 3 timmar Totalpoäng: