Försättsblad till skriftlig tentamen vid Linköpings universitet
|
|
- Göran Lund
- för 6 år sedan
- Visningar:
Transkript
1 Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen Sal (1) Egypten (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som avses) Tid 08:00 12:00 Kurskod TSRT09 Provkod DAT1 Kursnamn/benämning Reglerteori Institution ISY Antal uppgifter som ingår 5 i tentamen Jour/kursansvarig Daniel Axehill (Ange vem som besöker salen) Telefon under skrivtiden , Besöker salen cirka kl. 09:00 och 11:00 Kursadministratör/ kontaktperson Carina Lindström, , Carina.E.Lindstrom@liu.se (Namn, telefonnummer, mejladress) Tillåtna hjälpmedel 1. T. Glad & L. Ljung: Reglerteori. Flervariabla och olinjära metoder 2. T. Glad & L. Ljung: Reglerteknik. Grundläggande teori 3. Tabeller, t.ex.: L. Råde & B. Westergren: Mathematics handbook C. Nordling & J. Österman: Physics handbook S. Söderkvist: Formler & tabeller 4. Miniräknare Övrigt Vilken typ av papper Rutigt ska användas, rutigt eller linjerat Antal exemplar i påsen
2
3 SAL: Egypten TENTAMEN I TSRT09 REGLERTEORI TID: kl. 08:00 12:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill, tel , BESÖKER SALEN: cirka kl. 09:00 och 11:00 KURSADMINISTRATÖR: Carina Lindström, , Carina.E.Lindstrom@liu.se TILLÅTNA HJÄLPMEDEL: 1. T. Glad & L. Ljung: Reglerteori. Flervariabla och olinjära metoder 2. T. Glad & L. Ljung: Reglerteknik. Grundläggande teori 3. Tabeller, t.ex.: L. Råde & B. Westergren: Mathematics handbook C. Nordling & J. Österman: Physics handbook S. Söderkvist: Formler & tabeller 4. Miniräknare LÖSNINGSFÖRSLAG: Finns på kursens websida efter skrivningens slut. VISNING av tentan äger rum , kl i examinators tjänsterum 2A:581, B-huset, ingång 25, A-korridoren till höger. PRELIMINÄRA BETYGSGRÄNSER: betyg 3 23 poäng betyg 4 33 poäng betyg 5 43 poäng OBS! Lösningar till samtliga uppgifter ska presenteras så att alla steg (utom triviala beräkningar) kan följas. All egen skriven kod som används ska skrivas ut och lämnas in med tentan. Bristande motiveringar ger poängavdrag. Lycka till!
4 UTSKRIFTSTIPS (LINUX): Utskrifter av vanliga filer kan skickas till en viss skrivare genom att man skriver kommandon som till exempel lp -d printername file.pdf i ett terminalfönster. (Byt ut printername mot den aktuella skrivarens namn.) Om man väljer File/Print i ett simulinkschema kan man ange en viss skrivare genom att lägga till -Pprintername i rutan vid Device option. AID ska finnas på samtliga inlämnade blad: Man kan lägga in text i matlabplottar med kommandona title och gtext och i scopeplottar i Simulink genom att högerklicka i dem och välja Axes properties. I simulinkscheman kan man dubbelklicka på något blankt ställe och sedan skriva in text. 2
5 1. (a) Nedan listas fem uppgifter som du kan råka ut för som reglertekniker. Under dessa uppgifter finns fem reglertekniska verktyg listade. Para ihop rätt uppgift (siffra) med rätt verktyg (bokstav) och motivera noggrant varför. Uppgift: 1. Du vill undersöka förstärkningen från mätstörning till reglerstorhet. 2. Du vill använda en reglerstrategi som bygger på idén att bara återkoppla från den nya informationen. 3. Du vill mäta graden av korskoppling i ett system. 4. Du vill undersöka hur stort det relativa utsignalfelet blir givet ett relativt modellfel. 5. Givet ett kvadratiskt uttryck för effekten i reglerfelet och ett kvadratiskt uttryck för effekten i styrsignalen vill du göra en reglering som kan tolkas som en optimal avvägning mellan storleken hos dessa i tidsplanet samtidigt som linjära bivillkor på styrsignaler och tillstånd respekteras. Verktyg: A. IMC. B. RGA. C. MPC. D. Känslighetsfunktion. E. Komplementär känslighetsfunktion. (b) Beräkna poler och nollställen till systemet ẋ = x u [ ] y = x (5p) Vid samtliga räkningar i den här deluppgiften får Matlab endast användas för triviala beräkningar såsom +,,, etc. (3p) (c) Ett system med ett reellt nollställe i z > 0 och en reell pol i p > 0 skall regleras. (Övriga poler och nollställen ligger i vänster halvplan.) Vilket fall är svårast, z > p eller p > z? Motivera. (2p) 3
6 2. I den här uppgiften ska vi studera en boll med massan m och radien r som studsar mot ett plant golv. Bollen kan befinna sig i två principiellt skilda situationer; A och B. I situation A rör den sig fritt i luften utan någon kontakt med omgivningen (golvet) med en dämpning från luftmotståndet som ger en kraft αẏ(t). Då ges dess dynamik av mÿ(t) = mg αẏ(t), y(t) > r där y(t) är avståndet mellan golvet och bollens centrum. I situation B har den kontakt med golvet och dess interaktion med det modelleras som en fjäder och dämpare. Dynamiken ges då i situation B av ( y(t) r mÿ(t) = mg β tan r π 2 ) γẏ(t), y(t) r där β är materialets fjäderkonstant och γ är materialets dämpningskonstant. Välj m = 1, g = 10, α = 0.2, β = 100, γ = 5 och r = 0.1. r y y Figur 1: Boll med radie r som till vänster befinner sig i luften (situation A) och till höger är i kontakt med golvet där den deformeras temporärt (situation B). y anger i båda situationerna avståndet från golvet till bollens centrum. (a) Inför tillstånd x 1 = y och x 2 = ẏ. Ange eventuella jämviktspunkter samt deras respektive typ (entangentnod, tvåtangentnod, sadelpunkt,...). (3p) (b) Skissa systemets fasplan. Ange tydligt de eventuella regioner med olika dynamik som det består av. (4p) (c) Vi inför nu en person som slår på bollen uppifrån med ett racket. Denna rörelse kan tänkas ske på ett sätt så att bollen vänder momentant på höjden 1 m från marken och får hastigheten v 0 m/s. Rita ett nytt fasplan (ta hjälp av det gamla) för fallet att v 0 = 4 som beskriver bollens nya rörelse. I detta nya fasplan, skissa speciellt hur den limit-cycle som kommer att uppstå principiellt ser ut. (3p) 4
7 3. Betrakta en olinjär förenklad modell av propeller-motor-dynamiken longitudinellt i propelleraxelns förlängning för en propeller och motor till en oktakopter (separerad från övriga farkosten) ẋ 1 = ax 1 + b(x 1 + cx 2 )(cx 2 x 1 ) ẋ 2 = dx 2 + u där x 1 är propellerns hastighet relativt luften längs den räta linjen i propelleraxelns förlängning, x 2 propellerns rotationshastighet och u är spänningen till motorn, se figur 2. Konstanterna a, b, c och d antas vara kända. x 2 x 1 Figur 2: Propeller som rör sig i axelns förlängning med hastigheten x 1 och roterar kring samma axel med vinkelhastigheten x 2. (a) Välj en utsignal sådan att det relativa gradtalet blir 2. Visa att så är fallet genom att utföra lämpliga räkningar. (4p) (b) Ta fram en styrlag på formen u = (ū f 1 (x))/f 2 (x) med potentiellt olinjära funktioner f 1 (x) och f 2 (x) sådana att systemet blir exakt linjäriserat och får en ny virtuell insignal ū. (2p) (c) Ta fram en regulator som reglerar propellerns longitudinella hastighet x 1 relativt luften ( farthållare ) genom att använda linjär IMC-teknik. Regulatorn ska styra systemet via ū. Stigtiden för det slutna systemet ska vara 0.3 s och den statiska förstärkningen 1. Din lösning ska innehålla en plot med ett stegsvar för slutna systemet från referens till hastighet där det tydligt framgår att kraven på stigtid och statisk förstärkning är uppfyllda. Om det krävs för din lösning kan du anta att a = b = c = d = 1. (4p) 5
8 4. I figuren nedan visas ett system bestående av en kula som rullar på ett lutande plan. Variabeln r betecknar kulans position relativt centrum på planet och α betecknar planets lutning. Insignal till systemet är momentet som vrider planet runt infästningen. r α Figur 3: Kula på lutande plan. Efter att följande tillståndsvariabler införts x 1 (t) - kulans position, r(t) x 2 (t) - kulans hastighet, ṙ(t) x 3 (t) - planets vinkel, α(t) x 4 (t) - planets vinkelhastighet, α(t) kan systemet från momentet verkande på planet u(t) till kulans position x 1 (t) skrivas på tillståndsform ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) (1) där A = B = 0 1 C = ( ) (a) Verifiera att systemet kan ses som fyra seriekopplade integratorer. (2p) (b) Antag att systemet startas i begynnelsetillståndet x(0) = ( ) T d.v.s. kulan ligger till höger om centrum och planet lutar nedåt på höger sida. Antag att samtliga tillståndsvariabler kan mätas. Bestäm en återkoppling så att följande krav uppfylls från detta initialtillstånd: 6
9 x(t) 0 då t. x 1 (t) 0.2 hela tiden. u(t) 2.5 hela tiden. Bifoga den Matlab-kod som du har använt dig av för att lösa uppgiften, samt en eller flera plottar som tydligt visar att kraven är uppfyllda. Ange slutligen det slutna systemets egenvärden. (6p) (c) I Sats 9.1 i boken (LQ-satsen) är ett av antagandena att (A, B) är stabiliserbar. Förklara vad detta antagande innebär och varför det är rimligt att göra. (2p) 7
10 5. Betrakta följande olinjära system ẋ 1 = x γx 1 + u ẋ 2 = x 2 + γx 1 där γ är en godtycklig reell konstant. (a) Antag u = 0 och γ = 0. Du ska nu analysera stabilitet för det här system med Lyapunov-teori. Vilken av följande tre funktioner är en lämplig kandidat som Lyapunovfunktion för att försöka visa att jämviktspunkten i origo är globalt asymptotisk stabil för systemet ovan? 1. V (x 1, x 2 ) = x V (x 1, x 2 ) = x 2 1 x V (x 1, x 2 ) = x x2 2 Motivera ditt val noggrant, både varför en viss funktion är lämplig respektive varför två funktioner är olämpliga som Lyapunovfunktioner. Notera att du ska inte göra själva analysen än, bara välja en funktion som är lämplig att gå vidare med. (2p) (b) Antag fortfarande att u = 0, men låt γ vara fri. Försök visa global asymptotisk stabilitet kring origo. Ange ett tillräckligt krav på γ R för att origo ska vara en globalt asymptotiskt stabil jämviktspunkt. Ledning 1: Det kan vara en bra idé att först bestämma av vilken typ jämviktspunkten i origo är. Ledning 2: För att få ett globalt resultat kan Lyapunovfunktionen från (a) vara användbar. Ledning 3: x T Hx < 0, x 0 λ max (H) < 0 där λ max ( ) betecknar största egenvärdet. (5p) (c) Antag nu att du är fri att välja insignalen u, vilken alltså inte längre behöver vara identiskt lika med noll. Utnyttja din Lyapunovfunktion från (a) för att välja en tillståndsåterkoppling u(x 1, x 2 ) sådan att origo blir en globalt asymptotiskt stabil jämviktspunkt för det slutna systemet för varje fixt val av γ. Din återkoppling kan bli en funktion av γ. (3p) 8
TENTAMEN I TSRT09 REGLERTEORI
SAL: Egypten TENTAMEN I TSRT09 REGLERTEORI TID: 2016-08-23 kl. 14:00 18:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill, tel. 013-284042, 0708-783670
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-03-17 Sal (1) Egypten, Asgård, Olympen (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal
Läs merTENTAMEN I TSRT09 REGLERTEORI
SAL: Egypten TENTAMEN I TSRT09 REGLERTEORI TID: 208-08-28 kl. 4:00 8:00 KURS: TSRT09 Reglerteori PROVKOD: DAT INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill, tel. 03-284042, 0708-783670
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2013-08-27 Sal (1) Egypten (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merTENTAMEN I TSRT09 REGLERTEORI
TENTAMEN I TSRT09 REGLERTEORI SAL: Egypten, Asgård, Olympen, Southfork TID: 2018-03-16 kl. 14:00 18:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Torkel
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-08-26 Sal (1) Egypten (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merTENTAMEN I TSRT09 REGLERTEORI
TENTAMEN I TSRT09 REGLERTEORI SAL: Egypten och Asgård TID: 2017-03-17 kl. 14:00 18:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill, tel. 013-284042,
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-18 Sal (1) Egypten, Asgård, Olympen och Southfork (Om tentan går i flera salar ska du bifoga ett försättsblad
Läs merTENTAMEN I TSRT09 REGLERTEORI
TENTAMEN I TSRT09 REGLERTEORI SAL: Egypten, Asgård och Olympen TID: 2016-03-17 kl. 14:00 18:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Daniel Axehill,
Läs merTENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK
TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK SAL: ISY:s datorsalar (Egypten, Asgård, Olympen, Southfork), MAI:s datorsalar (Boren, Roxen) TID: 2017-03-13 kl. 8:00 12:00 KURS: TSRT07 Industriell reglerteknik
Läs merTENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK
TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK SAL: ISY:s datorsalar (Asgård) TID: 2016-08-17 kl. 8:00 12:00 KURS: TSRT07 Industriell reglerteknik PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-6-7 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Läs merTENTAMEN I TSRT09 REGLERTEORI
SAL: Egypten TENTAMEN I TSRT09 REGLERTEORI TID: 2016-06-08 kl. 08:00 12:00 KURS: TSRT09 Reglerteori PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 JOURHAVANDE LÄRARE: Svante Gunnarsson, tel. 013-281747,
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-10-23 Sal (1) TER1 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 214-1-24 Sal (1) TER1,TER2,TERE (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Läs merTENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29--7 kl. 8: 3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 5--6 Sal () TER E, TER, TER (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 25-6-5 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Läs merTENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka
Läs merLösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 6-8-3. (a Korrekt hopparning: (-C: Uppgiften som beskrivs är en typisk användning av sensorfusion, där Kalmanfiltret är användbart. (-D: Vanlig användning av Lyapunovfunktioner.
Läs merTENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merTENTAMEN I MODELLBYGGE OCH SIMULERING (TSRT62)
TENTAMEN I MODELLBYGGE OCH SIMULERING (TSRT6) SAL: ISY:s datorsalar TID: Tisdagen den 3 oktober 01, kl. 14.00 18.00 KURS: TSRT6 Modellbygge och simlering PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER:
Läs merTENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER3 TENTAMEN I TSRT9 REGLERTEKNIK TID: 28-4-3 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-69294 BESÖKER SALEN: cirka
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24--4 Sal () TER,TERD (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merLösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 8-8-8. (a) RGA(G()) = med y. ( ), dvs, vi bör para ihop u med y och u s+ (b) Underdeterminanter till systemet är (s+)(s+3), s+, s+3, s+, s (s+)(s+)(s+3). MGN är p(s) =
Läs merTENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!
TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,
Läs merTENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TID: 13 mars 2018, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 070-3113019 BESÖKER SALEN: 09.30,
Läs merTENTAMEN I TSRT22 REGLERTEKNIK
SAL: TENTAMEN I TSRT22 REGLERTEKNIK TID: 27--23 kl. 8:-3: KURS: TSRT22 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Svante Gunnarsson, tel. 3-28747,7-3994847 BESÖKER SALEN:
Läs merTENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER3 TID: 8 augusti 8, klockan 8-3 KURS: TSRT, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 6 ANSVARIG
Läs merövningstentamen I DYNAMISKA SYSTEM OCH REGLERING
övningstentamen I DYNAMISKA SYSTEM OCH REGLERING SAL: - TID: mars 27, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 73-9699 BESÖKER SALEN:
Läs merTENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,
Läs merTENTAMEN I TSRT91 REGLERTEKNIK
SAL: G, TERD TENTAMEN I TSRT9 REGLERTEKNIK TID: 7-- kl. 8: : KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-6994 BESÖKER SALEN: cirka
Läs merTENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK SAL: T,T2 KÅRA TID: januari 27, klockan 8-3 KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 9.3,.3 KURSADMINISTRATÖR:
Läs merTENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: Ter2 TID:4 mars 207, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 0730-9699 BESÖKER SALEN:
Läs merTSRT09 Reglerteori. Sammanfattning av föreläsning 10. Fasplan. Olika typer av jämviktspunkter. Samband linjärt olinjärt: nära jämviktspunkt
TSRT9 Reglerteori Föreläsning : Exakt linjärisering och prestandagränser Daniel Axehill Reglerteknik, ISY, Linköpings Universitet Reglerteori 27, Föreläsning Daniel Axehill / 32 Sammanfattning av föreläsning
Läs merTENTAMEN I REGLERTEKNIK I
TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG
Läs merTENTAMEN REGLERTEKNIK TSRT15
TENTAMEN REGLERTEKNIK TSRT5 SAL: TER3+4 TID: 8 december 2, klockan 4-9 KURS: TSRT5 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL BLAD: 3 exklusive försättsblad ANSVARIG LÄRARE: Johan Löfberg JOURHAVANDE
Läs merTENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: G32 TID: 8 juni 217, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 7-311319 BESÖKER SALEN: 9.3,
Läs merLösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 217-3-17 1. (a) Underdeterminanter 1 s + 2, 1 s + 3, 1 s + 2, 1 (s + 3)(s 3), s 4 (s + 3)(s 3)(s + 2), vilket ger MGN dvs ordningstal 3. P (s) = (s + 3)(s 3)(s + 2), (b)
Läs merReglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet
Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2
Läs merTSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar
glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel
Läs merLösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
Läs merExempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar
Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H
Läs merTENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
Läs merREGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2013 05 31, kl. 8.00 13.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
Läs merTENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
Läs merReglerteori, TSRT09. Föreläsning 10: Fasplan. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet. Torkel Glad Reglerteori 2015, Föreläsning 10
Reglerteori, TSRT09 Föreläsning 10: Fasplan Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 9. Nyquistkriteriet 2(25) Im G(s) -1/k Re -k Stabilt om G inte omsluter 1/k. G(i w) Sammanfattning
Läs merREGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120
REGLERTEKNIK, KTH REGLERTEKNIK AK EL1000, EL1110 och EL1120 Tentamen 20111017, kl 14:00 19:00 Hjälpmedel: Observandum: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande), räknetabeller,
Läs merReglerteknik AK. Tentamen 27 oktober 2015 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merTENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 9 mars 05, kl. 8.00-.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare,
Läs merREGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
Läs merEXAM IN MODELING AND SIMULATION (TSRT62)
EXAM IN MODELING AND SIMULATION (TSRT62) SAL: ISY:s datorsalar TID: Monday 22nd August 2016, kl. 8.00 12.00 KURS: TSRT62 Modeling and Simulation PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL
Läs merReglerteori. Föreläsning 11. Torkel Glad
Reglerteori. Föreläsning 11 Torkel Glad Föreläsning 11 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 10. Fasplan Linjärisering av ẋ = f(x) kring jämviktspunkt x o, (f(x o ) = 0) f 1 x 1...
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
Läs merReglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Läs merTENTAMEN Reglerteknik 3p, X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
Läs merTENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 4 mars 204, kl. 3.00-6.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 4.30. Tillåtna hjälpmedel:
Läs merREGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial
Läs merReglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merVälkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Läs merReglerteori. Föreläsning 8. Torkel Glad
Reglerteori. Föreläsning 8 Torkel Glad Föreläsning 8 Torkel Glad Februari 2018 2 Sammanfattning av föreläsning 7 H 2 och H syntes. Gör W u G wu, W S S, W T T små. H 2 : Minimera ( W u G wu 2 2 + W SS
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 2018, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 208, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans
Läs merTENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Fredag 4 mars 204, kl. 8.00-.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell
Läs merFigure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Läs merVälkomna till TSRT15 Reglerteknik Föreläsning 2
Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
Läs merTENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
Läs merFörsättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-08-19 Sal KÅRA Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal uppgifter
Läs merReglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
Läs merTSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.
Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
Läs merTENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 28 april 20, kl. 8.00-3.00 Plats: Gimogatan 4 sal 2 Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 9.30 och
Läs merTENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 25 oktober 2013, kl. 13.00-16.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 018-4713070. Hans kommer och svarar på frågor ungefär kl 14.30. Tillåtna
Läs merTSRT91 Reglerteknik: Föreläsning 11
Föreläsningar / 5 TSRT9 Reglerteknik: Föreläsning Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Läs merTENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 9 december 03, kl. 8.00-.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell
Läs merFörsättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2010-01-15 Sal KÅRA Tid 14-18 Kurskod TSFS06 Provkod TEN1 Kursnamn Diagnos och övervakning Institution ISY Antal uppgifter
Läs mer