Liten MATLAB introduktion

Storlek: px
Starta visningen från sidan:

Download "Liten MATLAB introduktion"

Transkript

1 Liten MATLAB introduktion Denna manual ger en kort sammanfattning av de viktigaste Matlab kommandon som behövs för att definiera överföringsfunktioner, bygga komplexa system och analysera dessa. Det förutsätts en viss kunskap i de grundläggande Matlab funktionerna (vektor- och matrishantering). För en kort överblick kan man skriva >demo i Matlabs fönster. Denna introduktionen utgår från Matlab 5.* och den motsvarande Control toolboxen. Det krävs tillgång till båda. Matlab har en rätt så utförligt help funktion. Genom att skriva >help funktionsnamn får man en kortfattad beskrivning av funktionen. >help control ger en överblick över alla kommandon som finns tillgängliga i Control toolboxen. Bara >help ger en innehållsförteckning över de olika funktionerna i Matlab och dess toolboxar. Vi begränsar oss i denna introduktion på single-input-single-output (SISO) system, d.v.s. system med endast en in- och en utsignal. Med funktion diary går det att spara allt som händer i kommandofilen som en textfil. Skriv >help diary för mer information. Att programmera i MATLAB Ibland kan det kännas mödosamt att knappa in samma kommandonekvens om och om igen till exempel när man pröva sig fram i en uppgift. Matlab erbjuder två sätt att skriva färdiga program som ska exekveras, m-filer och functions. En m-fil är en textfil med Matlabkommandon som ska exekveras. Filen exekveras genom att skriva filnamnet i Matlabs kommandofönster. En m-fil skapas genom MATLAB menyn File - New - m-file. Att exekvera en m-fil har samma effekt som att kopiera in motsvarande Matlab kommandon i kommandofönstret. Man kan även definiera nya funktioner i Matlab. Man öppnar en m-fil och skriver som första rad function [u1, u2, ] = funktionsnamn(i1, i2, i3, ) Här betecknar u1, u2, u3 lokala namn för ut-variablerna och i1, i2, i3 lokala namn för in-variablerna. Funktionen kan anropas antingen direkt från kommandofönstret i en annan m-fil funktion. Exempel: Ett kort exempel skall illustrera användningen: En funktion "test" skall ta två lika stora vektorer som insignal och leverera deras in-produkt. Vi skriver en m-fil på följande sätt: function [c] = test(a,b) for i = 1:length(a) x = a(i)*b(i); c = c+x end Vi noterar bara att det finns enklare sätt att beräkna in-produkten i Matlab, nämligen >sum(a.*b).

2 Anta nu att vi ska beräkna inprodukten av vektorerna c1 och c2. Resultatet vill vi spara under namnet E. Funktionen kan nu anropas med >E = test(c1,c2) Modelldefinitioner Det finns olika sätt att definiera en processöverföringsfunktion i s-planet. Det vanligaste sättet är att använda nämnare och täljare polynom, men det är också möjligt att definiera en process med hjälp av dess nollställen, poler och förstärkning (zpk). I Matlab går det att definiera en process på godtyckligt sätt och det är rätt fram att till exempel konvertera en process given av zpk till den motsvarande överföringsfunktionen. Sådana generella mod av processer kallas i Matlab för lti-mod. Vi ska illustrera varje funktion med ett kort exempel. Funktion tf: 2s + 4 Antar vi har en överföringsfunktion G ( s) = som ska matas in i Matlab. s Först definieras nämnare- (den) och täljarepolynom (num) m.h.a. koefficienterna i nedstigande exponent. Num och den är godtyckliga variabelnamn som ska beteckna numerator och denominator. Därefter definieras en överföringsfunktion (tf) bestående av dessa polynom. Ett semikolon efter ett kommando undertrycker att Matlab trycker ut värdet av variablen. >num=[2 4]; >den=[1 0 2]; >G = tf(num,den) Själva överföringsfunktionen är nu definierad som variabel G. Funktion zpk: Antar vi har en process sys som har två poler, en i -2 och en i -10, inget nollställe och en förstärkning av 5. I Matlab gör man nu så: >sys = zpk([],[-2-10],5) 5 Sys är nu definierad som sys =. Lägg märke till att 5 inte är ( s + 2)( s + 10) lågfrekvensförstärkningen. Konvertering av sys till en överföringsfunktion med polynom i täljare och nämnare: >systf = tf(sys) Definiera överföringsfunktion genom att först definiera Laplace operatorn s : >s = tf([1 0],[1]) och därefter kan du definiera överföringsfunktioner m.h.a. denne operatorn. T.ex. föregående överföringsfunktion definieras då som >sys = 5 / ((s+2)*(s+10)) >sys = 5/(s^2 + 12*s + 20)

3 Dödtid: använd funktionen set Med hjälp av set kan man sätta vissa modellkarakteristika. Vi inskränker oss här bara på definitionen av en dödtid. Har systemet sys även en dödtid av till exempel 3 sekunder, så läggs den till separat på följande sätt: >set(sys,'iodelay', 3) >sys Genom att bara skriva sys visas den nya överföringsfunktionen, nu med den angivna dödtiden. Funktion tfdata: Antar nu att vi vill spara systf:s nämnar- och täljarpolynom som variabler sysnum och sysden: >[sysnum, sysden]=tfdata(systf) Alternativt kan vi också extrahera dessa ur sys: >[sysnum, sysden]=tfdata(sys) Blockschema I denna avsnitt lär vi oss att bygga mer komplexa mod ur överföringsfunktionsblock. Det kallas ofta också blockschemaförenkling. Det är viktigt att påpeka att Matlab inte gör själva blockschemaförenklingen utan vi kan m.h.a. Matlabfunktioner sätta ihop olika block. Parallellkoppling Det finns två likvärdiga kommandon för att parallellkoppla två SISO system, sys1 och sys2: >sys3 = sys1 + sys2 >sys3 = parallel(sys1,sys2) Seriekoppling Även i detta fall finns det två kommandon för att seriekoppla sys1 och sys2: >sys3 = sys1 * sys2 >sys3 = series(sys1,sys2) Återkoppling Med sys1 i framlänken och sys2 i återkopplingen beräknas den totala överföringsfunktionen (vi antar att vi har en negativ återkoppling) till >sys3 = feedback(sys1,sys2) sys1 Detta motsvarar alltså sys3 = 1+ sys1* sys2 I det fallet att man vill ha en positiv återkoppling skriver man: >sys3 = feedback(sys1,sys2,+1) Bråk

4 sys2 Även ett bråk av två överföringsfunktioner, d.v.s. G 1 = kan enkelt beräknas: sys3 >G1 = sys2/sys3 Systemegenskaper I detta avsnitt lär vi oss att bestämma några viktiga systemegenskaper. För att kunna avgöra stabilitetet krävs det beräkning av polerna. Andra intressanta egenskaper är systemets nollställen och för komplexa poler deras dämpningsfaktor och egenfrekvens. Antag vi har definierat en process: sys = tf(num,den). Då gäller, Poler: >pole(sys) >eig(sys) >roots(den) Nollställen: >roots(num) >zero(sys) %systemets poler %systemets egenvärden (samma som poler) %nollställen i nämnaren %nollställen i täljaren %systemets nollställen lågfrekvensförstärkning: dcgain(sys) dämpning och egenfrekvens för alla poler damp(sys) Transientanalys Stegsvar: >step(sys) Impulssvar >impulse(sys) Simulering Antag att vi vill simulera utsignalen y för ett system G, given en insignalvektor u. U är en vektor som innehåller en sekvens av insignaler, t ger de respektive tidspunkterna. >lsim(sys,u,t) plottar utsignalen med t som tidsaxel. Användaregränssnitt ltiview Efter att man har definierat några system så kan man starta ltiview som ger möjligheter att analysera olika aspekter av dessa system. Prova själv. >ltiview

5 Frekvensegenskaper Två viktiga sätt att representera processen är Bodediagram och Nyquistdiagram. I kursen använder vi frekvensplanet framförallt för att designa regulatorer av typ Lead/Lag, samt för att analysera stabilitet, statisk noggrannhet och för att ge ett mått för systemets snabbhet (se föreläsning) Bodediagram >bodeplot(sys) %plottar Bodediagrammet, frekvensområdet väljs automatiskt >bodeplot(sys,{wmin,wmax}) %plottar Bodediagrammet mellan frekvenserna wmin och wmax frekvenseran ges i [rad/sek] >bodeplot(sys1,sys2) %plottar Bodediagrammet för sys1 och sys2 i samma plot >bodeplot(sys1,'r',sys2,'y') %plottar Bodediagrammet för sys1 och sys2 i samma plot med specifikation om hur kurvorna ska ritas. Kurvorna för sys1 ritas i rött ('r'), kurvorna för sys2 i gul ('y') i det senare fallet. Nyquistdiagram Analog till Bodediagram, bara ersätt "bodeplot" med "nyquist". Marginaler För att kunna beräkna amplitud- och fasmarginal används kommandot: >[Gm,Pm,Wcg,Wcp] = MARGIN(sys) %OBS: fungerar inte för system med dödtid Funktionen ger amplitudmarginal (Gm), fasmarginal (Pm), ω π (Wcg) och ω C (Wcp). Genom att välja ltiview får man tillgång till alla dessa funktioner. Klicka på kurvan för att få koordinaterna av respektive punkt. Simulink Simulink är ett kraftfullt simuleringsverktyg. För att starta Simulink skriv >simulink i Matlabs kommandofönster och ett fönster med Simuling Library Browser kommer upp. Där hittar man ett uppskov av grafiska block som representera olika funktioner block i ett blockschema. Välj att antingen skapa en ny Simulink modell öppna en redan existerande. Varje block i Simulink biblioteket kan dras från biblioteket till modellfönstret och har in- och/ utgångar som kan kopplas ihop med hjälp av musen. Ett sträck mellan två block innebär att den enes utsignal blir den nästes insignal. Genom att dubbelklícka på en sådan block kan man ändra definitionerna och parametrarna. Kort beskrivning av olika typer av Simulink block: Continuous: block som används för att beskriva linjära system med kontinuerlig dynamik Discrete: block som används för att beskriva linjära system i diskretiserad form Math: block som innehåller matematiska funktioner med allt från enkla operationer till mer avancerade funktioner Signals and Systems: block för att hantera och behandla signaler Sinks: olika block för datarepresentation av utsignalerna (grafisk i form av variabler) Sources: block som genererar olika insignaler Control System Toolbox: LTI system (generisk överföringsfunktion) Simulink Extras: ytterligare block: t.ex. regulator block i Additional Linear

6 Några tips: Alla variabler som är definierade i Matlab kan användas som parametrar i Simulink. T.ex. en variabel K som har ett värde tilldelat i Matlab kan användas som en parameter i ett block. Utsignaler i Simulink kan exporteras till Matlab genom att koppla utsignalen till ett block To Workspace som finns under Sinks. I blocket definierar man sedan ett namn för signalen (signalen har formen av en vektor). OBS: Ändra save format i blocket To Workspace till Matrix. Om du vill plotta ut en signal som funktion av tiden behöver man även simulera tiden (Clock i Source foldern) I menyn till Simulink modellens fönster Simulate>Parameters kan du välja simuleringstid.

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther Datorövning 2 Matlab/Simulink i Styr- och Reglerteknik för U3/EI2 Laborationen förutsätter en del förberedelser

Läs mer

SIMULINK. En kort introduktion till. Polplacerad regulator sid 8 Appendix Symboler/block sid 10. Institutionen för Tillämpad Fysik och elektronik

SIMULINK. En kort introduktion till. Polplacerad regulator sid 8 Appendix Symboler/block sid 10. Institutionen för Tillämpad Fysik och elektronik Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE, BT Version: 5/ -09 DMR En kort introduktion till SIMULINK Polplacerad regulator sid 8 Appendix Symboler/block sid 0 Introduktion till

Läs mer

Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE. Introduktion till verktyget SIMULINK. Grunderna...2

Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE. Introduktion till verktyget SIMULINK. Grunderna...2 Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE Version: 09-0-23 StyrRegM,E Introduktion till verktyget SIMULINK Grunderna.....2 Tidskontinuerliga Reglersystem.... 7 Övningsuppgift...9

Läs mer

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 0803/ Thomas Munther Datorövning Matlab/Simulink i Styr- och Reglerteknik för U3/EI Laborationen förutsätter en del förberedelser

Läs mer

Introduktion till verktyget SIMULINK. Grunderna...2. Tidskontinuerliga Reglersystem Övningsuppgift...13

Introduktion till verktyget SIMULINK. Grunderna...2. Tidskontinuerliga Reglersystem Övningsuppgift...13 Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE Version: 05-02-29 Reglersystem Introduktion till verktyget SIMULINK Grunderna.....2 Tidskontinuerliga Reglersystem... 8 Övningsuppgift...3

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

PC-BERÄKNINGAR. REGLERTEKNIK Laboration 5 och inlämningsuppgift. Inlämningsdatum:... Inlämnad av labgrupp:... Gruppdeltagare:

PC-BERÄKNINGAR. REGLERTEKNIK Laboration 5 och inlämningsuppgift. Inlämningsdatum:... Inlämnad av labgrupp:... Gruppdeltagare: och inlämningsuppgift PC-BERÄKNINAR Inlämningsdatum:... Inlämnad av labgrupp:... ruppdeltagare:............ ranskad:... Reglab PC-beräkningar del.doc INLEDNIN Denna laboration kommer att visa fördelarna

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002 BC, 2009 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

Processidentifiering och Polplacerad Reglering

Processidentifiering och Polplacerad Reglering UmU/TFE Laboration Processidentifiering och Polplacerad Reglering Introduktion Referenser till teoriavsnitt följer här. Processidentifiering: Kursbok kap 17.3-17.4. Jämför med det sista exemplet i kap

Läs mer

Introduktion till Control System Toolbox 5.0. This version: January 13, 2015

Introduktion till Control System Toolbox 5.0. This version: January 13, 2015 Introduktion till Control System Toolbox 5. This version: January 3, 25 Inledning Denna skrift är en kort inledning till hur MATLAB och Control System Toolbox (CST) används i kurserna i Reglerteknik.

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB eva@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Eempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?

Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab? Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Laboration: Grunderna i Matlab

Laboration: Grunderna i Matlab Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid

Läs mer

REGLERTEKNIK Laboration 5

REGLERTEKNIK Laboration 5 6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,

Läs mer

REGLERTEKNIK Laboration 4

REGLERTEKNIK Laboration 4 Lunds Tekniska Högskola Avdelningen för Industriell elektroteknik och automation LTH Ingenjörshögskolan, Campus Helsingborg REGLERTEKNIK Laboration 4 Dynamiska system Inledning Syftet med denna laboration

Läs mer

Överföringsfunktioner, blockscheman och analys av reglersystem

Överföringsfunktioner, blockscheman och analys av reglersystem Övning 3 i Mät- & Reglerteknik 2 (M112602, 3sp), MT-3, 2013. Överföringsfunktioner, blockscheman och analys av reglersystem Som ett led i att utveckla en autopilot för ett flygplan har man bestämt följande

Läs mer

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.

När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt. "!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,

Läs mer

Övningar i Reglerteknik

Övningar i Reglerteknik Övningar i Reglerteknik Stabilitet hos återkopplade system Ett system är stabilt om utsignalen alltid är begränsad om insignalen är begränsad. Linjära tidsinvarianta system är stabila precis då alla poler

Läs mer

REGLERTEKNIK W3 & ES3 BERÄKNINGSLABORATION 1

REGLERTEKNIK W3 & ES3 BERÄKNINGSLABORATION 1 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK BC, CFL, CT 960, rev BC 970, BC, MM 980, AR 042, HN 06, PN 070 REGLERTEKNIK W3 & ES3 BERÄKNINGSLABORATION. Introduktion till MATLAB 2. Poler och stegsvar

Läs mer

Stabilitetsanalys och reglering av olinjära system

Stabilitetsanalys och reglering av olinjära system Laboration i Reglerteori, TSRT09 Stabilitetsanalys och reglering av olinjära system Denna version: 18 januari 2017 3 2 1 0 1 2 3 0 10 20 30 40 50 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL

Läs mer

Lab 1 Analog modulation

Lab 1 Analog modulation 2 Lab-PM för TSEI67 Telekommunikation Lab 1 Analog modulation Med Simulink kan man som sagt bygga upp ett kommunikationssystem som ett blockschema, och simulera det. Ni ska i denna laboration inledningsvis

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:...

Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:... Reglerteknik M3 Inlämningsuppgift 3 Lp II, 006 Namn:... Personnr:... Namn:... Personnr:... Uppskattad tid, per person, för att lösa inlämningsuppgiften:... Godkänd Datum:... Signatur:... Påskriften av

Läs mer

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06) Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast

Läs mer

Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor

Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor Laboration i Automationsteknik FK: Del 1: Polplacering. Del 2: Markovkedjor Inledning I del 1 av denna laboration utnyttjas Matlab och Simulink för att simulera polplaceringsbaserad regulatordesign för

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteknik fortsättningskurs M, TSRT06 Denna version: 12 februari 2015 REGLERTEKNIK KOMMUNIKATIONSSYSTEM LINKÖPINGS TEKNISKA HÖGSKOLA 1 Inledning

Läs mer

Introduktion till Simulink

Introduktion till Simulink Introduktion till Simulink Augusti 2009 2 s+2 Inledning Simulink är en simuleringsmiljö som körs under Matlab. Syftet med Simulink är att en användare ska kunna beskriva och simulera ett system på ett

Läs mer

Laboration i tidsdiskreta system

Laboration i tidsdiskreta system Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt

Läs mer

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

TSBB14 Laboration: Intro till Matlab 1D

TSBB14 Laboration: Intro till Matlab 1D TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen

Läs mer

MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.

MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc. Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB stefan@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Exempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

REGLERTEKNIK I BERÄKNINGSLABORATION 2

REGLERTEKNIK I BERÄKNINGSLABORATION 2 UPPSALA UNIVERSITET Systemteknik/IT-institutionen HN 0608, 1001 REGLERTEKNIK I BERÄKNINGSLABORATION 2 1. Bode och Nyquistdiagram och stabilitetsmarginaler 2. Systemdynamik, stabilitet och rotort Förberedelseuppgifter:

Läs mer

A

A Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du

Läs mer

System. Z-transformen. Staffan Grundberg. 8 februari 2016

System. Z-transformen. Staffan Grundberg. 8 februari 2016 Z-transformen 8 februari 2016 Innehåll Z-transformen Tidsdiskreta LTI-system Överföringsfunktioner Frekvensegenskaper Z-transformen Z-transformen av en tidsdiskret signal y[n] ges av Y (z) = Z[y] = y[n]z

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

MATLAB övningar, del1 Inledande Matematik

MATLAB övningar, del1 Inledande Matematik MATLAB övningar, del1 Inledande Matematik Övningarna på de två första sidorna är avsedda att ge Dig en bild av hur miljön ser ut när Du arbetar med MATLAB. På de följande sidorna följer uppgifter som behandlar

Läs mer

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation

Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation TSEI67 Telekommunikation Lab 4: Digital transmission Redigerad av Niclas Wadströmer Mål Målet med laborationen är att bekanta sig med transmission av binära signaler. Det innebär att du efter laborationen

Läs mer

Föreläsning 10, Egenskaper hos tidsdiskreta system

Föreläsning 10, Egenskaper hos tidsdiskreta system Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering

Läs mer

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Lösningar till tentamen i styr- och reglerteknik (Med fet stil!)

Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Uppgift 1 (4p) Figuren nedan visar ett reglersystem för nivån i en tank.utflödet från tanken styrs av en pump och har storleken V (m 3 /s).

Läs mer

Laplacetransform, poler och nollställen

Laplacetransform, poler och nollställen Innehåll föreläsning 2 2 Reglerteknik, föreläsning 2 Laplacetransform, poler och nollställen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet

Läs mer

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)

Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) Innehåll föreläsning 12 2 Reglerteknik, föreläsning 12 Sammanfattning av kursen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,

Läs mer

Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist

Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. umregelmetoder Bodediagram (Kompenseringsfilter) Simulering MALAB-programmet Simulink

Läs mer

SIMULINK. Introduktion till. Grunderna...2. Tidskontinuerliga Reglersystem. 6. Uppgift Appendix A. Symboler 14

SIMULINK. Introduktion till. Grunderna...2. Tidskontinuerliga Reglersystem. 6. Uppgift Appendix A. Symboler 14 Intitutionen för Tillämpad Fyik och elektronik Umeå Univeritet BE Verion: 02-03-09 TFEA3 Introduktion till SIMULINK Grunderna....2 Tidkontinuerliga Reglerytem. 6 Uppgift.. 3 Appendix A. Symboler 4 Introduktion

Läs mer

Flerdimensionella signaler och system

Flerdimensionella signaler och system Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här

Läs mer

Lab Tema 2 Ingenjörens verktyg

Lab Tema 2 Ingenjörens verktyg Lab Tema 2 Ingenjörens verktyg Agneta Bränberg, Ville Jalkanen Syftet med denna laboration är att alla i gruppen ska kunna handskas med de instrument som finns på labbet på ett professionellt sätt. Och

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

Frekvensbeskrivning, Bodediagram

Frekvensbeskrivning, Bodediagram Innehåll föreläsning 5 Reglerteknik I: Föreläsning 5 Frekvensbeskrivning, Bodediagram Fredrik Lindsten fredrik.lindsten@it.uu.se Kontor 2236, ITC Hus 2, Systemteknik Institutionen för informationsteknologi

Läs mer

Laplace, Fourier och resten varför alla dessa transformer?

Laplace, Fourier och resten varför alla dessa transformer? Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé

Läs mer

ÅBO AKADEMI REGLERTEKNIK I

ÅBO AKADEMI REGLERTEKNIK I INSTITUTIONEN FÖR KEMITEKNIK Laboratoriet för reglerteknik ÅBO AKADEMI DEPARTMENT OF CHEMICAL ENGINEERING Process Control Laboratory REGLERTEKNIK I Grundkurs Kurt-Erik Häggblom Biskopsgatan 8 FIN-20500

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi.

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi. Grundläggande programmering 4 stefan@it.uu.se - Huvudprogram och underprogram - Egna funktioner - Olika typer av fel - Lite om effektiv programmering Exempel att testa Programmen för några vardagsproblem

Läs mer

Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland

Department of Physics Umeå University 27 augusti Matlab för Nybörjare. Charlie Pelland Matlab för Nybörjare Charlie Pelland Introduktion till Matlab Matlab (matrix laboratory) är ett datorprogram och ett programspråk som används av ingenjörer runt om i världen. Ni kommer att använda er av

Läs mer

Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW

Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW Institutionen för data- och elektroteknik 004-03-15 Signalbehandling i Matlab och LabVIEW 1 Introduktion Vi skall i denna laboration bekanta oss med hur vi kan använda programmen Matlab och LabVIEW för

Läs mer

Datorövning 1: Introduktion till MATLAB

Datorövning 1: Introduktion till MATLAB Datorövning 1: Introduktion till MATLAB Om datorövningarna Övningarna går ut på att bekanta sig med MATLAB och se hur man löser olika typer av problem. Arbetet är självständigt. Hoppa över sådant ni tycker

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Välkomna till TSRT19 Reglerteknik Föreläsning 3 Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Sammanfattning av förra föreläsningen 2 Vi modellerar system

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system

Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Reglerteknik, IE1304 1 / 50 Innehåll Kapitel 141 Introduktion till tillståndsmodeller 1 Kapitel 141 Introduktion till tillståndsmodeller 2

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist

Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. Tumregelmetoder Bodediagram (Kompenseringsfilter) Simulering MATLAB-programmet

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

TSRT91 Reglerteknik: Föreläsning 5

TSRT91 Reglerteknik: Föreläsning 5 TSRT9 Reglerteknik: Föreläsning 5 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar / 23 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

Matlabövning 1 Funktioner och grafer i Matlab

Matlabövning 1 Funktioner och grafer i Matlab Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom PM:et. Gå sedan igenom exemplen

Läs mer

Frekvensbeskrivning, Bodediagram

Frekvensbeskrivning, Bodediagram Innehåll föreläsning 5 Reglerteknik, föreläsning 5 Frekvensbeskrivning, Bodediagram Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning läsvecka 4 Magnus oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/17 Denna föreläsning (läsvecka 4) Kursadministration (redovisning projekt 2,

Läs mer

Innehνall 1 Introduktion Processbeskrivning Inloggning och uppstart

Innehνall 1 Introduktion Processbeskrivning Inloggning och uppstart UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA, 2002 Dynamiska System (STS) Modellering av en DC-motor Sammanfattning Dynamiken för en dc-motor bestäms utifrνan en s k icke-parametrisk modellering, i detta

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 6 Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Sammanfattning av förra föreläsningen 2 G(s) Sinus in (i stabilt system) ger sinus

Läs mer

DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion

DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Staffan Romberger 2008-10-31 DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna hantera vektorer och matriser, villkorssatser

Läs mer

Reglerteknik Z / Bt/I/Kf/F

Reglerteknik Z / Bt/I/Kf/F Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB Introduktion till MATLAB Om laborationen Övningarna går ut på att bekanta sig med MATLAB och se hur man löser olika typer av problem. Arbetet är självständigt. Hoppa över sådant ni tycker verkar för lätt

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in

Läs mer

Föreläsning 11, Dimensionering av tidsdiskreta regulatorer

Föreläsning 11, Dimensionering av tidsdiskreta regulatorer Föreläsning 11, Dimensionering av tidsdiskreta regulatorer KTH 8 februari 2011 1 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4 5 6 2 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4

Läs mer

G(s) = 5s + 1 s(10s + 1)

G(s) = 5s + 1 s(10s + 1) Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer

Läs mer

Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner

Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner Reglerteknik, IE1304 1 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel 17.1. Inledning 2 3 2 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel

Läs mer

Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik

Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik Fredrik Berntsson (fredrik.berntsson@liu.se) 5 oktober 2016 Frame 1 / 23 Bakgrund och Syfte Inom kursen Fysik3 finns material som

Läs mer

Lägg märke till skillnaden, man ser det tydligare om man ritar kurvorna.

Lägg märke till skillnaden, man ser det tydligare om man ritar kurvorna. Matlabövningar 1 Börja med att läsa igenom kapitel 2.1 2 i läroboken och lär dig att starta och avsluta Matlab. Starta sedan Matlab. Vi övar inte på de olika fönstren nu utan återkommer till det senare.

Läs mer

Reglerteknik AK, FRT010

Reglerteknik AK, FRT010 Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Simulering med ModelSim En kort introduktion

Simulering med ModelSim En kort introduktion Linköpings universitet Institutionen för systemteknik Laborationer i digitalteknik Datorteknik 2017 Simulering med ModelSim En kort introduktion TSEA22 Digitalteknik D Linköpings universitet SE-581 83

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

Beräkningsverktyg HT07

Beräkningsverktyg HT07 Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Matriser och Inbyggda funktioner i Matlab

Matriser och Inbyggda funktioner i Matlab Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Matlabövning 1 Funktioner och grafer i Matlab

Matlabövning 1 Funktioner och grafer i Matlab Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom hela PM:et. Gå sedan igenom

Läs mer

Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet

Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen

Läs mer

Nyquistkriteriet, kretsformning

Nyquistkriteriet, kretsformning Sammanfattning från föreläsning 5 2 Reglerteknik I: Föreläsning 6 Nyquistkriteriet, kretsformning Fredrik Lindsten fredrik.lindsten@it.uu.se Kontor 2236, ITC Hus 2, Systemteknik Institutionen för informationsteknologi

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 7

Välkomna till TSRT19 Reglerteknik Föreläsning 7 Välkomna till TSRT19 Reglerteknik Föreläsning 7 Sammanfattning av föreläsning 6 Kretsformning Lead-lag design Labförberedande exempel Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet)

Läs mer