REGLERTEKNIK Laboration 4
|
|
- Roger Bergman
- för 6 år sedan
- Visningar:
Transkript
1 Lunds Tekniska Högskola Avdelningen för Industriell elektroteknik och automation LTH Ingenjörshögskolan, Campus Helsingborg REGLERTEKNIK Laboration 4 Dynamiska system Inledning Syftet med denna laboration är att ge en överblick över hur olika egenskaper hos ett dynamiskt system hänger samman. Detta görs genom att först specificera överföringsfunktionen för systemet i Matlab och sedan titta på tidssvar och frekvenssvar hos systemet. Förberedelse Läs igenom denna handledning och repetera följande begrepp: Överföringsfunktion Poler Nollställen Stegsvar Bodediagram Nyquistdiagram Översväng M Stigtid T r (T s i boken!) Insvängningstid T s (T δ i boken) Stationär förstärkning k stat Relativ dämpning ζ Odämpad egenfrekvens ω n Tyvärr råkar boken använda samma beteckning (T s ) för stigtid (rise time) som annars oftast används för insvängningstid(solution time, settling time). Den i särklass vanligast förekommande beteckningen för stigtid är T r. Definitionerna för stigtid, insvängningstid och översväng återfinns på s. 74 i läroboken. Godkännande För att få godkänt på laborationen skall frågorna i denna handledning ha besvarats skriftligt. Begreppen ovan bör också vara bekanta inför laborationstillfället eftersom smärre labförhör kan förekomma.
2 Polynomrepresentation av system Ett system med en rationell överföringsfunktion B(s) A(s) = b s n + +b n s+b n s n +a s n + +a n s+a n kan i Matlab representeras med två polynom A och B (observera att Matlab normalt skiljer på stora och små bokstäver). Ett system med överföringsfunktion s2 0.4s+ s 4 +3s 2 2s+5 kan då representeras med polynomen A och B enligt >> B = [ -0.4 ]; >> A = [ ]; Genom användande av olika räkneoperationer kan nya polynom definieras. För att t.ex. mata in polynomet P(s) = s(s+2)(s 5)+4(s 2 +s ) kan man skriva följande P = addpoly(conv(conv([ 0],[ 2]),[ -5]),4*[ -]) För polynommultiplikation utnyttjas funktionen conv och för addition används funktionen addpoly. Uppgift : a. Beräkna summan av polynomen s 4 + 4s 2 + 3s + 5 och 2s 3 + 7s 2 + 2s + med hjälp av funktionen addpoly (använd först help addpoly för att få reda på syntaxen). b. Bestäm produkten mellan de båda polynomen s 2 +3s+2 och s 3 +2s 2 + 4s+ med användande av funktionen conv. Ett sätt att få fram polynom baserat på vilka rötter polynomet ska ha, är genom att utnyttja funktionen poly. Exempel : Beräkna polynomet p(s) = (s+) 2 (s+3)(s 4)(s ) 3 : p = poly([ ]); Exempel 2: Beräkna polynomet P(s) = s(s+2)(s 5)+4(s 2 +s ) med hjälp av funktionen poly: P = addpoly(poly([0-2 5]),4*[ -]); 2
3 Polynomet s(s+2)(s 5) anges här via rötterna 0, 2 och 5. För att få reda på rötterna till ett polynom används funktionen roots: >> roots(p), Att raden avslutas med ett komma(, ) istället för ett semikolon( ; ) beror på att resultatet av beräkningen skall visas på skärmen. Uppgift 2: BeräknarötternatillpolynometQ(s) = (s+)(s+2) 2 +5(s ). Tidssvar Begreppet tidssvar innefattar bl.a. stegsvar och impulssvar. Impulssvaret för ett visst system beräknas med funktionen impulsrc medan stesvaret fås med funktionen steprc. Exempel 3: Beräkna stegsvar för systemet Ts+ s 3 +3s 2 +2s+ för de olika parametervärdena T = 0.5, och 2, samt plotta resultatet för 0 t 20 s med 0. s mellan varje tidpunkt. >> T = 0.5; st = steprc([-t ],[ 3 2 ],20,0.); >> T = ; st2 = steprc([-t ],[ 3 2 ],20,0.); >> T = 2; st3 = steprc([-t ],[ 3 2 ],20,0.); >> ypl(st,st2,st3); grid; Här plottas alla stegsvaren i samma diagram. Kommandot grid i slutet ger ett rutnät i diagrammet. Detta kan ofta underlätta avläsningen. Uppgift 3: Beräkna och plotta stegsvaren för följande system: a. där T = 0.2, och 5 s. Kan tidskonstantens värde +Ts avläsas från stegsvaren? b. s 2 där ζ = 0.2, 0.5, 0.7 och. Den odämpade egenfrekvensen ω n har samma värde hela tiden. Ange detta +2ζs+ värde. ω 2 n c. s 2 +ω n s+ωn 2 med ω n = 0.2, och 5. Den relativa dämpningen har samma värden i alla fallen. Ange detta värde. d. Ts+ s 2 där T = 0, 0.5, 5, 5 och 0.5. Ange nollställets +2s+ position för de olika fallen. 3
4 Funktionen srespana kan användas för att uppskatta stationär förstärkning, stigtid (0 90%) och lösningstid (5%) ur stegsvaret. Exempel 4: Uppskatta stationära förstärkningen k stat, stigtiden T r, insvängningstiden T s och översvängen M för systemet 0.s+ (s+)(s+3)(s+0)+5 Följande kommandon ger approximativa värden på parametrarna: >> stpr = steprc([-0. ],addpoly(poly(-[ 3 0]),5),20,0.); >> [k_stat,t_r,t_s,m] = srespana(stpr), Uppgift 4: Använd srespana för att bestämma approximativa värden på k stat, T r, T s och M för systemet s 2 +2ζs+ för ζ = 0.2, 0.5, 0.7 och. Jämför med den teoretiska formeln för översvängen π M = e tanφ där φ = arccosζ. Frekvenssvar För att plotta bodediagram eller nyquistkurvor måste först frekvenssvaret beräknas. Detta kan göras med funktionen frc (Frequency Response Continuous time). Ett frekvenssvar representeras i Matlab med en matris bestående av två kolonner. Den första kolonnen innehåller vinkelfrekvenserna och den andra kolonnen består av frekvenssvarets komplexa värden för motsvarande vinkelfrekvens. Varje rad i frekvenssvarsmatrisen består därför av ett par (ω, g) där g = G(iω) förutsatt att systemets överföringsfunktion ges av G(s). Funktionen frc kan användas för system av typen B(s) A(s) e τs Anropet är av formen fr=frc(b,a,tau,lgw,lgw2,nw) där lgw och lgw2 är 0-logaritmerna för undre respektive övre gräns för de till antalet nw logaritmiskt utspridda vinkelfrekvenserna. 4
5 Plottning av frekvenssvaret kan göras i ett nyquistdiagram (nypl eller nysh ) eller i ett bodediagram (bopl eller bosh). Skillnaden mellan nypl och nysh är att nypl plottar en nyquistkurva i ett helt nytt diagram medan nysh plottar i ett redan befintligt diagram. Rutnät och koordinataxlar ritas med nygrid resp. bogrid. Exempel 5: Plotta bodediagram för systemet s+b s 3 +2s 2 +2s+ för parametervärdena b = 0.3, och 3. med 300 frekvenser logaritmiskt utspridda mellan ω = 0.0 = 0 2 rad/s och ω = 00 = 0 2 rad/s. >> b = 0.3; fr = frc([ b],[ 2 2 ],0,-2,2,300); >> b = ; fr2 = frc([ b],[ 2 2 ],0,-2,2,300); >> b = 3; fr3 = frc([ b],[ 2 2 ],0,-2,2,300); >> bopl(fr,fr2,fr3); Observera att det 3:e argumentet till frc är tidsfördröjningen (dödtiden) vilken i det aktuella fallet är τ = 0. Frekvenssvaret finns nu sparat i fr och kan användas ytterligare, t.ex. för att plotta nyquistdiagrammet (kommando: nypl(fr)). Uppgift 5: Plotta bodekurvorna för följande system: a. där T = 0.2, och 5 s. +Ts b. s 2 +2ζs+ ω 2 n där ζ = 0.2, 0.5, 0.7 och. c. s 2 +ω n s+ωn 2 med ω n = 0.2, och 5. d. Ts+ s 2 där T = 0,, 0.5 och 5. +2s+ Ibland kan det vara praktiskt att rita in asymptoter i amplituddiagrammet. Detta kan då göras med hjälp av funktionen frcasymp. Exempel 6: Plotta ett bodediagram med asymptoter för systemet 00(2s+) s(s+2)(s+0) 2 för 500 frekvenser mellan 0.0 rad/s och 00 rad/s. >> b2 = 00*[2 ]; a2 = poly([ ]); >> fr2 = frc(b2,a2,0,-2,2,500); >> fr2a = frcasymp(b2,a2,0,-2,2); >> bopl(fr2,fr2a); bogrid 5
6 Hur många brytfrekvenser finns det i detta fall? Lägg märke till lutningarna i amplitudasymptoterna. Tidsfördröjningar är ett ganska vanligt inslag i många processmodeller. Karakteristiskt för en fördröjning är att den enbart påverkar fasvridningen för systemet. Tidsfördröjningen anges som tredje argument till matlabfunktionen frc, t.ex. tau = 0.7; fr = frc(,[ ],tau,-2,2,600); nypl(fr);, vilket plottar nyquistkurvan för s 2 +s+ e 0.7s. Uppgift 6: Plotta dels bodediagrammet och dels nyquistdiagrammet för systemet 3 s 3 +2s 2 +2s+ e τs då tidsfördröjningen är τ = 0.2, respektive 5 s. Ange antalet punkter till 600 och plotta för ω mellan 0.0 och 00 rad/s. Pol-nollställes-diagram För att plotta poler och nollställen för ett system kan man anlita funktionen pzpl. Denna plottar polerna som kryss (x) och nollställena som ringar (o). Exempel 7: Plotta poler och nolställen för systemet 2s 2 s+3 s 4 +3s 3 +4s 2 +s+2 >> pzpl([2-3],[ 3 4 2]); >> pzgrid; Med hjälp av pzgrid får man både rutnät och koordinataxlar utritade. Uppgift 7: Rita poler och nollställen för systemet ( 2s)(+0.5s) s(s+2) 2 (s+5)+4( s) För ett system med många poler gäller det att det är de långsammaste polerna eller de sämst dämpade polerna som syns mest (dominerar). Uppgift 8: Undersök systemet (s 2 +s+)(ts+) för parametervärdena T = 0,0.2, och 5 genom att plotta stegsvaren för de olika fallen. Rita gärna också upp bodediagrammen för de olika fallen. 6
7 Några tips Ett mycket användbart kommando i Matlab är help. Detta ger information om vilka kommandon (funktioner) som är tillgängliga. Med argument till help kan information ges om varje funktion (t.ex. help frcasymp). Använd help flitigt! För att se vilka variabler som finns definierade kan man med fördel använda who eller whos. Den senare varianten ger mer detaljerad information om varje variabel (antal element osv.). I Matlab kan man lagra kommadon i en textfil (med efternamnet =.m). Om kommandona t.ex. lagras i en fil med namnet test.m så utförs dessa kommandon om man i Matlab helt enkelt skriver test. Om man inne i Matlab vill titta på vilka kommandon som ingår i filen test.m så kan man lista filen med kommandot type test. Ett alternativ till att bara lagra kommandon i en fil är att göra om filen till en funktionsfil genom att deklarera funktionsnamn, inparametrar och utparametrar i ett Pascalliknande funktionshuvud i början på filen. Alla variabler blir då lokala istället för globala, dvs de syns inte utanför funktionen (precis som i Pascal). Tag gärna reda på mer om detta genom att skriva help function. 7
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
REGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
Reglerteknik AK, FRT010
Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
PC-BERÄKNINGAR. REGLERTEKNIK Laboration 5 och inlämningsuppgift. Inlämningsdatum:... Inlämnad av labgrupp:... Gruppdeltagare:
och inlämningsuppgift PC-BERÄKNINAR Inlämningsdatum:... Inlämnad av labgrupp:... ruppdeltagare:............ ranskad:... Reglab PC-beräkningar del.doc INLEDNIN Denna laboration kommer att visa fördelarna
REGLERTEKNIK Laboration 3
Lunds Tekniska Högskola Avdelningen för Industriell Elektroteknik och Automation LTH Ingenjörshögskolan vid Campus Helsingborg REGLERTEKNIK Laboration 3 Modellbygge och beräkning av PID-regulator Inledning
Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
TENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Introduktion till Control System Toolbox 5.0. This version: January 13, 2015
Introduktion till Control System Toolbox 5. This version: January 3, 25 Inledning Denna skrift är en kort inledning till hur MATLAB och Control System Toolbox (CST) används i kurserna i Reglerteknik.
Lösningar till övningar i Reglerteknik
Lösningar till övningar i Reglerteknik Stabilitet hos återkopplade system 5. Ett polynom av andra ordningen har båda rötterna i vänstra halvplanet (Res < ) precis då alla (3) koefficienterna har samma
Liten MATLAB introduktion
Liten MATLAB introduktion Denna manual ger en kort sammanfattning av de viktigaste Matlab kommandon som behövs för att definiera överföringsfunktioner, bygga komplexa system och analysera dessa. Det förutsätts
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) 0-03-8. (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet
Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,
Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 060 Uppgift a G c (s G(sF (s + G(sF (s s + 3, Y (s s + 3 s ( 3 s s + 3 Svar: y(t 3 ( e 3t Uppgift b Svar: (i insignal u levererad insulinmängd från pumpen, mha tex spänningen
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
Övningar i Reglerteknik
Övningar i Reglerteknik Stabilitet hos återkopplade system Ett system är stabilt om utsignalen alltid är begränsad om insignalen är begränsad. Linjära tidsinvarianta system är stabila precis då alla poler
TSRT91 Reglerteknik: Föreläsning 4
TSRT91 Reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 16 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
ERE 102 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:
Välkomna till TSRT19 Reglerteknik Föreläsning 5. Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram
Välkomna till TSRT19 Reglerteknik Föreläsning 5 Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram Sammanfattning av förra föreläsningen 2 Givet ett polpolynom med en varierande parameter, och
TSRT91 Reglerteknik: Föreläsning 4
Föreläsningar 1 / 16 TSRT91 glerteknik: Föreläsning 4 Martin Enqvist glerteknik Institutionen för systemteknik Linköpings universitet 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Föreläsning 10, Egenskaper hos tidsdiskreta system
Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering
A
Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du
Formelsamling i Reglerteknik
Formelsamling i Reglerteknik Laplacetransformation Antag att f : IR IR är en styckvis kontinuerlig funktion. Laplacetransformen av f definieras av Slutvärdesteoremet F(s) = L(f)(s) = 0 e st f(t)dt lim
Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F6 Bodediagram, Nyquistkriteriet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 11 Frekvensegenskaper Hur svarar ett (slutet) system på oscillerande signaler? 2 / 11
Tentamen i Reglerteknik, för D2/E2/T2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Lördagen den 15 Augusti kl.9.-13. 29 Sal: Tillåtna hjälpmedel: Valfri
Tentamen i Styr- och Reglerteknik, för U3 och EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Styr- och Reglerteknik, för U3 och EI2 Tid: Onsdagen den 12 Augusti kl. 9-13, 29 Sal: - Tillåtna hjälpmedel:
REGLERTEKNIK I BERÄKNINGSLABORATION 2
UPPSALA UNIVERSITET Systemteknik/IT-institutionen HN 0608, 1001 REGLERTEKNIK I BERÄKNINGSLABORATION 2 1. Bode och Nyquistdiagram och stabilitetsmarginaler 2. Systemdynamik, stabilitet och rotort Förberedelseuppgifter:
Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. Tumregelmetoder Bodediagram (Kompenseringsfilter) Simulering MATLAB-programmet
Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!)
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Uppgift 1 (4p) Figuren nedan visar ett reglersystem för nivån i en tank.utflödet från tanken styrs av en pump och har storleken V (m 3 /s).
Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther Datorövning 2 Matlab/Simulink i Styr- och Reglerteknik för U3/EI2 Laborationen förutsätter en del förberedelser
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
TENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
För att förenkla presentationen antas inledningsvis att förstärkningen K 0, och vi återkommer till negativt K senare.
8. Frekvensanalys För att förenkla presentationen antas inledningsvis att förstärkningen K 0, oh vi återkommer till negativt K senare. 8.1. Första ordningens system K y( s u( s Ts 1 Om vi antar att insignalen
Stabilitetsanalys och reglering av olinjära system
Laboration i Reglerteori, TSRT09 Stabilitetsanalys och reglering av olinjära system Denna version: 18 januari 2017 3 2 1 0 1 2 3 0 10 20 30 40 50 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 00 0 4, kl. 4.00 9.00. (a) Stegsvaret ges av y(t) =K( e t/t ). Från slutvärdet fås K =, och tiskonstanten kan avläsas
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
eglerteknik 3 Kapitel 7 Köp bok och övningshäfte på kårbokhandeln Lektion 3 kap 7 Modellering Identifiering Teoretisk modellering Man använder grundläggande fysikaliska naturlagar och deras ekvationer
Laplacetransform, poler och nollställen
Innehåll föreläsning 2 2 Reglerteknik, föreläsning 2 Laplacetransform, poler och nollställen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
Industriell reglerteknik: Föreläsning 3
Industriell reglerteknik: Föreläsning 3 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 19 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande
REGLERTEKNIK W3 & ES3 BERÄKNINGSLABORATION 1
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK BC, CFL, CT 960, rev BC 970, BC, MM 980, AR 042, HN 06, PN 070 REGLERTEKNIK W3 & ES3 BERÄKNINGSLABORATION. Introduktion till MATLAB 2. Poler och stegsvar
Reglerteknik 7. Kapitel 11. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
Reglerteknik 7 Kapitel Köp bok och övningshäfte på kårbokhandeln Föreläsning 7 kap Dimensionering av analoga reglersystem. umregelmetoder Bodediagram (Kompenseringsfilter) Simulering MALAB-programmet Simulink
Reglerteknik AK. Tentamen kl
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning
TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer 1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl. 8.00-11.00 Plats: Fyrislundsgatan 80, sal 1 Ansvarig lärare:
Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 0-03-4 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd formelsamling,
Reglerteknik Z / Bt/I/Kf/F
Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i eglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 20-06-09 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER3 TENTAMEN I TSRT9 REGLERTEKNIK TID: 28-4-3 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-69294 BESÖKER SALEN: cirka
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:
Specifikationer i frekvensplanet ( )
Föreläsning 7-8 Specifikationer i frekvensplanet (5.2-5.3) Återkopplat system: Enligt tidigare gäller att där och Y (s) =G C (s)r(s) G C (s) = G O(s) 1+G O (s) G O (s) =F (s)g(s) är det öppna systemet
TENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial
REGLERTEKNIK AK Föreläsningar
REGLERTEKNIK AK Föreläsningar Tore Hägglund Lund 29 Institutionen för Reglerteknik Lunds Tekniska Högskola Box 8 22 LUND Copyright Tore Hägglund 2 All rights reserved 2 Innehåll Förord.........................................
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 6 mars 26 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25
MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002 BC, 2009 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)
REGLERTEKNIK BERÄKNINGSLABORATION 3
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK CT, CFL 95, rev JS 9508 Reviderad och anpassad till 3:e upplagan av Glad/Ljung av HN 2006-08, rev till 4:e upplagan HN 07-01 REGLERTEKNIK BERÄKNINGSLABORATION
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
TSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
Introduktion till Matlab
Introduktion till Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1, ht10 1 Inledning Ni kommer använda Matlab i nästan alla kurser i utbildningen. I matematikkurserna kommer vi ha studio-övningar nästan
Överföringsfunktion 21
Vad är reglerteknik? 8 Analys och styrning av dynamiska system Välj styrsignalen (u(t)) så att systemet (mätsignalen y(t)) uppför sig som önskat (referenssignalen r(t)) trots störningar (v(t)) Vi betraktar
Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 0803/ Thomas Munther Datorövning Matlab/Simulink i Styr- och Reglerteknik för U3/EI Laborationen förutsätter en del förberedelser
TSRT19 Reglerteknik: Välkomna!
TSRT9 Reglerteknik: Välkomna! Föreläsning 6 Inger Erlander Klein / 25 Förra föreläsningen (föreläsning 5) Rotort plotta rötternas (polernas) läge som fnktion av någon parameter Bakhjlsstyrda cykeln (&
ÖVNINGSTENTAMEN Reglerteknik I 5hp
ÖVNINGSTENTAMEN Reglerteknik I 5hp Tid: När det passar dig Plats: Där det passar dig Ansvarig lärare: Någon bra person. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell och matematisk
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Tentamen i Reglerteknik, för D2/E2/T2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Torsdagen den 3 Juni kl.9.-13. 21 Sal: R1122 Tillåtna hjälpmedel: Valfri
Tentamen i Reglerteknik, 4p för D2/E2/T2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, 4p för D2/E2/T2 Tid: Måndagen den 28 maj kl.9.-13. 27 Sal: R1122 Tillåtna hjälpmedel: Valfri
TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!
TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,
Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet
5. Enkla dynamiska system
I kapitel 3 härleddes modeller för ett antal dynamiska system från olika teknikområden. Gemensamt för systemen var att de kunde beskrivas med ordinära differentialekvationer av låg ordning. I flera fall
Reglerteknik. Datum: 20/ Tid: Examinator: Leif Lindbäck ( ) Hjälpmedel: Formelsamling, dimensioneringsbilaga, miniräknare.
Tentamen i Reglerteknik (IE1304) 20/3-2014 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 20/3-2014 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
Reglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
Välkomna till TSRT19 Reglerteknik Föreläsning 7
Välkomna till TSRT19 Reglerteknik Föreläsning 7 Sammanfattning av föreläsning 6 Kretsformning Lead-lag design Labförberedande exempel Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet)
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Från tidigare: Systemets poler (rötterna till kar. ekv.) påverkar egenskaperna hos diffekvationens lösning.
Föreläsning 4 Stabilitet (2.5) Från tidigare: Systemets poler (rötterna till kar. ekv.) påverkar egenskaperna hos diffekvationens lösning. Definition av insignal-utsignalstabilitet: OH-bild Sats 2.1: OH-bild
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: G, TERD TENTAMEN I TSRT9 REGLERTEKNIK TID: 7-- kl. 8: : KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-6994 BESÖKER SALEN: cirka