Laboration 2. Grafisk teknik (TNM059) Digital Rastrering. S. Gooran (VT2007)
|
|
- Ulrika Håkansson
- för 6 år sedan
- Visningar:
Transkript
1 Laboration 2 Grafisk teknik (TNM059) Digital Rastrering S. Gooran (VT2007)
2 Introduktion Denna laboration handlar om rastrering och är tänkt att fungera som komplement till rastreringsföreläsningar och lektioner. Efter denna laboration kommer ni att förstå principerna bakom olika rastreringsmetoder och deras skillnader. Ni kommer att närmare bekanta er med tröskelrastrering, tabellrastrering, error diffusion (felspridning) samt en iterativ rastreringsteknik genom att använda dessa tekniker för att rastrera minst en svart-vit bild. Ni kommer även att rastrera en färgbild med minst två rastreringstekniker. Den här laborationen måste förberedas innan laborationstillfället. Ett antal förberedelseuppgifter finns på kursens hemsida som måste lösas innan laborationstillfället. Laborationsassistenten går igenom era lösningar och de som inte har gjort uppgifterna får inte genomföra laborationen. Nödvändiga teorier för att kunna genomföra laborationen gås igenom under kursens föreläsningar och lektioner som handlar om rastrering. Häftet Digital Halftoning och det kompletterande häftet Rastrering, övningar måste läsas noggrant innan labben. Laborationsuppgifter Uppgifter i denna laboration görs i programmet Matlab. De flesta Matlabfunktioner som används i denna laboration har redan gåtts igenom under en tidigare lektion och laboration. Ni kan också få information om funktioner i Matlab genom att skriva help och sedan funktionens namn i matlabprompten. Alla bilder och funktioner som ni kommer att behöva finns under S:/TN/M/TNM059/Lab2. Börja med att läsa in bilden kvarn.tif i Matlab m. h. a. funktionen imread. Alla uppgifter, förutom sista uppgiften, görs på denna bild men ni kan gärna använda andra bilder som er testbild. I dessa uppgifter antar vi att bilden är normerad så att dess pixelvärden ligger mellan 0 och 1. Så, normera bilden efter att ni har läst in den. (Hur?) 1 Tröskelrastrering 1.1 Börja med att rastrera bilden genom att tröskla den med en fix tröskel, t.ex Hur många grånivåer representerar den? Blir resultatet snyggt? Ladda ner filen troskelmatriser.mat, se funktionen load. Nu har du fått tre tröskelmatriser, nämligen tr1, tr2 och tr3. Ta först en titt på matriserna tr1 och tr2! Hur många grånivåer representerar vardera av dessa två tröskelmatriser?... Rastrera bilden med de här två tröskelmatriserna genom att använda funktionen troskel. Glöm inte att matriserna skall normeras så att alla tröskelvärdena ligger mellan 0 och 1. (Hur?) Vad ser du för skillnad mellan resultatbilderna? Förklara!
3 1.3 Ta en titt på tröskelmatrisen tr3! Hur många grånivåer representerar denna matris?... Jämför denna matris med tr2. Ser du någon skillnad? Vad? Kan du förutse skillnaden mellan resultaten av att rastrera bilden med dessa två matriser? Rastrera bilden med denna tröskelmatris (Glöm inte att normera tröskelmatrisen). Förklara skillnaden mellan den här rastrerade bilden och dem från uppgift 1.2. Ser resultaten ut som du hade förväntat dig? 1.4 Tröskla bilden med dina egna tröskelmatriser. T. ex. linjeraster (både horisontell och vertikal), spiralraster, och även en tröskelmatris av slumptal. 2 Tabellrastrering 2.1 Använd funktionen tabellrast för att tabellrastrera bilden. Det är en mycket enkel funktion som använder medelvärdet (summan) av varje 3 x 3 omgivning i inbilden som en index till ett rasteralfabet. Hur många grånivåer kan dessa representera? Jämför resultatet med resultat från föregående uppgifter.
4 2.2 Använd andra uppsättningar av punkter för varje 3 x 3 region i utbilden genom att ändra funktionen tabellrast. Hur kan olika uppsättningar påverka resultatet? Finns det en chans att kunna representera flera grånivåer med dessa 3 x 3 tabeller? Om nej, varför? Om ja, hur? 3 Rastrering med felspridning (Error diffusion) Rastrera bilden med hjälp av funktionen errordif. 3.1 Använd filtret som Floyd och Steinberg har föreslagit. Detta filter finns skrivet i help kommandot för errordif. Jämför nu resultatet med tidigare resultat. 3.2 Använd följande filter som ditt felfilter och rastrera bilden. Detta filter presenterades av Jarvis, Judice och Ninke (*1/ 48) 1 Begrunda skillnaderna mellan denna bild och bilden från tidigare uppgift.
5 3.3 Använd följande filter: Rastrera bilden med minst två filter som du själv konstruerar. Använd filter med en vikt respektive två vikter. 3.5 Lägg till lite brus på inbilden innan den rastreras med felspridningsmetoden. För att generera brus kan ni använda funktionen rand, men observera att bruset måste ha medelvärdet noll. Eftersom rand generar slumptal mellan noll och ett och använder likformigt spridning blir medelvärdet 0.5. Använd första felfiltret, dvs. det presenterat av Floyd och Steinberg, uppgift 3.1, och jämför resultaten före och efter tilläggningen av lämplig mängd av brus. 4 Iterativ rastrering Använd funktionen imcdp för att rastrera bilden med IMCDP metoden. Den här metoden gås kortfattat igenom under en föreläsning. Observera att det kan ta ett par - tre minuter innan resultatet är klart! Jämför resultatet med de från föregående uppgifter.
6 5 Färgrastrering En färgbild rastreras normalt genom att rastrera alla dess färgkanaler var för sig. Skriv en Matlabfunktion som läser in en färgbild och rastrerar bildens alla kanaler oberoende och med en och samma rastreringsmetod. Resultaten ska sedan läggas ihop för att få den slutgiltiga rastrerade färgbilden. Använd din funktion för att rastrera bilden musicians.tif med felspridning samt near-optimal.
Laboration 1. Grafisk teknik Rastrering. Sasan Gooran (HT 2004)
Laboration 1 Grafisk teknik ------------------------------------- Rastrering Sasan Gooran (HT 2004) Introduktion 1.0 Introduktion Den här laborationen måste förberedas innan laborationstillfället. Ett
Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2004)
Grafisk Teknik Rastrering Övningar med lösningar/svar Sasan Gooran (HT 24) Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är
DIGITAL RASTRERING. Sasan Gooran. 1/8/15 Grafisk teknik 1
DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto ppi: Antalet sampel per tum Digital bild 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):
DIGITAL RASTRERING. Sasan Gooran (HT 2003) Grafisk teknik 1
DIGITAL RASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2006-08-18 Grafisk teknik 2 ppi (pixels per inch)
Laboration 1. Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått. S. Gooran (VT2007)
Laboration 1 Grafisk produktion och tryckkvalitet (TNM015) Rastrering och objektiva kvalitetsmått S. Gooran (VT2007) Syfte: Denna laboration är till för att öka förståelsen för olika rastreringstekniker
DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran (HT 2003)
DIGITAL RASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2006-08-18 Grafisk teknik 2 ppi (pixels per inch)
ppi = 72 ppi = 36 ppi = 18 DIGITAL RASTRERING DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran (HT 2003)
ppi = 72 DIGITAL RASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 2006-08-18 Grafisk teknik 4 DIGITALA BILDER (pixelbaserad) ppi = 36 Skanning Foto Digital bild ppi: Antalet sampel per tum
Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)
Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 27 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
Medicinska Bilder, TSBB31. Lab: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab: Mätvärden på Medicinska Bilder Maria Magnusson, 22 Senaste updatering: september 25 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet Introduktion
Medicinska Bilder, TSBB31. Lab3: Mätvärden på Medicinska Bilder
Medicinska Bilder, TSBB3 Lab3: Mätvärden på Medicinska Bilder Maria Magnusson, Avdelningen för Datorseende Institutionen för Systemteknik Linköpings Universitet Introduktion I denna laboration ska vi göra
Laboration 1. Grafisk teknik (TNM059) Introduktion till Matlab. R. Lenz och S. Gooran (VT2007)
Laboration 1 Grafisk teknik (TNM059) Introduktion till Matlab R. Lenz och S. Gooran (VT2007) Introduktion: Denna laboration är en introduktion till Matlab. Efter denna laboration ska ni kunna följande:
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2
Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera
Flerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran (HT 2003)
DIGITAL RASTRERING Sasan Gooran (HT 2003) 2003-10-03 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2003-10-03 Grafisk teknik 2 ppi (pixels per inch)
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Ansiktsigenkänning med MATLAB
Ansiktsigenkänning med MATLAB Avancerad bildbehandling Christoffer Dahl, Johannes Dahlgren, Semone Kallin Clarke, Michaela Ulvhammar 12/2/2012 Sammanfattning Uppgiften som gavs var att skapa ett system
DIGITAL RASTRERING. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) Sasan Gooran
DIGITAL RASTRERING Sasan Gooran 1/8/15 Grafisk teknik 1 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 1/8/15 Grafisk teknik 2 ppi (pixels per inch) ppi (Inläsningsupplösning):
Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Grafisk teknik. Sasan Gooran (HT 2006)
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
TNM011 Grafisk teknik Laboration 3 - Färg
TNM011 Grafisk teknik Laboration 3 - Färg Martin Solli marso@itn.liu.se ITN, Linköpings Universitet HT 2006 Introduktion Laborationen handlar om sambandet mellan reflektansspektran, belysningar och den
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla
ppi = 72 ppi = 18 ppi = 36 DIGITALA BILDER (pixelbaserad) DIGITAL RASTRERING ppi (pixels per inch) Sasan Gooran (HT 2003)
DIGITALA BILDER (pixelbaserad) Skanning Sasan Gooran (HT 2003) Foto Digital bild ppi: Antalet sampel per tum 2006-11-14 Grafisk teknik 1 2006-11-14 Grafisk teknik 2 ppi (pixels per inch) ppi = 72 ppi (Inläsningsupplösning):
Grafisk Teknik. Färg. Övningar med lösningar/svar. Sasan Gooran (HT 2013)
Grafisk Teknik Färg Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar De här uppgifterna täcker en del av kursen
TNM059 Grafisk teknik Laboration 4 - Färg
TNM059 Grafisk teknik Laboration 4 - Färg Martin Solli Martin.Solli@itn.liu.se ITN, Linköpings Universitet Introduktion Laborationen handlar om sambandet mellan reflektansspektran, belysningar och den
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1
11 oktober 215 Miniprojekt 1 (5) Beräkningsvetenskap I/KF Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas
bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate
Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
MMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
4 Laboration 4. Brus och termo-emk
4 Laboration 4. Brus och termoemk 4.1 Laborationens syfte Detektera signaler i brus: Detektera periodisk (sinusformad) signal med hjälp av medelvärdesbildning. Detektera transient (nästan i alla fall)
TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5. Laboration 4 Lådplanering Exempel på layout, ett GUI-baserat program Frågor
TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5 Laboration 4 Lådplanering Exempel på layout, ett GUI-baserat program Frågor 1 Laboration 5 - Introduktion Syfte: Öva på självständig
TEM Projekt Transformmetoder
TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 27 oktober 2015 Sida 1 / 31 TANA17 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
Introduktion till Word och Excel
Introduktion till Word och Excel HT 2006 Detta dokument baseras på Introduktion till datoranvändning för ingenjörsprogrammen skrivet av Stefan Pålsson 2005. Omarbetningen av detta dokument är gjord av
Instruktion för laboration 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik ANL/TB SANNOLIKHETSTEORI I, HT07. Instruktion för laboration 1 De skrifliga laborationsrapporterna skall vara skrivna så att
DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse
Introduktion till kursen och MATLAB
Introduktion till kursen och MATLAB TNA005: Tillämpad matematik i teknik och naturvetenskap för ED1, KTS1, och MT1 vårterminen 2018 Berkant Savas Kommunikations- och transportsystem Institutionen för teknik
KURSPROGRAM MODELLERING AV DYNAMISKA SYSTEM, 5hp, period 4
AVDELNINGEN FÖR SYSTEMTEKNIK UPPSALA UNIVERSITET Bengt Carlsson March 16, 2012 KURSPROGRAM MODELLERING AV DYNAMISKA SYSTEM, 5hp, period 4 Lärare Namn: Hus Rum: Tel: Kursmoment: Bengt Carlsson 2 2211 4713119
repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna
Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,
Kursanalys DD1312 hösten 2008
Kursanalys DD1312 hösten 2008 Författare: Vahid Mosavat Nedan följer en kursanalys av kursen programmeringsteknik och matlab för I1. Kursanalysen är framtaget av kursledarens anteckningar under kursens
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Grafer och grannmatriser
Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på
Laboration 4 R-versionen
Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner
Laboration 1, M0039M, VT16
Laboration 1, M0039M, VT16 1 Förberedelser Ove Edlund, Staffan Lundberg LTU (1) Gör dig bekant med Matlab-manualen finns för nedladdning på Fronter. (2) Läs igenom laborationens teoridel, avsnitt 2 nedan.
Laboration: Vektorer och matriser
Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix
Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:
IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its
MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.
Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk
TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26
TAIU07 Matematiska beräkningar med MATLAB för MI Fredrik Berntsson, Linköpings Universitet 15 januari 2016 Sida 1 / 26 TAIU07 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet i att
MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:
DATORINTRODUKTION. Laboration E850-2000 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren 2000-03-17 specialversion inför kursstart Elektronik och mätteknik 2000 DATORINTRODUKTION Laboration E850-2000 ELEKTRO Personalia: Namn: Kurs:
Funktionsteori Datorlaboration 2
Funktionsteori Funktionsteori Datorlaboration 2 Fourierserier Inledning Största delen av denna laboration handlar om Fourierserier, men vi startar med seriesummation. Vissa filer kan du behöva hämta på
TSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Matriser och vektorer i Matlab
CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
1 Förberedelseuppgifter
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli
Laboration 2: Styrkefunktion samt Regression
Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens
Digital Signalbehandling i Audio/Video
Digital Signalbehandling i Audio/Video Institutionen för Elektrovetenskap Laboration 1 (del 2) Stefan Dinges Lund 25 2 Kapitel 1 Digitala audioeffekter Den här delen av laborationen handlar om olika digitala
Schemaunderlag för Programmering, grundkurs (TDDB18)
Allmänt Schemaunderlag för Programmering, grundkurs (TDDB18) Under VT1 håller jag (Torbjörn) tre kurser. Detta gör att det inte är lätt att få till ett optimalt schema för er studenter (tyvärr). En variant
2 Laborationsuppgifter, upptagetsystem
Laboration 2 i Kösystem Denna laboration behandlar upptagetsystem och könät. När man kommer till en uppgift som är markerad med en stjärna (*) är det tänkt att man ska visa sina resultat för handledaren
Processidentifiering och Polplacerad Reglering
UmU/TFE Laboration Processidentifiering och Polplacerad Reglering Introduktion Referenser till teoriavsnitt följer här. Processidentifiering: Kursbok kap 17.3-17.4. Jämför med det sista exemplet i kap
DIGITAL RASTRERING Sasan Gooran. DIGITALA BILDER (pixelbaserad) ppi (pixels per inch) sasgo@itn.liu.se www.itn.liu.se/~sasgo26/kth
DIGITAL RASTRERING Sasan Gooran sasgo@itn.liu.se www.itn.liu.se/~sasgo26/kth 2/10/15 DIGITALA BILDER (pixelbaserad) Skanning Foto Digital bild ppi: Antalet sampel per tum 2/10/15 2 ppi (pixels per inch)
Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).
Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta
SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3
Matematisk Statistik SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3 1 Introduktion Denna demonstration är inte poänggivande, men utgör en förberedelse för den andra
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
FYTA12 VT11 halvtid, kursutvärdering
FYTA12 VT11 halvtid, kursutvärdering FYTA12 VT11 halvtid, kursutvärdering Översikt Totalt antal svar 5 Filter nej Gruppera efter fråga nej Del 1. Allmänna omdömen Ge dina omdömen på en skala 1-5. Observera
7 MÖNSTERDETEKTERING
7 MÖNSTERDETEKTERING 7.1 Korrelation Korrelation av två bilder f(x,y) och g(x,y) kan språkligt sett betyda att man gör just det som utsäges av (7.1). Bilderna läggs alltså på varandra med den ena bilden
Demonstration av laboration 2, SF1901
KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion
Tentamen Bildanalys (TDBC30) 5p
Tentamen Bildanalys (TDBC30) 5p Skrivtid: 9-15 Hjälpmedel: kursboken Digital Image Processing Svara på alla frågor på nytt blad. Märk alla blad med namn och frågenummer. Disponera tiden mellan frågorna
Bildbehandling i spatialdomänen och frekvensdomänen
Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström
STOCKHOLMS UNIVERSITET 2001-10-22 MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström GRUNDLÄGGANDE MATLAB-TRÄNING för den som aldrig har arbetat med Matlab förut A. Matlabs allmänna
Laboration 1: Elementära bildoperationer
Skolan för Datavetenskap och Kommunikation, KTH Danica Kragic, Tony Lindeberg 2D1421 Bildbehandling och Datorseende Laboration 1: Elementära bildoperationer Syftet med denna laboration är att du ska bekanta
Mätteknik (ESSF10) Kursansvarig: Johan Nilsson Översiktligt kursinnehåll
Biomedicinsk teknik Mätteknik (ESSF10) Kursansvarig: Johan Nilsson (johan.nilsson@bme.lth.se) Översiktligt kursinnehåll Metoder för mätning av elektriska storheter som: Spänning, Ström, Impedans, Tid,
Ljusets böjning & interferens
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska
Elektronik EITA35: Elektronik. Erik Lind
Elektronik 2017 EITA35: Elektronik Erik Lind 1 Elektronik 2017 Föreläsning 0 Lite introduktion till elektronik Kort laboration 2 Elektronik Hur vi utnyttjar elektrisk energi för att göra nyttiga saker
Linjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT)
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man
DIGITAL FÄRGRASTRERING
DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral
DIGITAL FÄRGRASTRERING FÄRG. SPD Exempel. Sasan Gooran (HT 2003) En blåaktig färg
DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral
TSKS08 Introduktionskurs i Matlab Föreläsning 2
TSKS08 Introduktionskurs i Matlab Föreläsning 2 Nyttiga tips inför de fortsatta laborationsuppgifterna samt allmän demonstration/förevisning om Matlab. Spara allt man skriver i kommandofönstret till en
Linjära ekvationssystem i Matlab
CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Fingerprint Matching
Fingerprint Matching Björn Gustafsson bjogu419 Linus Hilding linhi307 Joakim Lindborg joali995 Avancerad bildbehandling TNM034 Projektkurs Biometri 2006 1 Innehållsförteckning 1 Innehållsförteckning 2
Laboration 1 Introduktion till Visual Basic 6.0
Laboration 1 Introduktion till Visual Basic 6.0 Förberedelse Förbered dig genom att läsa föreläsningsanteckningar och de kapitel som gåtts igenom på föreläsningarna. Läs även igenom laborationen i förväg.
Bildmosaik. Bilddatabaser, TNM025. Anna Flisberg Linne a Mellblom. linme882. Linko pings Universitet
Bildmosaik Bilddatabaser, TNM025 Linko pings Universitet Anna Flisberg Linne a Mellblom annfl042 linme882 28 maj 2015 Innehåll 1 Introduktion 2 2 Metod 2 2.1 Features..............................................