Signalbehandling. Andreas Fhager
|
|
- Isak Göransson
- för 8 år sedan
- Visningar:
Transkript
1 Signalbehandling Andreas Fhager
2 Innehåll Modellering av fysiskt fenomen Analoga/digitala signaler Nervsignaler Periodiska funkboner/fourierserie Frekvensspektrum Filter Faltning
3 Modell av fysiskt fenomen Fysiska system modelleras med matemabska ekvaboner Newtons 2 a lag är eh exempel på en matemabsk modell av eh fysiskt system: f ( t) = M d 2 x( t) dt 2 KraL = massa * accelerabon TG13, kap 1.1
4 Modell av fysiskt system En elektrisk krets är eh annat exempel på eh fysisk system Denna krets beskrivs av en matemabsk modell: L di( t) dt + Ri( t) + 1 C t i( τ ) d τ = v( t) TG13, kap 1.1
5 Modellering av fysiskt system Arbetsgång vid matemabsk modellering: 1. Utveckla en matemabsk modell 2. Lös ekvabonerna 3. Gör experiment 4. Jämför resultatet från experimentet med lösningen av ekvabonerna 5. FörbäHra eventuellt modellen TG13, kap 1.1
6 Modellering av fysiskt fenomen Fysiska signaler modelleras med matemabska funkboner v(t) En spänning ger signal Bll högtalaren TG13, kap 1.1
7 Signalbehandling Innan signalen går in i högtalaren vill man i regel förstärka den (signalbehandling): Man kan bygga en effekbv förstärkare med hjälp av en OP- amp. TG13, kap 1.2
8 Två typer av signaler KonBnuerlig signal = Analog signal Diskret signal = Digital signal TG13, kap 1.1
9 Digital Bll analog konvertering En DAC tar emot eh binärt tal varje T sekund och matar ut en konstant spänning Blls nästa binära tal tas emot. TG13, kap 1.3
10 Hur låter utsignalen från en DAC? Verkligheten, tex tal och musik, består av analoga signaler. Men en CD lagrar digitala signaler och från en DAC får vi styckvis konstanta signaler ut. DeHa kan förvränga ljudet. Testa med hhp:// I appleten: Använd förinställda värden, välj sine, välj sound. Från början hörs då en ren sinuston. Om vi trycker upprepade gånger på resample blir signaler mer och mer styckvis konstant. Hur låter det? Några frågor ah fundera över: Är denna egenskap hos en DAC eh problem då vi spelar en CD- skiva? Hur kan vi lösa problemet?
11 Analog Bll digital konvertering: Komparator En vikbg byggsten i en ADC är en komparator. FunkBonen är sådan ah om v i (t)>v r (t) blir utsignalen en logisk 1. (T.ex. 5 V). Om v i (t)<v r (t) blir utsignalen en logisk 0. (0 V) TG13, kap 1.3
12 Analog Bll digital konvertering: Counter- ramp ADC Räknaren stegar upp. Räknarsignalen jämförs i en komparator med den analoga signalen. När de är lika är räknarsignalen lika med den digitala utsignalen TG13, kap 1.3
13 Sampling av telefonsignal Ovan finns eh exempel på problemabken i eh telefonsystem: Ju tätare sampels desto bähre representabon av den analoga signalen. DeHa leder Bll bähre samtalkvalitet. Glesare sampling ger å andra sidan utrymme för fler samtal på samma linje. TG13, kap 1.3
14 Sampling av telefonsignal Signalen från förra sidan indikeras i denna bild av ehorna ovanför staplarna. Alltså finns utrymme för fler samtal (2- n) i samma tråd. Så här kan signalen se ut i tråden Figure 1.23 Time- division mulbplexing TG13, kap 1.3
15 Transmission av telefonsignaler En mulbplexer tar in signalen från flera telefoner och skickar ut dem på ledningen. En demulbplexer fördelar signalerna i andra änden. TG13, kap 1.3
16 Krets för datainsamling Så här kan en typisk krets för datainsamling vara designad TG13, kap 1.3
17 Samplingsintervall Hur samplingsintervallet påverkar en signal kan vi testa i följande java- applet: hhp:// Välj input = valfrih filter = none Testa hur det låter vid olika Sampling Rate
18 Nervsignaler Bilden visar en typisk nervcell. Vi är intresserade av hur nervsignalerna i cellen beter sig. TG 1, sid 527
19 AkBonspotenBal En sbmuli vid Bden 0 ger en depolarisering av membranpotenbalen Om ingen annan mekanism fanns skulle membran- potenbalen sakta återgå Bll ursprungsvärdet. (den gröna kurvan). Men Na + kanalerna öppnas och släpper igenom Na + joner som förstärker signalen. (den röda kurvan) Kanalerna inakbveras och stängs och är sen redo för en ny sbmuli. TG 1, sid 529
20 PropagaBon av akbonspotenbal längs axonen Nervsignalen propagerar med hjälp av en serie av akbonspotenbaler som steg för steg triggar igång nya akbonspotenbaler längre bort på axonen. Signalen kan bara propagera i en riktning elersom inakbverade Na + kanaler förhindrar spridning bakåt. TG 1, sid 530
21 Myelinesering av nervtrådar Myelinesering av nervtråden ökar dramabskt propagabons- hasbgheten av nersignaler MulBpel scleros är en sjukdom där myelinet skadas, DeHa gör ah nervsignalerna propagerar långsammare. Konsekvenserna kan bli dramabska. TG 1, sid 532
22 Mätning av ström i Na + kanaler Med tekniken patch- clamp recording kan ström genom enskilda Na + kanaler mätas. En pipeh ansluts täh mot nervcellen och därmed kan man fånga upp och mäta de joner som passerar genom enskilda kanaler. TG 1, sid 533
23 Mätning av ström i Na + kanaler (A) Depolarisering av membranet (B) Mätning av strömmen i tre enskilda Na + kanaler med hjälp av patch- clamp tekniken (C) Medelvärdesbildad ström över 144 kanaler TG 1, sid 533
24 Modellering av signaler Kom ihåg från början av föreläsningen: Fysiska system modelleras med matemabska ekvaboner Fysiska signaler modelleras med matemabska funkboner En vik0g klass av funk0oner är periodiska, tex en EKG- signal TG 13, kap 4.1
25 Hur modellerar vi denna signal matema0skt? TG 13, kap 4.1 Periodiska signaler 1. En periodisk funkbon existerar för alla Bder. 2. En periodisk funkbon återupprepar sig med en viss periodbd T (och då även nt, där n är eh heltal). 3. Minsta periodbden kallas för den fundamentala periodbden T 0.
26 Frekvens En signals fundamentala frekvens definieras som AlternBvt f = 0 1 T 0 ω = 2πf = T π 0 TG 13, kap 4.1
27 ApproximaBon av periodisk signal Beroende på Bllämpning kan det vara prakbskt ah använda eh approximabvt uhryck på signalen. Kanske en sinus- funkbon är Bllräckligt i deha fall (men det beror på Bllämpningen): TG 13, kap 4.1
28 ApproximaBon av periodisk signal Fyrkantpuls: ApproximaBon med en sinussignal: FelfunkBon; den ska vara så liten som möjligt. Men vi är fria ah bestämma med vilket måh vi mäter. TG 13, kap 4.1
29 Testa på hhp:// I appleten: Välj en signalform, dra i reglaget Number of Terms för ah se hur man med fler och fler sinus/cosinustermer får en allt bähre approximabon. TG 13, kap 4.1 Fourierserie Med fler än bara en sinussignal kan vi bygga allt bähre approximaboner av en signal. ApproximaBon av en fyrkantvåg med: 1 sinusterm 2 sinustermer
30 Fourierserien på matemabsk form En reell periodisk signal kan uhryckas på tre alternabva säh jk 0 x( t) = C e ω k= k t ; där C x( t) = C0 + 2Ck cos( kω 0t + θk ) k= 1 x( t) = k= 1 k = C * k [ A coskω t + B kω t] A0 + k 0 k sin 0 Återstår ah hiha konstanterna A k, B k, C k, θ k för olika specifika funkboner. TG 13, kap 4.2
31 Fourierserien på matemabsk form Man kan visa ah konstanterna C k kan beräknas ubfrån den signal x(t) som man vill approximera C k = 1 T 0 T 0 x( t) e jkω t 0 dt 1 C 0 = T 0 T 0 x( t) dt TG 13, kap 4.2
32 Frekvensspektrum Genom ah ploha koefficienterna C k (eller A k, B k, θ k )som funkbon av frekvensen får vi vad som kallas eh frekvensspektrum Till höger visas frekvensspektrumet för en fyrkantpuls TG 13, kap 4.3
33 Fourierserier Man kan beräkna Fourierserier för alla möjliga olika funkboner. Exempelvis de som visas här. TG 13, kap 4.3
34 Filtrering Fourierserier och Fourieranalys är eh användbart verktyg då man analyserar olika system. Nedan eh exempel på hur eh system som matas med en fyrkantvåg svarar med ah mata ut en förändrad signal. Denna process kallas filtrering. Fourieranalysen kan användas för ah beskriva denna process. TG 13, kap 4.3
35 Filtrering i en pendel En pendelrörelse beskrivs av variabeln θ(t). Men kralen som säher igång rörelsen beskrivs av f(t). KraLen innehåller högre frekvenskomponenter än pendelrörelsen som beskrivs av en sinussignal. Pendeln kan alltså betraktas som eh filter. TG 13, kap 4.3
36 Karakterisering av filter- Bodediagram TG 8, kap II
37 Karakterisering av filter- Bodediagram PloHar nu H(ω) och ϕ(ω), (använder även logaritmisk skala). Denna ploh visar hur överföringsfunkbonen ser ut vid olika frekvenser. TG 8, kap II
38 Diskreta filter / FIR- filter FIR (Finite Impulse Response) I eh FIR filter är utsignalen en viktad summa av insignalen. TG 14, sid 101
39 Glidande medelvärde EH ola användbart exempel på FIR filter är eh glidande medelvärde. Det beskrivs matemabskt som x(n) y(n) TG 14, sid 102
40 Glidande medelvärde Den övre plohen visar en funkbon som filtreras med glidande medelvärde 3 punkters glidande medelvärde 7 punkters glidande medelvärde TG 14, sid 106
41 Egenskaper hos filter EH filter som bara använder historiska värden kallas eh kausalt filter. Endast kausala filter kan användas i realbdsbllämpningar. Icke kausala filter kräver ah data finns lagrad. TG 14, sid 104
42 Impulsrespons EH filter kan karakteriseras fullständigt genom ah skicka in en impuls (delta- puls, δ[n]) och studera utsignalen, h[n].
43 Impulsrespons, 3pt glidande medelvärde Skickar vi in en delta- puls (bilden Bll vänster) i eh filter som beräknar eh 3 punkters glidande medelvärde får vi följande utsignal, (bilden Bll höger). FunkBonen h[n] kallas för impulsrespons och utgör en fullständig karakterisering av filtret. Insignal, δ[n- 2] Utsignal, h[n]
44 Faltning Generellt FIR- filter Filtret för glidande medelvärde är eh specialfall av den allmäna beskrivningen på eh FIR- filter som ges av: Denna ekvabon kan skrivas på generell form som och den kallas för faltning TG 14, sid 110
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
Frekvensplanet och Bode-diagram. Frekvensanalys
Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen
Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2
7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Välkomna till TSRT19 Reglerteknik Föreläsning 5. Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram
Välkomna till TSRT19 Reglerteknik Föreläsning 5 Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram Sammanfattning av förra föreläsningen 2 Givet ett polpolynom med en varierande parameter, och
Föreläsning 10, Egenskaper hos tidsdiskreta system
Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering
EXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG
FÖRELÄSNING EXEMPEL : ARTVARIATION Kurs- och transform-översikt. Kursintroduktion med typiska signalbehandlingsproblem och kapitelöversikt. Rep av transformer 3. Rep av aliaseffekten Givet: data med antal
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Digital signalbehandling Digitalt Ljud
Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1
Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Grundläggande signalbehandling
Beskrivning av en enkel signal Sinussignal (Alla andra typer av signaler och ljud kan skapas genom att sätta samman sinussignaler med olika frekvens, Amplitud och fasvridning) Periodtid T y t U Amplitud
Elektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Ulrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Ulrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Samtidig visning av alla storheter på 3-fas elnät
Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
AD-DA-omvandlare. Mätteknik. Ville Jalkanen. ville.jalkanen@tfe.umu.se 1
AD-DA-omvandlare Mätteknik Ville Jalkanen ville.jalkanen@tfe.umu.se Inledning Analog-digital (AD)-omvandling Digital-analog (DA)-omvandling Varför AD-omvandling? analog, tidskontinuerlig signal Givare/
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Tentamen i Signaler och kommunikation, ETT080
Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Tillämpad Fysik Och Elektronik 1
FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK
Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010
Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Signaler några grundbegrepp
Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Föreläsning 11 Reglerteknik AK
Föreläsning 11 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KH 4 oktober, 2016 2 Förra gången: Introduktion Alternativa regulatorstrukturer Dagens program: Implementering: Regulator System
TSIU61: Reglerteknik. Frekvensbeskrivning Bodediagram. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 5 Frekvensbeskrivning Bodediagram Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 5 Gustaf Hendeby HT1 2017 1 / 1 Innehåll föreläsning 5 ˆ Sammanfattning av föreläsning
Föreläsning 11. Reglerteknik AK. c Bo Wahlberg. 8 oktober Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 11 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 8 oktober 2014 Introduktion Förra gången: Alternativa regulatorstrukturer Dagens program:
FREKVENSSPEKTRUM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1
FREKVENSSPEKTRUM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET JEAN BATISTE JOSEPH FOURIER 768-83 Fourier utveclade metoden att besriva periodisa förlopp genom summering av vitade ortogonala funtioner
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Moment 1 - Analog elektronik. Föreläsning 4 Operationsförstärkare
Moment 1 - Analog elektronik Föreläsning 4 Operationsförstärkare Jan Thim 1 F4: Operationsförstärkare Innehåll: Introduktion Negativ återkoppling Applikationer Felsökning 2 1 Introduktion Operationsförstärkaren
Andra ordningens kretsar
Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar
Tentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
Laboration 1: Aktiva Filter ( tid: ca 4 tim)
091129/Thomas Munther IDE-sektionen/Högskolan Halmstad Uppgift 1) Laboration 1: Aktiva Filter ( tid: ca 4 tim) Vi skall använda en krets UAF42AP. Det är är ett universellt aktivt filter som kan konfigureras
Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans.
Föreläsning 3 20071105 Lambda CEL205 Analoga System Genomgång av operationsförstärkarens egenskaper. Utdelat material: Några sidor ur datablad för LT1014 LT1013. Sidorna 1,2,3 och 8. Hela dokumentet (
7. Sampling och rekonstruktion av signaler
Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
TENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Försättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01
Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att
TSIU61: Reglerteknik. de(t) dt + K D. Sammanfattning från föreläsning 4 (2/3) Frekvensbeskrivning. ˆ Bodediagram. Proportionell }{{} Integrerande
TSIU6 Föreläsning 5 Gustaf Hendeby HT 207 / 25 Innehåll föreläsning 5 TSIU6: Reglerteknik Föreläsning 5 Frekvensbeskrivning Bodediagram Gustaf Hendeby ˆ Sammanfattning av föreläsning 4 ˆ Introduktion till
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date
AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
A/D- och D/A- omvandlare
A/D- och D/A- omvandlare Jan Carlsson 1 Inledning Om vi tänker oss att vi skall reglera en process så ställer vi in ett börvärde, det är det värde som man vill processen skall åstadkomma. Sedan har vi
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Laboration - Va xelstro mskretsar
Laboration - Va xelstro mskretsar 1 Introduktion och redovisning I denna laboration simuleras spänning och ström i enkla växelströmskretsar bestående av komponenter som motstånd, kondensator, och spole.
Introduktion. Torsionspendel
Chalmers Tekniska Högskola och Göteborgs Universitet November 00 Fysik och teknisk fysik Kristian Gustafsson och Maj Hanson (Anpassat för I1 av Göran Niklasson) Svängningar Introduktion I mekanikkursen
Operationsfo rsta rkarens parametrar
Institutionen för tillämpad fysik och elektronik Umeå universitet 2016-01-15 Agneta Bränberg, Ville Jalkanen Laboration Operationsfo rsta rkarens parametrar Analog elektronik II HT16 1 Introduktion Operationsförstärkare
Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-
Analogt och Digital Bertil Larsson Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter
Ett urval D/A- och A/D-omvandlare
Ett urval D/A- och A/D-omvandlare Om man vill ansluta en mikrodator (eller annan digital krets) till sensorer och givare så är det inga problem så länge givarna själva är digitala. Strömbrytare, reläer
Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser
Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser Elektronik för D ETIA01 Andrés Alayon Glasunov Palmi Thor Thorbergsson Anders J Johansson Lund Mars 2009 Laboration
Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla
Enchipsdatorns gränssnitt mot den analoga omvärlden
Agenda Enchipsdatorns gränssnitt mot den analoga omvärlden Erik Larsson Analog/Digital (AD) omvandling Digital/Analog (DA) omvandling Sampling, upplösning och noggrannhet Laborationsuppgift.5 Motivation.5.5
AD-/DA-omvandlare. Digitala signaler, Sampling och Sample-Hold
AD-/DA-omvandlare Digitala signaler, Sampling och Sample-Hold Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt - Digitalt Analogt få komponenter
Frekvensbeskrivning, Bodediagram
Innehåll föreläsning 5 Reglerteknik I: Föreläsning 5 Frekvensbeskrivning, Bodediagram Fredrik Lindsten fredrik.lindsten@it.uu.se Kontor 2236, ITC Hus 2, Systemteknik Institutionen för informationsteknologi
DIGITALA FILTER DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1
DIGITALA FILTER TILLÄMPAD FYIK OCH ELEKTRONIK, UMEÅ UNIVERITET 1 DIGITALA FILTER Digitala filter förekommer t.ex.: I Photoshop och andra PC-programvaror som filtrerar. I apparater med signalprocessorer,
Miniräknare, formelsamling i signalbehandling.
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-4 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: Sparta B, D Hjälpmedel: Miniräknare, formelsamling i signalbehandling.
Sammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
Analogt och Digital. Viktor Öwall. Elektronik
Analogt och Digital Viktor Öwall Analoga och Digitala Signaler Analogt Digitalt 001100101010100000111110000100101010001011100010001000100 t Analogt kontra Digitalt Analogt få komponenter låg effektförbrukning
Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar
Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder
Signalbehandling, förstärkare och filter F9, MF1016
Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, inledning Förstärkning o Varför förstärkning. o Modell för en förstärkare. Inresistans och utresistans o Modell för operationsförstärkaren
Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1
Ellära 2, ema 3 Ville Jalkanen illämpad fysik och elektronik, UmU ville.jalkanen@umu.se 1 Innehåll Periodiska signaler Storlek, frekvens,... Filter Överföringsfunktion, belopp och fas, gränsfrekvens ville.jalkanen@umu.se
Svaren på förståelsedelen skall ges på tesen som skall lämnas in.
Tentamen i Medicinsk teknik EEM065 för Bt2. 2008-01-17 kl. 8.30-12.30 Tillåtna hjälpmedel: Tabeller och formler, BETA, Physics Handbook, Formelsamling i Elektromagnetisk fältteori Formelsamling i Elektriska
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Tentamen i Elektronik, ESS010, den 15 december 2005 klockan 8:00 13:00
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, den 5 december 005 klockan 8:00 3:00 Uppgifterna i tentamen ger totalt 60p. Uppgifterna är inte ordnade på något
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
SF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till