5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER

Storlek: px
Starta visningen från sidan:

Download "5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER"

Transkript

1 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv unkion är okså en primiiv unkion ör alla konsaner, eersom derivaan av en konsan allid är noll. Exempel. Om vi ser på en irkulär kon med boenradie oh höjd kan vi se på volymen av den delkon som har höjd som en unkion. Om vi deriverar unkionen Dae: 2 okober år vi "!#%! 1

2 6, 2 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER '!() Vi kan olka värsnisarea på avsånd rån oppen år vi a oh därmed är +!-, 0, som volymen av en skiva med joklek!. Om.!#% 1.!#% När vi låer!-243 krympa mo noll år vi a Eersom vi nu ve a 0 5.!#% /, 7698 ;:= måse vi lea eer en primiiv unkion ill år vi när vi deriverar (?@. Enlig våra uräkningar är 76 oh allså måse ör någon konsan. Nu ve vi okså a volym som '6 E46. Vi ve a vi år #? A3B C3 " "!#+!.!# 1.2. negraler. Om vi har en unkion med en primiiv unkion.g JK ML% ANO är konens när vi deriverar (?, oh därmed en primiiv unkion ill, vilke ger DC3 oh vi år hela konens kan vi låa oh vi kan olka dea uryk som arean mellan graen ör på inervalle N9PQ7PRL oh -axeln. Vi skriver oa okså %JKST VU G ML% Exempel. Vi har enlig ovan a?@ är en primiiv unkion ill 'W 3? KXZ Z MNO oh därmed Tolkningen av dea som en areaberäkning ger a arean av område mellan -axeln oh kurvan [ 4 på inervalle 3 P\]P är.

3 _ 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER Roaionsvolymer. Om vi ser illbaka på exemple med konen ser vi a vi egenligen ine använ oss av a de är råga om en irkulär kon anna än när vi har beräkna. Vi år i vilke all som hels a där är värsnisarean på avsånd rån oppen. Vi har därör a \_ E ^ A3B JK Om vi isälle hade ha en roaionskropp som ås genom a roera en kurva [ ` % -axeln, hade värsnisarean vari given av oh volymen blir E a46b 6b Om vi exempelvis ser e klo som a kurvan [ R e =d1p\]p4d år vi g 6i " #? d j KS 6Ad j JK'6"k #d h h 5l h '6md? dn? e6 j6o=d? o=dkp? dn?9dq?^ dq?9dn? 6mdn? m96 46 sr B run roerar kring -axeln på inervalle 1.4. Dierenser oh summor. Vi kan jämöra sambande mellan derivaa oh inegral med sambande mellan dierenser oh summor. Om vi har en öljd av al, exempelvis 3u wvuyxu kan vi bilda dierenser, eller skillnader, genom ny öljd { { ~} 3, r, v, osv oh år en är är de klar a om vi kommer ihåg de örsa ale i den örsa öljden, oh sedan bara dierenserna, kan vi å illbaka hela den örsa öljden genom a summera: Riar vi upp de med ruor år vi vu xu ~ ƒƒ Vi kan nu olka den örsa öljden som anale ruor ill vänser om en viss linje.

4 Ž! Ž 4 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 2. PARTELL NTEGRATON De inns inga meoder som allid ungerar ör a inna primiiva unkioner, eller ill a beräkna besämda inegraler. Däremo inns några ekniker som kan användas ör a i de all de går omorma probleme ill e enklare problem. E sådan är pariell inegraion, som är e slags omvändning av produkregeln vid derivering. Som vi ve är derivaan av en produk,! i V, given av V ˆ m. p Om vi nu sår inör a Š inna en primiiv unkion ill en produk V oh redan känner en primiiv unkoin,, ill kan vi örsöka vända på sambande oh å V ˆ p V p Œ Eersom vi nu ser a är en primiiv unkion ill den örsa ermen kan vi inna en primiiv unkion ill p p om vi okså kan inna en primiiv unkion ill. Vår örhoppning är a dea problem i någon mening är läare än de ursprungliga. Exempel. Om vi är inresserade av a beräkna Ž Œ / K kan vi örs inna en primiiv unkion ill Œ /, som ges av ] K J, oh därmed å + / K T ^p] # VU Ž o] š K JK 0 46ioœo ŒEj3 p m T + 0 U Ž '6ž" är blev de senare probleme enklare ör a unkionen ine längre är en produk av e polynom med en rigonomerisk unkion uan en ren rigonomerisk unkion vars primiiva unkion vi väl kände ill. Så behöver de ine allid bli på en gång. bland kan man behöva upprepa proeduren lera gånger. Övning 2.1. Beräkna inegralerna oh med hjälp av pariell inegraion. Övning 2.2. Beräkna inegralerna Ž oh Ž med hjälp av pariell inegraion. 7W 'W (Ÿ h K Ÿ h K Œ / K K J K p

5 N d N? 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER Variabelbye. Vi har se a man ibland kan använda produkregeln baklänges oh å en meod ör a inegrera en produk. På samma sä kan vi ibland använda kedjeregeln baklänges ör a inegrera en sammansa unkion. Anag a vi vill inegrera uöra en inegral är inegranden skulle se läare u om vi uryke den oberoende variabeln som en unkion i en annan variabel, dvs S4 ˆ. Vi behöver då se hur kejderegeln skulle kunna användas. Om nu var en primiiv unkion ill % skulle vi ha a +Œ +V E Om vi ivll använda dea kan vi inegrera båda sidor oh år då ALE AN.G %JKX De beyder a vi kan änka oss a vi har gjor öljande örändringar " ' K ' o ' A Lª' A Œ+ +p " ˆ +V J Exempel. ör a beräkna ör posiiva värden på N kan de vara inressan a göra variabelbye När vi deriverar år vi oh därmed leder variabelbye ill X 7 E K 7 J 7 7 M3K j 9N vilke gör a j K «p h «p h kp l «p h Ad N?p

6 N d W Ÿ l 6 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER Vi kan okså göra variabelbye X vilke ger e K oh år då 4 ˆ K 4 4 ˆAN 4 ˆ d k{ Ad?p J Ad d 9N?p Övning 2.3. Använd variabelbye S Œ ör a beräkna inegralerna K e oh Övning 2.4. Använd variabelbye 7W Œ / "Ž oh Ž Övning 2.5. Använd variabelbye Ÿ "Ž j K ör a beräkna inegralerna K? K š K y B ör a beräkna inegralen gÿ K W

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

9. Diskreta fouriertransformen (DFT)

9. Diskreta fouriertransformen (DFT) Arbesmaerial 6, Signaler&Sysem I, 2003/E.. 9. Diskrea ourierransormen (DF) 9.1 eriodicie pulsåg Av 6.3(i), arb.mar.4, sid 50, ramgick a ourierransormen (F) av en unkion är e pulsåg X[k]δ( k/) med pulsavsånd

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och

Läs mer

Lösningar till Matematisk analys IV,

Lösningar till Matematisk analys IV, Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Ordinära dierenialekvaioner ODE:er sean@i.uu.se I is a ruism ha nohing is permanen excep change. - George F. Simmons ODE:er är modeller som beskriver örändring oa i iden Modellen är beskriven i orm av

Läs mer

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1 LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 494 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsäningar som ges här är ine bindande för sudeneamensnämndens bedömning Censorerna besluar om de krierier

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Differentialekvationssystem

Differentialekvationssystem 3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2

= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2 Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.

Läs mer

FAQ. frequently asked questions

FAQ. frequently asked questions FAQ frequenly asked quesions På de följande sidorna har jag samla ihop några av de frågor jag under årens lopp få av sudener när diverse olika problem uppså i arbee med SPSS. De saisiska problemen har

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. De flesa av övningarna har, om ine lösningar, så i

Läs mer

Hur simuleras Differential-Algebraiska Ekvationer?

Hur simuleras Differential-Algebraiska Ekvationer? Hur simuleras Differenial-Algebraiska Ekvaioner? Jonas Elbornsson December 2, 2000 1 Inledning Dea är en sammanfaning av meoder för simulering av Differenial-Algebraiska Ekvaioner (DAE) för kursen i Modellering

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form

Läs mer

Om de trigonometriska funktionerna

Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi

Läs mer

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1 ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

Biomekanik, 5 poäng Kinetik Härledda lagar

Biomekanik, 5 poäng Kinetik Härledda lagar Uöver Newons andra lag, kraflagen, finns också andra samband som kan användas för a lösa olika problem Bland dessa s.k. härledda lagar finns Arbee Energisamband Impuls Rörelsemängdssamband (Impulsmomen

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

1 Elektromagnetisk induktion

1 Elektromagnetisk induktion 1 Elekromagneisk indukion Elfäl accelererar laddningar och magneiska fäl ändrar laddningars rörelserikning. en elekrisk kres är de baerie som gör arbee på elekronerna som ger upphov ill en sröm i kresen.

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

Laborationstillfälle 4 Numerisk lösning av ODE

Laborationstillfälle 4 Numerisk lösning av ODE Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner

Läs mer

Demodulering av digitalt modulerade signaler

Demodulering av digitalt modulerade signaler Kompleeringsmaeriel ill TSEI67 Telekommunikaion Demodulering av digial modulerade signaler Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping Februari 27 No: Denna uppsas

Läs mer

m Animering m Bilder m Grafik m Diskret representation -> kontinuerlig m En interpolerande funktion anvšnds fšr att

m Animering m Bilder m Grafik m Diskret representation -> kontinuerlig m En interpolerande funktion anvšnds fšr att NŒgra illšmpningar Inerpolaion Modellfunkioner som saisfierar givna punker m Animering l m Bilder l l ršrelser,.ex. i ecknad film fšrger resizing m Grafik m Diskre represenaion -> koninuerlig 2 m Vi kšnner

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes

Läs mer

Tentamensskrivning i Matematik IV, 5B1210.

Tentamensskrivning i Matematik IV, 5B1210. Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

Kvalitativ analys av differentialekvationer

Kvalitativ analys av differentialekvationer Analys 360 En webbaserad analyskurs Grundbok Kvaliaiv analys av differenialekvaioner Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Kvaliaiv analys av differenialekvaioner 1 (10) Inrodukion De

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie. Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.

Läs mer

Funktionen som inte är en funktion

Funktionen som inte är en funktion Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen

Läs mer

VII. Om de trigonometriska funktionerna

VII. Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok VII. Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com VII. Om de rigonomeriska funkionerna (3) Inrodukion I de här kapile

Läs mer

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer: Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

uhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a

uhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a Vågekvaionen Vågekvaionen beskriver vågors ubredning vare sig de gäller ljudvågor, elekromagneiska vågor eller vibraioner i en sräng. Lå oss för enkelhes skull änka oss en horisonell uppspänd sräng som

Läs mer

Lite grundläggande läkemedelskinetik

Lite grundläggande läkemedelskinetik Lie grundläggande läkemedelskineik Maemaisk Modellering med Saisiska Tillämpningar (FMAF25) Anders Källén Inrodukion Farmakokineik eller mer svensk läkemedelskineik är en vikig disiplin vid uveklande av

Läs mer

Skuldkrisen. Världsbanken och IMF. Världsbanken IMF. Ställ alltid krav! Föreläsning KAU Bo Sjö. En ekonomisk grund för skuldanalys

Skuldkrisen. Världsbanken och IMF. Världsbanken IMF. Ställ alltid krav! Föreläsning KAU Bo Sjö. En ekonomisk grund för skuldanalys Skuldkrisen Föreläsning KAU Bo Sjö Världsbanken och IMF Grund i planeringen efer 2:a världskrige Världsbanken Ger (hårda) lån ill sora infrasrukurprojek i uvecklingsländer. Hisorisk se, lyckas bra, lånen

Läs mer

Laplacetransformen. Från F till L. Den odiskutabla populäriteten hos Fourierintegralen. f HtL - w t t, w œ R (1)

Laplacetransformen. Från F till L. Den odiskutabla populäriteten hos Fourierintegralen. f HtL - w t t, w œ R (1) Från F ill L Laplaceransformen Den odiskuabla populärieen hos Fourierinegralen f HL - w, w œ R () har a göra med a den ger informaion om vilka frekvenser w som ingår i signalen f, och med vilken syrka.

Läs mer

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).

a) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3). TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav

Läs mer

Övriga verktyg. Internettjänster Matematik

Övriga verktyg. Internettjänster Matematik Övria verky Inernejänser Maemaik TexIT PLUS TexIT är hjälpmedle där du inns, hemma, i skolan eller på biblioeke. Varör beränsas av a man är vunen a välja vilken daor man ska använda? TexIT är en Inernebaserad

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller $ KTH Matematik 1 5B1134 Matematik och modeller 2 oktober 26 5 Femte veckan Integraler med tillämpningar Veckans begrepp Primitiva funktioner, integraler, area Trapetsmetoden för numerisk integration Partiell

Läs mer

Datorlaborationer i matematiska metoder E2, fk, del B (TMA980), ht05

Datorlaborationer i matematiska metoder E2, fk, del B (TMA980), ht05 Daorlaboraioner i maemaiska meoder E, fk, del B (TMA98), h5 Laboraionen är ej obligaorisk Den besår av re uppgifer som kan ge en bonuspoäng var vid enamina i maemaiska meoder, fk, del B, 5--6, vår 6 och

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

2 Laboration 2. Positionsmätning

2 Laboration 2. Positionsmätning 2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmaemaik II iskrea kommuaionsfunkioner Erik Alm, Hannover Re Sockholm 2013 iskre eknik Premier och annuieer bealas diskre ödligheen definieras ofas i en diskre abell (Undanag: de Nordiska

Läs mer

Skillnaden mellan KPI och KPIX

Skillnaden mellan KPI och KPIX Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

Digital elektronik CL0090

Digital elektronik CL0090 Digital elektronik CL0090 Föreläsning 2 2007-0-25 08.5 2.00 Naos De logiska unktionerna implementeras i grindar. Här visas de vanligaste. Svenska IEC standard SS IEC 87-2 Amerikanska ANSI/IEEE Std.9.984

Läs mer

Teorifra gor kap

Teorifra gor kap Teorira gor kap. 5. 9.3 Repetition ) Härled ormeln ör partiell integration ur nedanstående samband: d F x g x = x g x + F x g x dx ) Vilken typ av elementär unktion brukar man otast välja att derivera

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.

En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element. Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast

Läs mer

Analys av funktioner och dess derivata i Matlab.

Analys av funktioner och dess derivata i Matlab. Analys av unktioner oc dess derivata i Matlab. 5B47 Envariabelanalys Ludvig Adlercreutz, ME Hans Lindgren, IT Stockolm den 7 mars 7 Kursledare: Karim Dao Inneåll Uppgit 5...3 Uppgit 6...5 Uppgit 7...7

Läs mer

8.4 De i kärnan ingående partiklarnas massa är

8.4 De i kärnan ingående partiklarnas massa är LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan

Läs mer

Objects First With Java A Practical Introduction Using BlueJ. 4. Grouping objects. Collections och iterators

Objects First With Java A Practical Introduction Using BlueJ. 4. Grouping objects. Collections och iterators Objecs Firs Wih Java A Pracical Inroducion Using BlueJ 4. Grouping objecs Collecions och ieraors Innehåll Collecions Loopar Ieraorer Arrays Objecs Firs wih Java - A Pracical Inroducion using BlueJ, David

Läs mer

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT. Typexempel med utförliga lösningar TMV3. Matem. Analys i En Var.. V, AT. Försök alltid att lösa exemplen själv först. Integration. ([AE, Adams&Essex] Ex. 5.6. ) Beräkna integralen x + 6x + 3 dx LSN (Lösning).

Läs mer

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik. Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

bättre säljprognoser med hjälp av matematiska prognosmodeller!

bättre säljprognoser med hjälp av matematiska prognosmodeller! Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com

Läs mer

System med variabel massa

System med variabel massa Sysem med variabel massa (YF kap. 8.6) Generella Newon II: ሜF ex = dplj, där p lj = mഥv och ሜF d ex är alla yre krafer som verkar på föremåle. Om kroppens massa ändras genom a vi illför massor dm per idsenhe

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Tangentplan Linjära approimationer TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vara en dierentierbar unktion i punkten a b Då är N a b a b en normalvektor

Läs mer

Pensionsåldern och individens konsumtion och sparande

Pensionsåldern och individens konsumtion och sparande Pensionsåldern och individens konsumion och sparande Om hur en höjning av pensionsåldern kan ändra konsumionen och sparande. Maria Nilsson Magiseruppsas Naionalekonomiska insiuionen Handledare: Ponus Hansson

Läs mer

Importera bilen. från USA. Att köpa bil i USA är den. Den låga dollarkursen gör det lönsamt för dig att köpa bilen i USA. Du kan spara 250 000 kr.

Importera bilen. från USA. Att köpa bil i USA är den. Den låga dollarkursen gör det lönsamt för dig att köpa bilen i USA. Du kan spara 250 000 kr. Imporera bilen från USA Den låga dollarkursen gör de lönsam för dig a köpa bilen i USA. Du kan spara 50 000 kr. Av Mikael Sjerna/virginia,usa A köpa bil i USA är den bäsa bilaffären du kan göra i dag.

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx TM-Matematik Mikael Forsberg XXX-XXX DistansAnalys Envariabelanalys Distans ma034a ot-nummer 3 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Föreläsning 7 Kap G71 Statistik B

Föreläsning 7 Kap G71 Statistik B Föreläsning 7 Kap 6.1-6.7 732G71 aisik B Muliplikaiv modell i Miniab Time eries Decomposiion for Försäljning Muliplicaive Model Accurac Measures Från föreläsning 6 Daa Försäljning Lengh 36 NMissing 0 MAPE

Läs mer

Betalningsbalansen. Tredje kvartalet 2010

Betalningsbalansen. Tredje kvartalet 2010 Bealningsbalansen Tredje kvarale 2010 Bealningsbalansen Tredje kvarale 2010 Saisiska cenralbyrån 2010 Balance of Paymens. Third quarer 2010 Saisics Sweden 2010 Producen Producer Saisiska cenralbyrån,

Läs mer

Repetition Kraft & Rörelse Heureka Fysik 1: kap. 4, version 2013

Repetition Kraft & Rörelse Heureka Fysik 1: kap. 4, version 2013 Repeiion Kraf & Rörelse Heureka Fysik 1: kap. 4, 11.1-11 version 013 Rörelse En kropps rörelse kan beskrivas med olika yper av diagram. Sräcka-id-graf (s--graf) I en s--graf kan man uläsa hur lång e föremål

Läs mer

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags...

ES, ISY Andra kurser under ht 2014! Räkna inte med att ha en massa tid då! Och ni har nog glömt en del så dags... Prakisk info, fors. ös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor som Kens

Läs mer

Finansmarknaden; En översikt av instrument och värderingsmodeller

Finansmarknaden; En översikt av instrument och värderingsmodeller Finansmarknaden; En översik av insrumen och värderingsmodeller Jan R. M. Röman Deparmen of Mahemaics and Physics Mälardalen Universiy, weden Mälardalen Universiy INLEDNING... Akieopionens villkor... Akieerminens

Läs mer

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

Betalningsbalansen. Tredje kvartalet 2012

Betalningsbalansen. Tredje kvartalet 2012 Bealningsbalansen Tredje kvarale 2012 Bealningsbalansen Tredje kvarale 2012 Saisiska cenralbyrån 2012 Balance of Paymens. Third quarer 2012 Saisics Sweden 2012 Producen Producer Saisiska cenralbyrån,

Läs mer

Aktiverade deltagare (Vetenskapsteori (4,5hp) HT1 2) Instämmer i vi ss mån

Aktiverade deltagare (Vetenskapsteori (4,5hp) HT1 2) Instämmer i vi ss mån 2012-10-30 Veenskapseori (4,5hp) HT12 Enkäresula Enkä: Saus: Uvärdering, VeTer, HT12 öppen Daum: 2012-10-30 14:07:01 Grupp: Besvarad av: 19(60) (31%) Akiverade delagare (Veenskapseori (4,5hp) HT1 2) 1.

Läs mer

Betalningsbalansen. Fjärde kvartalet 2012

Betalningsbalansen. Fjärde kvartalet 2012 Bealningsbalansen Fjärde kvarale 212 Bealningsbalansen Fjärde kvarale 212 Saisiska cenralbyrån 213 Balance of Paymens. Fourh quarer 212 Saisics Sweden 213 Producen Producer Saisiska cenralbyrån, enheen

Läs mer

Föreläsning 19: Fria svängningar I

Föreläsning 19: Fria svängningar I 1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15 TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:

Läs mer

TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )

TENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik ) VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

Fastbasindex--Kedjeindex. Index av de slag vi hitintills tagit upp kallas fastbasindex. Viktbestämningar utgår från

Fastbasindex--Kedjeindex. Index av de slag vi hitintills tagit upp kallas fastbasindex. Viktbestämningar utgår från Fasbasindex--Kedjeindex Index av de slag vi hiinills agi upp kallas fasbasindex. Vikbesämningar ugår från priser och/eller kvanieer under basåre. Vid långa indexserier blir dea e problem. Vikerna måse

Läs mer

Ett hem för. bokälskare

Ett hem för. bokälskare I Ravlunda har Syrbjörn och Marianne Öhman funni si perfeka hus. En fyrlängad gård med plas för många gäser, gemenskap och e hel liv med böcker. Av Pia Masson Foo Helene Toresdoer TRÅGSOFFAN. I hörnrumme

Läs mer

INSTUDERINGSUPPGIFTER

INSTUDERINGSUPPGIFTER INSTUERINGSUPPGIFTER essa uppgifer skall hjälpa dig vid inlärningen de skall fungera som e slags diagnosisk prov efer de a du har räkna övningsuppgiferna i PB: (hur bra kan du redan de vi har gå igenom

Läs mer

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson

ATT KUNNA TILL. MA1203 Matte C Vuxenutbildningen Dennis Jonsson ATT KUNNA TILL MA1203 Matte C 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov C1 Kunna kvadreringsreglerna! (...utan att titta i formelsamlingen) Kunna konjugatregeln! (...utan

Läs mer

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9 ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017 Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:

Läs mer

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.

Läs mer

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET?

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? En undersökning av hur väl kolpulver framkallar åldrade fingeravryck avsaa på en ickeporös ya. E specialarbee uför under kriminaleknisk grundubildning vid

Läs mer

Anm 3: Var noga med att läsa och studera kurslitteraturen.

Anm 3: Var noga med att läsa och studera kurslitteraturen. TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i

Läs mer

Betalningsbalansen. Andra kvartalet 2012

Betalningsbalansen. Andra kvartalet 2012 Bealningsbalansen Andra kvarale 2012 Bealningsbalansen Andra kvarale 2012 Saisiska cenralbyrån 2012 Balance of Paymens. Second quarer 2012 Saisics Sweden 2012 Producen Producer Saisiska cenralbyrån, enheen

Läs mer