19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
|
|
- Helena Håkansson
- för 6 år sedan
- Visningar:
Transkript
1 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i ll punkter som kurvn går genom. En kurv (, ()), som är grfen till funktionen (), hr förstås lutningen (), och motsvrnde lutning för en vektor F(, ) är F /F Fältets riktning i en punkt kn givetvis beskrivs som denn lutning. Vi påminner om tt derivtn v en funktion f() är förändringen i -led (f( + h) f()) dividert med förändringen i -led (h). Med denn likhet melln lutningr kn vi bestämm integrlkurvorn till ett vektorfält F(, ) genom tt lös differentilekvtionen () F (, ) F (, ). Eempel Bestäm integrlkurvorn till vektorfältet F(, ) (, ). Lösning: Här är F och F, så vi får differentilekvtionen (), dvs (). enn ekvtion är seprbel, och vi får d d, + C, + C som för vrje C> är en cirkel. Integrlkurvorn till vektorfältet F(, ) (, ) är således cirklr. Mn kn se i följnde figur tt pilrn är tngenter till integrlkurvorn (mn får integrlkurvorn genom tt "bind ihop pilrn").
2 Vektorfältet (, ). - Integrlkurvor till (, ) är cirklr. Svr: Integrlkurvorn till F(, ) (, ) är cirklr + C. Eempel Bestäm integrlkurvorn till vektorfältet F(, ) (, ). Lösning: Härfårvidifferentilekvtionen (),, ln +lnc Vektorfältet (, ). Integrlkurvor ln + C. Svr: vektorfältet F(, ) (, ) hr integrlkurvorn ln + C.
3 9.. Bevis v Greens formel Vi hr sett tt Greens formel oft är nvändbr som metod tt beräkn en kurvintegrl: Sts 3 (Greens formel) Om vektorfältet hr kontinuerlig prtiell derivtor P och Q överllt i innnför den enkl slutn orienterde kurvn som genomlöps i positiv led och är rnd till området, så kn kurvintegrlen beräkns som följnde dubbelintegrl: P (, )d + Q(, )d (Q P)dd. Som vi sk se härnäst kn Greens formel beviss väsentligen genom upprepd integrtion v dubbelintegrlen. Bevis v Greens formel: Greens formel kn betrkts som två formler: P (, )d Q(, )d P dd och Q dd. Addition v de två ger Greens formel. Vi kommer här tt nöj oss med tt vis den först P (, )d Pdd iflletttområdetär { b, f() <<g() då <<b} och f() g() smt f(b) g(b). å får vi ing vertikl sidor: linjer och b Området f() g(). 3
4 å kn vi beräkn dubbelintegrlen med itererd integrtion, genom tt integrer i -led först. essutom hr vi då en primitiv funktion till integrnden P(, ), nämligen funktionen P (, ).. Vifår b g() Pdd d Pd b b f() [P (, )] g() f() d (P (, g()) P (, f())d. Låt oss nu å ndr sidn beräkn R P (, )d. Låt oss kll den undre kurvn f och den övre g, så f + g. Vi får P (, )d P (, )d + P (, )d. f g Vi hr prmeterfrmställningrn (t, f(t)) och (t, g(t)) där t på f går från till b. På g hr vi omvänd riktning, dvs från b till. Med dett vl genomlöps kurvn i positiv led, som ju föreskrivs i Greens formel. Båd prmeterfrmställningrn ger d dt, och vi får P (, )d P (, )d + P (, )d f g {bt integrtionsordning} {smm intervll - slå ihop} Jämförelse med b b b P (t, f(t))dt + P (t, f(t))dt b b P (t, g(t))dt P (t, g(t))dt (P (t, f(t)) P (t, g(t)))dt.. Pdd efter den itererde integrtionen visr tt Pdd och R P (, )d skiljer sig br med tecknet, vilket är just vd P (, )d Pdd säger. et är nu lätt tt generliser dett bevis något, genom tt strk villkoren f() g() och f(b) g(b). å kn det också finns vertikl begränsningskurvor. 4
5 Området f() <<g(). ubbelintegrtionen påverks inte lls v dett. På dess kurvor hr vi prmeterfrmställningrn (, t) respektive (b,t), så vi får en vertikl tngentriktning: (t) (, ). et betder tt d (t)dt dt, så P (, )d på en vertikl linje. Vertikl linjer ger lltså inget bidrg till kurvintegrlen heller. 9. Beräkning v potentil Vektorfältet F(,, z) (F (,, z),f (,, z),f 3 (,, z)) hr en potentil om det finns en funktion U(,, z) så tt U F, U F, Uz F 3. e tre likhetern kn skrivs som en vektorlikhet: grd U F. Ett fält som hr potentil klls en konservtivt fält. Om F hr en potentil (är konservtivt), och denn är känd, kn en kurvintegrl v F beräkns på enklst möjlig sätt: F dr U(kurvns slutpunkt) U(kurvns strtpunkt), eller lltså (eftersom grd U F) grdu dr U(kurvns slutpunkt) U(kurvns strtpunkt). ett är möjligt på grund v tt kurvintegrlen v ett konservtivt fält är oberoende v vägen. å är den endst beroende v strt- och slutpunkt. 5
6 Eempel 4 (5) Bestäm konstnten så tt F ( +z, +z,+) hr en potentil. Beräkn integrlen. R grdf dr där är skruvlinjen (cos t, sin t, 3t), från (,, ) till (,, 6π). Lösning: VihrtrevillkorpåpotentilenU : U +z, U +z, Uz +. Från den först ekvtionen får vi genom -integrtion U +z + f(,z), där f(, z) är en ur -integrtionen uppkommen "konstnt" (m..p. ). erivering v U m..p. och jämförelse med den ndr ekvtionen ger ett villkor på f : U ++f(, z) {ndr ekv.} +z. Vi måste lltså h f(, z) z. et ger f(, z) z, lltså U +z +z. erivering m..p. z och kontroll med den tredje ekvtionen ger nu U z + + {tredje ekv.} +. enn gäller endst om. å är fältet konservtivt med potentilen U +z +z. Vi väljer lltså enligt uppgiften. Kurvintegrlen blir då grdf dr U(,, 6π) U(,, ) Svr:, R grdf dr π. π π. 9.3 Kurvintegrler i plnet med Greens formel eller potentil I Eempel 5 (9) Beräkn led längs rnden till området 3 4. (e cos )d +( +rctn )d i positiv Lösning: Här är F(, (P (, ),Q(, )) (e cos, +rctn ). Termen rctn ser besvärlig ut tt integrer, vilket är ett tecken på tt Greens formel bör nvänds. är derivers också fältets -komponent (Q(, )) m..p. 6
7 , tigreensformelärintegrndenq P, så vi kommer tt få rctn. ett problem försvinner. Vi får Q P ( +rctn ) (e cos ) + ( ) +. Kurvn är sluten vilket också underlättr med tnke på Greens formel vi behöver inte lägg till någon kurv för tt gör den sluten Integrtionsområdet. I dubbeintegrlen hr vi gränsern i enligt 3 4. e två kurvorn skär vrnd då 3 4, dvs 4, så ±. Greens formel ger nu ( +rctn )d I (e cos )d + ( +)dd 3 d ( +)d 4 ( + )] 3 4 d (( 3) +( 3) ( 4 ) 4 )d ( )d [ ] ( )8. 7
8 I Svr: (e cos )d +( +rctn )d 8. Eempel 6 (5) Beräkn R kvdrnten från (, ) till (, ). ( )d+( )d (+) längs en hlvcirkelbåge i först Lösning: Mn kn försök räkn ut vr centrum för denn kvrtscirkel är, men det behöver mn inte om mn finner tt fältet är konservtivt. Fältet är inte definiert då +, dvs. Så vi måste håll oss bort från denn kurv. Låtossprovtträknutenpotentil.åskdetvåekvtionern U P U Q gäll för någon funktion U(, ). Går det inte tt lös ekvtionern så finns det ingen potentil, dvs fältet är inte konservtivt. Vi hr vektorfältet F(, (P (, ),Q(, )) ( (+), (+) ), och den först reltionen U P ger U ( + ), så U ( + ) d + + f() ( ) + + f(). När vi integrerr vribeln får vi en "konstnt (m..p. )" f(), som givetvis kn vr beroende v den ndr vribeln. eriverr vi högerledet m..p. så försvinner f(), och vi får tillbk integrnden (+) igen. Om denn funktion uppfller U Q så är fältet konservtivt. vs, vi deriverr m..p. : U (( ) + + f()) (+ ) + ( ) ( + ) + f () (+ + ) ( + ) + f () + + ( + ) + f () + + ( + ) + f () {krv för potentil} Q(, ) ( + ). 8
9 : ( +) + + Kn vi välj f() så dett går ihop? Vi får f () {förkort!!}. ( + ) + + ( + ) ( + ) + + ( +) ( + ) ( + ) Vi fick något som blev oberoende v. Alltså kn vi bestämm f(), vilket betder tt potentilen eisterr (dvs tt fältet är konservtivt). Krvet f () ger f(), så en potentil är U(, ) ( ) et vr i dett fll en lång klkl tt beräkn potentilen (och smtidigt vgör om den finns). Fördelen med tt bestämm en potentl är tt mn då inte behöver gör någon integrtion lls. Anlogt med en primitiv funktion för en enkelintegrl ( R b f()d F (b) F ()) hr vi nämligen tt ( )d +( )d ( + ) U(, ) U(, ), eftersom går från (, ) till (, ), om potentilen är definierd längs hel kurvn. Så är fllet om vi inte psserr den kurv där nämnren är noll, som är. Vi får då tt ( )d +( )d ( + ) U(, ) U(, ) {insättning v + + } Svr: R ( )d+( )d (+). 9.4 Kurvintegrler i rummet Om F är ett tredimensionellt vektorfält, som dessutom beror v tre vribler, och z, så hr vi F(,, z) (F (,, z),f (,, z),f 3 (,, z)). 9
10 Om är en kurv i rummet med prmeterfrmställningen r(t) ((t),(t),z(t)), t från till b, så är kurvintegrlen definierd som enkelintegrlen b F dr F((t),(t),z(t)) r (t)dt där r (t) ( (t), (t),z (t)). Eempel 7 () Beräkn R d+d+zdz där är kurvn (t cos t, t sin t, t) från (,, ) till (π,, π). Lösning: Vi hr vektorfältet F (,, z). Här är kurvn redn given genom en prmeterfrmställning. Punktern (,, ) och (π,, π) svrr mot värden t och t π. Kurvn är en spirlkurv på tn v en kon: 3 z Prmeterfrmställningen r(t) (t cos t, t sin t, t) ger tngenten r (t) (cost t sin t, sin t+t cos t, ). Värden för vektorfältet F (,, z) på kurvn (t cos t, t sin t, t) fås genom tt sätt in t cos t, t sin t och z t. F (,, z) (t cos t, t sin t, t). Kurvintegrlens integrnd F((t),(t),z(t)) r (t) är då här F((t),(t),z(t)) r (t) (t cos t, t sin t, t) (cos t t sin t, sin t + t cos t, ) t cos t t cos t sin t + t sin t + t cos t sin t + t {en trigonometrisk ett} t. Kurvintegrlen är då b F dr F((t),(t),z(t)) r (t)dt π tdt t π π.
11 Svr: R d + d + zdz π. q Eempel 8 (3) Låt f(,, z) ( +)ln +3 z+4. Beräkn R grdf dr där är rät linjen från (,, ) till (,, ) och därifrån rät linjen till (,, ). Lösning: Här är f en potentil till grd f. Så R grd f dr är oberoende v vägen, och grd f dr f(slutpunkt) f(strtpunkt) om vi är inom det område där f är definierd. Så är fllet om +3 z+4 >. Vi hr ing problem om > 3och z> 4. Så är fllet för hel kurvn, där och z. Vi får då " r # " r # grdf dr ( +)ln ( +)ln z +4 z +4 (,,) (,,) r r 3 4 3ln 4 ln 4 3 ln 3 4. Svr: R grd f dr 3 ln 3 4.
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2
Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler
SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
6 Greens formel, Stokes sats och lite därtill
6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
16 Area- och volymberäkningar, areor av buktiga
Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde
f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Läsanvisningar till kapitel
Läsnvisningr till kpitel 4.1 4.6 4.1 Konturer Dett är ett vsnitt om kurvor och hur mn prmetriserr kurvor, som borde vr en repetition från lägre kurser. Låt oss gå igenom lite ändå. Definition 4.1. Låt
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
9 Dubbelintegralens definition
Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Läsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b
Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
1.1 Sfäriska koordinater
Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Tavelpresentation grupp 5E
Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen
Volym och dubbelintegraler över en rektangel
Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =
Tillämpning av integraler
CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr
Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson
Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när
Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är
Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt
Mängder i R n. Funktioner från R n till R p
Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Inför tentamen i Analys I och II, TNA008
Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:
Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde
14 Trippelintegraler integration av funktioner av tre variabler
Nr, 8 pril -5, Ameli Trippelintegrler integrtion v funktioner v tre vribler. Areor och volmer.. Are som enkelintegrl och som dubbelintegrl Som beknt kn enkelintegrlen R b fx)dx kn tolks som ren under fx)
0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)
Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given
Integraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
EGENVÄRDEN och EGENVEKTORER
EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär
Generaliserade integraler
Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst
Om stationära flöden och Gauss sats i planet
Om sttionär flöden och Guss sts i plnet Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning Här diskuterr vi den mtemtisk formuleringen v det uppenbr fktum tt om vi hr en ström v prtiklr genom
= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.
Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl 14-19 Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ
Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013
Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
18 Kurvintegraler Greens formel och potential
Nr 8, 6 april -5, Amelia 8 Kurvintegraler Greens formel och potential 8. Greens formel Vi studerar i detta avsnitt kurvor i planet, i R. En kurvintegral är som vi sett en integral på en kurva i planet.
FEM2: Randvärdesproblem och finita elementmetoden i flera variabler
MVE255 Mtemtisk nlys i fler vribler M FEM2: Rndvärdesproblem och finit elementmetoden i fler vribler 1 1.1 Prtiell integrtion Kom ihåg tt finit elementmetoden bygger på den svg formuleringen v rndvärdesproblemet
TMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER
DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi
TATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
ENVARIABELANALYS - ETT KOMPLEMENT
ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )
Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------
Studieplanering till Kurs 3b Grön lärobok
Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång
Teorifrå gor kåp. 5.2 9.3
Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså
23 Konservativa fält i R 3 och rotation
Nr 23, 7 maj -5, Amelia 2 23 Konservativa fält i R 3 och rotation 23. Potential 23.. Två dimensioner (2D) I två dimensioner definierade vi ett vektorfält som konservativt om kurvintegralen av fältet endast
Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH
Anlys 360 En webbserd nlyskurs Grundbok Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Integrlklkyl (3) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn
ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
MA2003 Tillämpad Matematik I, 7.5hp,
MA Tillämpd Mtemtik I,.hp, 8-- Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst vrsblnketten sk lämns in! Inget tentmensomslg! vrslterntiv
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
TATA42: Föreläsning 11 Kurvlängd, area och volym
TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt
1 Föreläsning IX, tillämpning av integral
Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek
Lösningar och kommentarer till uppgifter i 1.2
Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr
MA2003 Tillämpad Matematik I, 7.5hp,
MA Tillämpd Mtemtik I,.hp, 9-8- Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst vrsblnketten sk lämns in! Inget tentmensomslg! vrslterntiv
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION
OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i
ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
10. Tillämpningar av integraler
90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re
KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015
KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och
Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1
Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell
Area([a; b] [c; d])) = (b a)(d c)
Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner
TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips
TNA004 Anls II för ED, KTS, MT Lektionsuppgifter med kommentrer/lösningstips VT 07 TNA004, Anls II - Lektion Denn lektion hndlr om beräkning v reor och kurvlängd.. Areberäkning Aren melln två funktionskurvor,
Materiens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8
Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr
Mat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den
Tillämpad Matematik I Övning 4
HH/ITE/BN Tillämpd Mtemtik I, Övning 8 6 Tillämpd Mtemtik I Övning 6 8 Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm,
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
TNA004 Analys II. för ED, KTS, MT. Lektionsuppgifter med kommentarer/lösningstips
TNA004 Anlys II för ED, KTS, MT Lektionsuppgifter med kommentrer/lösningstips VT 06 TNA004, Anlys II - Lektion Denn lektion hndlr om beräkning v reor och kurvlängd.. Areberäkning Aren melln två funktionskurvor,
Appendix. De plana triangelsatserna. D c
ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:
FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06
FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Dett är föreläsningsnteckningr för distnskursen Mtemtik A - nlysdelen vid Uppsl universitet höstterminen 2006. 1. Integrler I denn sektion går vi igenom
Svar till uppgifter 42 SF1602 Di. Int.
Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)
y > 0, 0 < y <1 y växande, 0 < y < 1
Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14
Innehåll 1 Inledning 2 2 Måttet v en öppen mängd 3 3 Integrlen v en kontinuerlig funktion 9 4 Jämförelse med Riemnnintegrlen 14 5 Skivformeln och itererd integrtion 17 6 Generliserde positiv integrler
Mat Grundkurs i matematik 1, del II
Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klssisk fysik och vektorfält - Föreläsningsnteckningr Christin Forssén, Institutionen för fysik, Chlmers, Göteborg, verige ep 13, 218 4. Integrlstser Minnesregel för strukturen på ll integrlstser
Integralkalkyl. Den bestämda integralen. Om Maclaurinutvecklingar. Integralen mäter en area. Analys360 (Grundkurs) Instuderingsuppgifter
Integrlll Anls6 (Grundurs) Instuderingsuppgifter Dess övningr är det tänt du s gör i nslutning till tt du läser huvudteten. De flest v övningrn hr, om inte lösningr, så i vrje fll nvisningr till hur uppgiften