Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Storlek: px
Starta visningen från sidan:

Download "Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013"

Transkript

1 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1

2 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två dtorlbortioner. Obligtorisk närvro gäller vid båd lbortionstillfällen. För tt bli godkänd på lbbkursen krävs tt båd lbortionern hr redovists på ett godtgbrt sätt. Vid lbortionern gäller följnde: Lbortionsuppgiftern (och eventuell förberedelseuppgifter) skll vr gjord innn mn kommer till lbortionen (du är lltså tvungen tt sitt hemm eller i dtorsl före lbortionen och gör uppgiftern smt förbered dig). Hr du stött på problem med uppgiftern kn du fråg din övningsledre, kursledren eller någon kursre. Under lbortionen skll uppgiftern redoviss. Under lbortionen kn du även få hjälp med något moment du inte hr lyckts få rätt på hemm. Studenter som inte hr förberett uppgiftern när de kommer till lbortionen underkänns och får gör om lbbkursen i dess helhet näst år. Vid lbortionstillfälle 1 redoviss lbortion 1, vid lbortionstillfälle redoviss lbortion osv. Mn kn t.ex. inte utebli under lbortion 1 och sedn redovis lbortion 1 och vid lbortionstillfälle. Det går inte tt byt lbortionsgrupp under kursens gång. Om mn inte kn närvr på en lbortion på grund v sjukdom så måste dett nmäls snrst till kursledren. För de som hr nmält frånvro på grund v sjukdom till kursledren finns två reservtillfällen i v 11 då mn kn redovis lbortioner mn misst. Endst studenter som hr meddelt frånvro till kursledren på grund v sjukdom bereds plts vid reservtillfällen. Reglern ovn tolks strikt och är till för tt få lbortionsmomentet tt funger prktiskt och underlätt er egen plnering

3 1 Dtorlgebr progrmmet Mxim I denn lbortion sk vi nvänd oss v Mtlb och dtorlgebr progrmmet Mxim. Ni hittr instllerre för linux, windows och OS X här Vill du inte instller Mxim finns det en webversion v progrmmet här Integrler integrte(f,x) bestämmer den obestämd integrlen v f med vseende på vribeln x. integrte(f,x,,b) beräknr den bestämd integrlen v f från till b med vseende på vribeln x. Om Mxim inte klr v tt beräkn integrlen nlytiskt returners kommndot oberbett logbs logbs : true gör tt 1 xdx beräkns som log x istället för log(x). Vid bestämd integrtion sätts logbs utomtiskt till true, men inte vid obestämd integrtion. Härefter förutsätter vi tt logbs hr stts till true. Exempel 1. () Den obestämd integrlen (primitiv funktionen) x sin(x) dx fås genom integrte(x^*sin(x),x); Mxim skriver ut funktionen x sin x + ( x ) cos x (b) För tt beräkn den obestämd integrlen ger vi kommndot integrte((x^3+x+1)/(x^-1),x); Svrsutskriften blir log x + 1 (c) Vi sk beräkn integrlen och ger kommndot integrte(x^*sin(x),x,,%pi); x 3 + x + 1 x dx 1 π + 3 log x 1 x sin(x) dx + x 3

4 Mxim svrr π 4 (d) Vi låter Mxim beräkn den generliserde integrlen med kommndot integrte(cos(x)/(x^+1), x,, inf); Mxim svrr Tylorutvecklingr tylor(f,x,,n) cos(x) x + 1 dx e 1 π ger Tylorpolynomet v grd n till f kring en punkt. Här kn även vr minf eller inf så tt vi hr utveckling kring x = eller x =. Exempel 1.. Vi hr funktionen f(x) = e x () Tylorpolynomet v grd 4 kring punkten fås genom tylor(exp(-x),x,,4); och Mxim svrr 1 x + x x3 6 + x (b) Tylorpolynomet v grd 3 kring punkten 1 fås genom tylor(exp(-x),x,1,3); vilket ger e 1 e 1 (x 1) (x 1)3 (x 1) e 6 e Exempel.. En kropp med vilomss m som rör sig med frten v hr enligt Einsteins reltivitetsteori en kinetisk energi som ges v uttrycket Vi utvecklr uttrycket i termer v (v/c) m c W kin = 1 ( ) m c. v c Wkin : tylor(m*c^/sqrt(1-x^) - m*c^,x,,); subst(v/c,x,wkin); vilket ger m v Det klssisk uttrycket för energin hos en kropp i rörelse fller ut som den först termen i Tylorutvecklingen v det reltivistisk uttrycket. 4

5 Numerisk integrtion Vårt problem är tt beräkn integrlen b f(x) dx vilken kn tolks som ren med tecken under grfen. I trpetsmetoden delr mn in intervllet [, b] i N delintervll med längd h. I vrje delintervll [x k, x k+1 ] pproximers f(x) med en rät linje. y f(x k ) f(x k+1) y = f(x) x x k x k+1 h x N x Aren under den rät linjen är Den totl integrlen blir då h (f(x k) + f(x k+1 )) b där T h är den så kllde trpetssummn f(x) dx T h T h = N 1 k= h (f(x k) + f(x k+1 )) = h (f(x ) + f(x 1 ) + f(x ) f(x N 1 ) + f(x N )) = h(f(x 1 ) f(x N 1 )) + h (f(x ) + f(x N )) 5

6 Följnde funktionsfil beräknr integrler v en godtycklig funktion med hjälp v trpetssummor function T = trpets(fun,,b,n) % fun: Integrnden nges som en nonym funktion. % : Nedre integrtionsgräns % b: övre integrtionsgräns % n: Antlet intervll. h = (b-)/n; x = linspce(,b,n+1); f = fun(x); T = h*(sum(f(:n)) +.5*(f(1) + f(n+1))); Vi testr funktionsfilen genom tt beräkn 1 x dx I funktionsfilen läses funktionen in som en nonym funktion, vilken i dett fll skpr funktionen från uttrycket som skrivs efter prentesen som innehåller funktionsvribeln. Då vi tr n = 1 får vi resulttet I=trpets(@(x)x.^,,1,1) I = vilket skll jämförs med det exkt värdet 1/3..1 MATLABs kommndon för integrtion Mtlbs inbyggd funktioner för numerisk beräkning v integrler är qud, qudl och qudv. (I dtorslrn finns Mtlb 7. I senre versioner v Mtlb ersätts integrtionsrutinern med rutinen integrl) Vi illustrerr nvändndet v funktionen qudl, med ett exempel. Exempel 1. Integrlen beräkns med nropet 4 x dx I = qudl(@sqrt,,4) vrvid Mtlb svrr 6

7 I = Det exkt värdet är 16/ Vill mn h en nnn tolerns t.ex. 1 1 skriver mn qudl(@sqrt,,4,1e-1). Obs! När mn skpr en nonym funktion v en Mtlb s inbyggd funktioner räcker det tt följt v funktionens nmn. I exemplet hr vi utnyttjt dett och istället för det Exempel. Låt oss beräkn den generliserde integrlen e x dx Integrnden går mycket snbbt mot noll då x blir stor vrför integrlen är konvergent. Vi kn uppsktt integrlens värde genom tt beräkn X e x dx där vi ökr X i steg om 1, dvs X = 1,, 3,... Processen vbrytes då integrlens värde för två närliggnde värde på X ändrr sig mindre än en ngiven tolerns, tol. Följnde script beräknr den generliserde integrlen % genint.m integrnd exp(-x.^); % Definier integrnden som en nonym funktion tol = 1e-8; % Sätt tolernsen till 1^-8 X=; % Sätt övre gränsen X till int = qudl(integrnd,,x-1,1e-13); % Beräkn integrl från till X-1 int1 = qudl(integrnd,,x,1e-13); % Beräkn integrl från till X while bs(int1-int) > tol % Koll om differensen melln integrlen från % till X-1 och från till X är större än tol int = int1; % Sätt int till int1 X=X+1; % Steg upp X int1 = qudl(integrnd,,x,1e-13); % Beräkn integrl från till X if X==1 disp( konvergerr ej ) return end end disp(sprintf( Approximtiv integrl %16.14f,int1)) disp(sprintf(övre integrtionsgräns %u,x)) Då vi kör scripten får vi resulttet Approximtiv integrl övre integrtionsgräns 5 π Integrlen hr det exkt värdet:

8 3 Tillämpningr v integrler 3.1 Arebestämningr Integrlens geometrisk tolkning ger tt om f(x) så är b f(x) dx mätetlet för ren under grfen. Mer llmänt, om g(x) f(x) så hr området melln funktionern ren b (f(x) g(x)) dx 3. Prmeterkurvor En prmeterkurv i plnet hr formen (x(t), y(t)) där t är en prmeter som ligger i något intervll [, b]. Längden v prmeterkurvn ges v integrlen b L = x (t) + y (t) dt I meknisk tillämpningr beskriver (x(t), y(t)) positionen hos en prtikel som funktion v tiden t. Integrlen ovn kn då tolks som sträckn prtikeln rör sig melln t = och t = b. Exempel 1. En prtikel rör sig i en spirlisernde bn som beskrivs v Följnde script plottr bnn för t [, 4π] (x(t), y(t)) = (t cos(t), t sin(t)) t=:.1:4*pi; % Generer vektor t med element från till 4 pi x = t.*cos(t); % Beräkn x-koordintern för motsvrnde t y = t.*sin(t); % Beräkn y-koordintern för motsvrnde t plot(x,y) % Plott kurvn title( Prtikel i spirlisernde bn ) % Skriv rubrik xlbel( x ) % Skriv text på x-xeln ylbel( y ) % Skriv text på y-xeln grid on % Lägg in rutnät Då vi kör scripten får vi figur 5. För tt beräkn bnns längd deriverr vi koordintern (x(t), y(t)) (x (t), y (t)) = (cos(t) t sin(t), sin(t) + t cos(t)). 8

9 8 Prtikel i spirlisernde bn 6 4 y x Figur 1: Prtikel i spirlisernde bn. Formeln för längden ger sedn L = 4π (cos(t) t sin(t)) + (sin(t) + t cos(t)) dt = Vi beräknr nu integrlen med MATLAB fun L = qudl(fun,,4*pi,1e-15) med resulttet L = π 1 + t dt. 3.3 Längd v funktionskurvor Längden v en funktionskurv y = f(x), x [, b] ges v (se Månsson, Nordbeck; sid 348) y y = f(x) L = b 1 + f (x) dx. x b 9

10 4 Dtorövningr 1. En kropp med vilomss m som ror sig med frten v hr enligt Einsteins reltivitetsteori en kinetisk energi som ges v uttrycket W kin = m c 1 ( ) m c. v c Utveckl uttrycket i termer v (v/c). T med termer upp till grd 4 (se exempel sid. 4).. Beräkn integrlen π/ ln(1 + sin x) cos x dx () Använd trpetssummn och kör scripten på sidn 6. Gör beräkningrn för n = 1, 1, 1. (b) Använd Mxim (eller ett nnt symbolhnternde progrm) för tt t frm det exkt värdet. Beräkn sedn ett pproximtivt värde från det exkt värdet och jämför ditt resultt med beräkningrn i (). 3. Beräkn den generliserde integrlen e x cos x dx med hjälp v rutinen genint.m (se exempel på sidn 7). Vd är det exkt värdet? 4. () Plott kurvn (x(t), y(t)) = (5t 5 sin(t), 5 5 cos(t)) för t [, 4π] (se exempel 1 sidn 8 och 9). (b) Använd MATLABs inbyggd kommndo qudl för tt beräkn längden v kurvn. (c) Extruppgift Bestäm kurvlängdens exkt värde. 5. (Extruppgift Mn skll bygg en gångbro som är upphängd i en prbelformd vjer enligt figur 1

11 () Bestäm formen på ndrgrdsfunktionen y = f(x) som beskriver vjern. Tips: ndrgrdsfunktionen hr formen f(x) = x + b bestäm och b så tt f() = och f(5) = 4.5. (b) Beräkn längden v vjern. 11

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation Föreläsning, Numme K2, 72 GNM Kp 6 Integrler & GNM 8:C Richrdsonextrpoltion yc yd y y y2 yb H c d b A = H ( ) y +y 2 = H 2 { h 2 y + } A = A +A 2 +A = 2 y 2 = h 2 y +y c +y d + 2 y b 2 (y +y c )+ h 2 (y

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

Laborationstillfälle 3 Numerisk integration

Laborationstillfälle 3 Numerisk integration Lbortionstillfälle 3 Numerisk integrtion Målsättning vid lbtillfälle 3: Klr v lbortionsuppgift. Innn dess läser mn hel texten nog. I mån v tid görs övning, men den är gnsk svår. Numerisk integrtion Oft

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Matematisk analys, laboration III. Per Jönsson Teknik och Samhälle, Malmö Högskola

Matematisk analys, laboration III. Per Jönsson Teknik och Samhälle, Malmö Högskola Mtemtisk nlys, lbortion III Per Jönsson Teknik och Smhälle, Mlmö Högskol 1 Viktig informtion om lbortionern I nlyskursen ingår tre obligtorisk lbortioner. Under lbortion 1 nvänds Mtlb/GNU Octve och under

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH Anlys 360 En webbserd nlyskurs Grundbok Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Integrlklkyl (3) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten

Läs mer

Teorifrå gor kåp. 5.2 9.3

Teorifrå gor kåp. 5.2 9.3 Teorifrå gor kåp. 5. 9.3 Repetition ) Härled formeln för prtiell integrtion ur nednstående smbnd: d F(x)g(x) = f(x)g(x) F(x)g (x) dx ) Vilken typ v elementär funktion brukr mn oftst välj tt deriver lltså

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

Numerisk Integration En inledning för Z1

Numerisk Integration En inledning för Z1 Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. X. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. X. Integralkalkyl. MatematikCentrum LTH Anlys 36 En webbserd nlyskurs Grundbok X. Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com X. Integrlklkyl (8) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

Inför tentamen i Analys I och II, TNA008

Inför tentamen i Analys I och II, TNA008 Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Linjära ekvationssystem. Repetition av FN3 (GNM kap 4.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Linjära ekvationssystem. Repetition av FN3 (GNM kap 4. Denn föreläsning DN11 Numerisk metoder och grundläggnde progrmmering FN4 9--17 Hedvig Kjellström hedvig@csc.kth.se! Repetition v FN3 (GNM kp 4.1)! Interpoltion! Minst-kvdrtnpssning! Dignostiskt prov på

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

9 Dubbelintegralens definition

9 Dubbelintegralens definition Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)

Läs mer

Vektorer. Avsnitt 1. Ange lägesvektorerna för de två väteatomerna på formen: r = x ˆx + y ˆx

Vektorer. Avsnitt 1. Ange lägesvektorerna för de två väteatomerna på formen: r = x ˆx + y ˆx Avsnitt 1 Vektorer 1.1 Skissen nedn visr molekylgeometrin för H 2 O, där syretomen befinner sig i origo och vätetomern lägger symmetriskt kring x-xeln. Bindningslängden är = 96 pm och bindningsvinkeln

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

TATA42: Föreläsning 11 Kurvlängd, area och volym

TATA42: Föreläsning 11 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

Laboration i matematik Envariabelanalys 2

Laboration i matematik Envariabelanalys 2 Lbortion i mtemtik Envribelnlys Per-Anders Boo Institutionen för mtemtik och mtemtisk sttistik Umeå universitet Jnuri Regler och llmän informtion om lbortionen I denn lbortion finns uppgifter som skll

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

Tavelpresentation grupp 5E

Tavelpresentation grupp 5E Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1 Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

y > 0, 0 < y <1 y växande, 0 < y < 1

y > 0, 0 < y <1 y växande, 0 < y < 1 Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. Från labben: Informationsteknologi. Beräkningsvetenskap I/KF

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. Från labben: Informationsteknologi. Beräkningsvetenskap I/KF Integrler Från len: Integrler Beräkningsvetenskp I/KF Trpetsformeln oc Simpsons formel Integrler Integrler Från len: Från len: Adptiv metod (dptiv Simpson) Lösning v integrl i Mtl: när integrnden är kontinuerlig

Läs mer

Guide - Hur du gör din ansökan

Guide - Hur du gör din ansökan Guide - Hur du gör din nsökn För tt komm till nsökningswebben går du in på www.gymnsievlsjuhärd.se och klickr på Ansökningswebb. Men innn du går dit läs igenom informtion under Ansökn och Antgning. Ansökningswebben

Läs mer

Svar till uppgifter 42 SF1602 Di. Int.

Svar till uppgifter 42 SF1602 Di. Int. Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)

Läs mer

Mat Grundkurs i matematik 1, del III

Mat Grundkurs i matematik 1, del III Mt-1.1510 Grundkurs i mtemtik 1, del III G. Gripenberg TKK 2 december 2010 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del III 2 december 2010 1 / 59 Vribelbyte b F (g(x))g (x) dx = b d F (g(x))

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

KTH Teknikvetenskap Fotografi-lab 3

KTH Teknikvetenskap Fotografi-lab 3 KTH Teknikvetenskp Fotogrfi-lb 3 Svrtvitt kopieringsrbete, tonreproduktion Kurs: SK2380, Teknisk Fotogrfi Kjell Crlsson & Hns Järling Tillämpd Fysik, KTH, 2015 1 För tt uppnå en god förståelse och inlärning

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.

Läs mer

TATA42: Envariabelanalys 2 VT 2018

TATA42: Envariabelanalys 2 VT 2018 TATA42: Envribelnlys 2 VT 28 Föreläsningsnteckningr John Thim, MAI L =? TATA42: Föreläsning Mclurinutecklingr John Thim 4 mrs 28 Introduktion Tänk er följnde sitution. En snäll funktion f är given, men

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 28 mj 209 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

Så här gör du? Innehåll

Så här gör du? Innehåll hp dvd writer Så här gör du? Innehåll hur vet jg vilket progrm jg sk nvänd? 1 svensk hur kopierr jg en skiv? 2 hur överför jg min nd till en skiv? 4 hur skpr jg en dvd-film? 9 hur redigerr jg en video-dvd-skiv?

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

4 Signaler och system i frekvensplanet Övningar

4 Signaler och system i frekvensplanet Övningar Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern

Läs mer

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2

Tyngdkraftfältet runt en (stor) massa i origo är. F(x, y, z) =C (x 2 + y 2 + z 2 ) 3 2 Nr 7, pril -, Ameli 7 Linjeintegrler 7. Idéer och smmnhng I en enkelintegrl summers värden v en funktion v en vriel f() längs ett visst intervll. I en duelintegrl summers värden v en funktion v två vriler

Läs mer

Reliability analysis in engineering applications

Reliability analysis in engineering applications Relibility nlysis in engineering pplictions Etremvärdesfördelningr Mimum och minimum Structurl Engineering - Lund University 1 Etremvärdesfördelningr Vrible lod, q Mvärdet under referensperioden Q 1 Q

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7. Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för

Läs mer

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a. 1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde

Läs mer

Användande av formler för balk på elastiskt underlag

Användande av formler för balk på elastiskt underlag Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

6 Greens formel, Stokes sats och lite därtill

6 Greens formel, Stokes sats och lite därtill 6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07 Föreläsningsmnus i mtemtisk sttistik för lntmätre, veck 3 och 4 HT07 Bengt Ringnér September 5, 2007 Inledning Dett är preliminärt undervisningsmteril. Synpunkter är välkomn. 2 Stokstisk vribler En stokstisk

Läs mer

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler TATA4: Föreläsning 1 Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 15 november 18 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer,

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer