Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Storlek: px
Starta visningen från sidan:

Download "Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015."

Transkript

1 FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl jnuri, Denn tentmen rätts nonymt. Ni kommer tt få ett id-nummer tilldelt er under tentmenstillfället. Skriv dett nummer på tentmen och inte er nmn. Besvr frågor till olik lärre på seprt ppper. Id-nummer och sidnummer på vrje bld. Lägg frågorn i ordning innn du lämnr in. Fråg 1-4 Fråg 5 Fråg 6-10 Lrs Hrrie Lrs Eklundh Lrs Ollvik och Sven Agrdh Mximl poäng: 50 p % = betyg % = betyg % = betyg 3 Hjälpmedel: Formelsmling till Geodetisk och fotogrmmetrisk mätnings- och beräkningsteknik. Miniräknre Lyck till önskr lärrn!

2 NYTT PAPPER TILL LARS H ) Förklr kortfttt följnde begrepp. Mximlt 5 meningr och 1 figur per begrepp. (3p) ) Loxodrom En kort mening om tt det är en linje med konstnt bäring räcker för helt rätt. b) Punktmoln (inom lsersknningen) Mn måste nge tt det är länkt till returer v lserstrålrn för tt få helt rätt. c) WGS 84 Sk nge tt det är ett globlt npsst referenssystem (ger 0,5p). Sen kn mn ntingen skriv ngt v följnde: - Det är dessutom en ellipsoid - Att det nvänds för GPS - Dess reltion till Sweref99. 2) Jordmodeller och krtprojektioner (9p) ) Hur långt är det euklidisk vståndet från en godtycklig punkt på ekvtorn till nordpolen på GRS 80 ellipsoiden? GRS 80 ellipsoiden hr dimensionen = m och f= 1/298,257? (2p) (Anmärkning: f är egentligen definiert med 9 decimler. Men för tt underlätt behövs endst tre decimler nvänds i uppgift 2 och 2b) Ur figur fås tt det sökt vståndet (d) är lik med d b Formel 1.3 i formelsmling ger b f b (1 f ) *(1 1/ 298, 257) ,3 m d , m

3 Svr: Avståndet är m b) Beräkn tvärkrökningsrdien (N) för en punkt på ekvtorn smt för nordpolen på GRS 80 ellipsoiden. (3p) Formel 1.3 i formelsmling ger tt: N e 2 f f 1 e (sin ) Vilket ger tt: e 2 f f = På ekvtorn är ltituden lik med noll och således är N=. På nordpolen gäller tt ltituden är 90 grder vilket ger tt N 1 e m Svr: Tvärkrökningsrdien är m på ekvtorn, och m på nordpolen. c) Rit upp grdnätet (dvs. meridinern och prllellcirklrn) för en vbildning v norr hlvklotet för följnde projektioner: - en zimutl projektion med tngeringspunkt i nordpolen - en norml cylindrisk projektion - en konisk projektion där konen tngerr jordmodellen längs en prllellcirkel. (2p) Figurer räcker, Se kurskompendium sid 23. d) Beskriv krtprojektionssystemet Universl Trnsversl Merctor (UTM). (2p) Sk innehåll uppgifter om: - Jorden i 60 zoner - Trnsversl merctorprojektion i vrje zon (med olik prmetrr). - Vilk krtprojektionsprmetrr som nvänds (prmetervärden är ej nödvändig) Dett ger 0,. Ytterligre 0, ges om något v följnde nämns:

4 - I vilken zon Sweref 99 TM ligger. - Hur zonindelning (från dtumgränsen) går till. - Numerisk värden för prmetrr. - Att en stereogrfisk simutl projektion nvänds vid polern. 3) Höjdsystem och geodetisk referenssystem (5p) ) Motiver vrför mn måste nge det geodetisk referenssystemet tillsmmns med ltitud- och longitudvärde för tt specificer läget på en punkt på centimeternivå. (1p) Räcker med en kort förklring tt koordintvärden skiljer sig för en och smm punkt i olik referenssystem. b) Förklr grundprincipen för direktprojektion melln RT 90 2,5 gon väst och Sweref 99 TM. (2p) För helt rätt krävs en förklring v de två stegen nedn. E E (1) (2) N N RT 90 2,5gonVäst SWEREF 99 SWEREF 99TM c) Ge en formell definition v geoiden smt definier vd som mens med geoidhöjd. (2p) För definition krävs den strikt: geoiden är en ekvipotentilyt i tyngdkrftfältet som smmnfller med hvsytns medelnivå (ger 1p). En enkel definition som hvsytn och dess tänkt förlängning in under lnd ger 0,5 p. Måste skriv tt geoidhöjden är vstånd melln ellipsoid och geoid (ger 1p). Om mn beskriver höjd över geoiden och inte geoidhöjd fås 0,5p.

5 4) Fotogrmmetri och lsersknning (6p) ) Beskriv i vilk fll det är lämpligt tt nvänd terrester inmätning (GPS och/eller teodolit) och i vilk fll det är lämpligt tt nvänd fotogrmmetrisk inmätning. (2p) b) Beskriv två effekter som gör tt skln i en flygbild inte är konstnt. (2p) c) Vilken vr huvudnledningen till tt stten (Lntmäteriet) vstte stor resurser för tt gör en ntionell lsersknning? (2p) NYTT PAPPER TILL LARS E ) Fjärrnlys (2p) Beskriv fördelen med tt nvänd fler våglängdsbnd vid nlys v stellitbilder, jämfört med tt br nvänd ett enstk våglängdsbnd (t.ex. pnkromtiskt)? (2p) NYTT PAPPER LARS O + SVEN A Redogör kortfttt för följnde frågeställningr b c d e Förklr skillnden melln en Teodolit och en Totlsttion? Vd är skillnden en Trditionell sttionsetblering och en Fri sttion(fri sttionsetblering)? Vd är GUM-terminologi? Det finns även en uppdelning inom GUM i två klssificeringr Typ A och Typ B. Vd vses med denn uppdelning? Vid viss beräkningr måste en linjärisering först genomförs v observtionsekvtionern. Vilk beräkningr och vrför? Förklr skillnden melln Absolutpositionering och Reltivpositionering vid GNSS-mätningr.

6 Följnde dt gäller för uppgiftern 7,8 och 9 Punkt N (m) E (m) , , , , , , , , , , , ,700 + Fri sttion 432, ,000 Obs Principfigur!! 7 Beräkn polär utsättningsdt från den Fri sttionen med Punkt 533 som nollriktning för gränspunktern 7, 8 och 9. Dt enligt tbell. Smtlig beräkningr sk redoviss Svret nges i tbellform med Sttionspunkt, Bkåtobjekt, smtlig vinklr i gon med fyr decimler och längder i meter med tre decimler. 8 Beräkn ren för tomt Nr 4 Dt enligt tbell. Smtlig beräkningr sk redoviss Svret nges i kvdrtmeter med tre decimler. 9 Beräkn osäkerheten i bestämningen v ren för tomt Nr 4 (uppgift 8), om smtlig koordinter hr en osäkerhet v 30 mm. Dt enligt tbell. Smtlig beräkningr sk redoviss Svret nges i kvdrtmeter med fyr decimler.

7 10 Beräkn följnde polygontåg. Utför beräkningen för polygontåget enligt givn nvisningr. Skriv svret i protokollet nedn och lämn in hel sidn tillsmmns med din övrig svr. OBS Endst principfigur!! Mätt riktning Sidlängd N E Punkt Orienterd riktning N E , , , , , , , , , , , , ,3216 ( ) ( ) 30 ( ) f = f N = f E = f r = Nmn

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 12 januari, 2015. Denna tentamen

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2018.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2018. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 9 januari, 2018. Denna tentamen

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2019.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2019. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 15 januari, 2019. Denna tentamen

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2012.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2012. FÖRSÄTTSBLAD Institutionen för Naturgeografi och Ekosystemvetenskaper Institutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 21 december, 2012. Denna tentamen

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 20 december, 2013. Denna tentamen

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 10 januari, 2017. Denna tentamen

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 10 januari, 2017. Denna tentamen

Läs mer

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2012.

Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2012. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 21 december, 2012. Denna tentamen

Läs mer

Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013.

Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 20 december, 2013.

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

4/29/2011. Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl maj, 2011.

4/29/2011. Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl maj, 2011. FÖRSÄTTSBLAD 4/29/2011 Institutionen för Geo- och Ekosystemvetenskaper Institutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 2 maj, 2011. Besvara frågor till

Läs mer

TentamensKod:

TentamensKod: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:

Läs mer

FÖRSÄTTSBLAD. Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2019.

FÖRSÄTTSBLAD. Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2019. FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 15 januari, 2019.

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Svar till beräkningsuppgifter för instuderingsfrågor i övning 2

Svar till beräkningsuppgifter för instuderingsfrågor i övning 2 Svar till beräkningsuppgifter för instuderingsfrågor i övning 2 F1: Introduktion till samhällsmätning a) Ge ett par exempel på geografisk information. b) Vad behandlas inom vetenskaperna geodesi respektive

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Tentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för:

Tentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för: ENEGITEKNIK I 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4K0B En Nmn: ------------------------------------------------------------------------------------------------------- ersonnummer:

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig

Läs mer

Användande av formler för balk på elastiskt underlag

Användande av formler för balk på elastiskt underlag Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller

Läs mer

Nautisk matematik, LNC022, Lösningar

Nautisk matematik, LNC022, Lösningar Nutisk mtemtik, LN022, 2012-05-21 Lösningr 1. () För vilken eller vilk vinklr v melln 0 oh 180 är sin v = 0, 25? Räknren ger oss v 14, 5, då finns okså lösningen 180 14, 5 = 165, 5 i det givn intervllet.

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Byt till den tjocka linsen och bestäm dess brännvidd.

Byt till den tjocka linsen och bestäm dess brännvidd. LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007

Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007 Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Antal uppgifter: Datum:

Antal uppgifter: Datum: KARLSTADS UNIVERSITET Insiuionen för ingenjörsveenskp, fysik och memik Mskineknik Tenmen i: Konsrukiv uformning och CAD Kod: MSGC27/MSGC31 Anl uppgifer: + 5 Dum: 16-11-04 Exminor: Nils Hllbäck Skrivid:8.15-13.15

Läs mer

Allmän studieplan för utbildning på forskarnivå i ämnet medicinsk vetenskap (Dnr /2017)

Allmän studieplan för utbildning på forskarnivå i ämnet medicinsk vetenskap (Dnr /2017) Allmän studiepln för utbildning på forskrnivå i ämnet medicinsk vetenskp (Dnr 3-3225/2017) Gäller fr.o.m. 1 jnuri 2018 Fstställd v Styrelsen för forskrutbildning 2017-09-11 2 Allmän studiepln för utbildning

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Anna Halvarsson. Privat - Ridning - Skidåkning framförallt nerför - Husrenovering och vedkapning

Anna Halvarsson. Privat - Ridning - Skidåkning framförallt nerför - Husrenovering och vedkapning GITTER.SE Anna Halvarsson Jobbet - GIS ingenjörsutbildningen i Kiruna - GIS och geodata i alla former sedan 1997 - Från 2015-04-01 GITTER Consult AB tillsammans med Johan Esko Privat - Ridning - Skidåkning

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation Föreläsning, Numme K2, 72 GNM Kp 6 Integrler & GNM 8:C Richrdsonextrpoltion yc yd y y y2 yb H c d b A = H ( ) y +y 2 = H 2 { h 2 y + } A = A +A 2 +A = 2 y 2 = h 2 y +y c +y d + 2 y b 2 (y +y c )+ h 2 (y

Läs mer

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12

MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12 Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Guide - Hur du gör din ansökan

Guide - Hur du gör din ansökan Guide - Hur du gör din nsökn För tt komm till nsökningswebben går du in på www.gymnsievlsjuhärd.se och klickr på Ansökningswebb. Men innn du går dit läs igenom informtion under Ansökn och Antgning. Ansökningswebben

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är

vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,

Läs mer

KTH Teknikvetenskap Fotografi-lab 3

KTH Teknikvetenskap Fotografi-lab 3 KTH Teknikvetenskp Fotogrfi-lb 3 Svrtvitt kopieringsrbete, tonreproduktion Kurs: SK2380, Teknisk Fotogrfi Kjell Crlsson & Hns Järling Tillämpd Fysik, KTH, 2015 1 För tt uppnå en god förståelse och inlärning

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter

Läs mer

6 Greens formel, Stokes sats och lite därtill

6 Greens formel, Stokes sats och lite därtill 6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt

Läs mer

Namn och matrikelnummer: 1.a) Redogör kort för begreppet strikt ansvar inom skadeståndsrätten (5 p)

Namn och matrikelnummer: 1.a) Redogör kort för begreppet strikt ansvar inom skadeståndsrätten (5 p) Introduernde kurs i hndelsrätt 10.12.2002, Helsingfors oh Vs Skrivtid: 3 timmr Fråg 1 (Övrig frågor se särskild frågeformulär). Oserver tt tentmen omfttr fem (5) olik frågeformulär oh tt ll dess formulär

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Campingpolicy för Tanums kommun

Campingpolicy för Tanums kommun 1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn

Läs mer

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentmen TEN, HF, mj 8 Mtemtis sttisti Kursod HF Srivtid: 4:-8: Lärre och emintor : Armin Hlilovic Hjälmedel: Bifogt formelhäfte ("Formler och teller i sttisti " och miniränre v vilen ty som helst Förjudn

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

TENTAMEN I KEMI TFKE16 (4 p)

TENTAMEN I KEMI TFKE16 (4 p) Linköpings Universitet IFM-Kemi. Kemi för Y, M. m. fl. (TFKE16) TENTAMEN I KEMI TFKE16 (4 p). 2008-10-16 Lokl: TER1. Skrivtid: 14.00 18.00 Ansvrig lärre: Nils-l Persson, tel. 1387, lt 070-517 1088 (efter

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Tentamen i EDA320 Digitalteknik-syntes för D2

Tentamen i EDA320 Digitalteknik-syntes för D2 CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl. 08.45-2.45, Sl: mg. Exmintor: Peter Dhlgren Tel. expedition

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Tentamen i Eleffektsystem 2C1240 4 poäng

Tentamen i Eleffektsystem 2C1240 4 poäng Tentmen i Eleffektytem C40 4 poäng Ondgen 5 december 004 kl 4.00-9.00 (Frågetund: 5.00, 6.00 och 7.30) Hjälpmedel: En hndkriven A4-id, Bet eller Joefon, fickräknre. Endt en uppgift per bld! Teern lämn

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Svar till uppgifter 42 SF1602 Di. Int.

Svar till uppgifter 42 SF1602 Di. Int. Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2013-01-09 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

Koordinatsystem och transformationer. Tina Kempe Lantmäteriet Informationsförsörjning geodesi tel. 026-63 38 56 christina.kempe@lm.

Koordinatsystem och transformationer. Tina Kempe Lantmäteriet Informationsförsörjning geodesi tel. 026-63 38 56 christina.kempe@lm. Koordinatsystem och transformationer Tina Kempe Lantmäteriet Informationsförsörjning geodesi tel. 026-63 38 56 christina.kempe@lm.se Geodesi Vetenskapen om jordytans uppmätning och kartläggning (Helmert

Läs mer

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren?

MATEMATISKT INNEHÅLL UPPGIFT METOD. Omvandla mellan olika längdenheter. METOD BEGREPP RESONEMANG. Ta reda på omkrets. 5 Vilken omkretsen har figuren? Kn du dett? Uppgiftern här är tänkt tt nvänds för utvärdering v hur elevern tillägnt sig kpitlets mtemtisk innehåll. Låt elevern, prvis eller i mindre grupper, lös uppgiftern tillsmmns och förklr för vrndr

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.

1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets. (7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde

Läs mer