N atom m tot. r = Z m atom
|
|
- Johanna Berglund
- för 7 år sedan
- Visningar:
Transkript
1 Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v ledningselektroner i silver (ntl/m 3 )? b) Beräkn Fermienergin för silver (i ev)? ) Av silvers elektronkonfigurtion kn vi slut oss till tt silver vger en elektron till elektrongsen. Tätheten v ledningselektroner blir då: n = N elektron V = Z N tom V = Z m tot V N tom m tot r = Z m tom Numeriskt ger dett (med Z = 1) tt: 149 n =1 17,87 1, = 5, m -3 b) Fermienergin ges v: E F = h ( m 3p n) 3 Numerisk får vi då tt: E F = ( 1, ) 9, p 5, ( ) 3 J = 8, J = 5,5 ev. Beräkn tillståndstätheten vid Fermiytn, D( e F ) hos silver? Ange svret i de båd enhetern J -1 m -3 respektive ev -1 tom -1. Du får nt tt silverstycket hr en mkroskopisk kubisk form vid räknndet. I en kub med volymen V = L 3 ger Schrödingerekvtionen lösningr med k i =, ± p L, ±,L, vilket betyder tt vrje tillstånd i k-rummet upptr en volym L som är V k = p 3 = 8p 3. Enligt Puliprincipen kn vi endst h två elektroner L V per tillstånd i k-rummet (en med spinn upp och en med spinn ner). Betrkt en sfär med rdien k i k-rummet (motsvrnde en konstnt energi e k = h m k på ytn v sfären). Då är ntlet tillåtn tillstånd med en energi e < e k :
2 N( e) = V sfär = k3 3 V k 8p 3 V = V 3p k3 = V 3p m h 3 e 3 Tillståndstätheten ges v ntl tillstånd per energi, vilket vi får genom tt deriver dett uttryck: ( ) = dn( e) D e de = V p m h 3 e fi D( e) V = 1 p m h 3 Numerisk ger dett vid Fermiytn med hjälp v Fermienergin från föregående uppgift: D( e) V = 1 3 9, p ( 1, ) 8, Jm 3 = 9, Jm 3 Omräknt till enheten ev -1 tom -1 med tomtätheten (lik med elektrontätheten eftersom Z=1) från föregående uppgift ger tt: D( e) V = 9, , , ev tom =,73 1 ev tom e 3. Den kermisk suprledren YB Cu 3 O 7 hr en ortorombisk struktur med gitterprmetrrn = 3,8 Å. b = 3,88 Å och c = 11,69 Å. I en ortorombisk struktur är ll gitterprmetrr olik lång, men gittervektorern 1, och 3 är fortfrnde ortogonl mot vrndr. ) Beräkn de reciprok gittervektorern för en ortorombisk struktur? b) Vd händer med de reciprok gittervektorern i en tetrgonl struktur där = b c respektive i en kubisk struktur där = b = c? c) Beräkn längden v en reciprok gittervektor i YB Cu 3 O 7 med Millerindex (11)? ) Eftersom gittervektorern är ortogonl mot vrndr, kn vi välj ett rätvinkligt koordintsystem så tt gittervektorern ligger längs med de tre koordintxlrn, dvs. vi hr tt: 1 = x, = b y, 3 = c z Volymen v enhetscellen är således V = bc, vilket även kn erhålls ur:
3 V = 1 ( 3 ) = È bc Í ( ) b Í = ( ) Î Í c = bc De reciprok gittervektorern ges nu v: b 1 = p ( ) = p bc b = p ( ) = p bc b 3 = p ( ) = p bc b = p bc bc = p x c = p bc c = p y b c b = p bc = p z c b b) Genom tt direkt jämför med beräkningen v de reciprok gittervektorern för den ortorombisk strukturen, ser vi tt för en tetrgonl struktur där = b gäller det tt: b 1 = p x, b = p y, b 3 = p c z På smm sätt får vi tt för en kubisk struktur med = b = c gäller tt: b 1 = p x, b = p y, b 3 = p z c) En reciprok gittervektor med Millerindex (hkl) teckns llmänt: G ( hkl) = hb 1 + kb + lb 3 Längden v G ( 11) hos YB Cu 3 O 7 kn således teckns: G ( 11) = 1 p x +1 p y b + p z c = Numeriskt ger dett tt: p + p b G ( 11) = p 3,8 + p 3,88 Å -1 =,38 Å Mn kn genom förångning frmställ mycket tunn filmer v metllisk grundämnen som br är någr få tomlger tjock. I en mycket tunn film
4 betyder dett tt filmen kn betrkts som en näst intill två-dimensionell ledre. Betrkt en tunn metllfilm med ytn A=L och finn ett uttryck för tillståndstätheten hos elektronern i en två-dimensionell ledre? I en två-dimensionell ledre hr vi endst en elektrongs i plnet. Lösningen v Schrödingerekvtionen ger på smm sätt som för en tre-dimensionell ledre tt tillåtn k-värden ges v: k x,k y =, ± p L, ± L,L Ytn v vrje k-punkt (i två dimensioner) är således A k = p = ( p ) L A. Enligt Puliprincipen kn vi endst h två elektroner per tillstånd i k-rummet (en med spinn upp och en med spinn ner). Betrkt en cirkel med rdien k i det tvådimensionell k-rummet (motsvrnde en konstnt energi e k = h m k på vståndet k från cirkelns mitt). Då är ntlet tillåtn tillstånd med en energi e < e k : N( e) = A sfär A k = pk A = A p k = A m p h e Tillståndstätheten ges v ntl tillstånd per energi, vilket vi får genom tt deriver dett uttryck: ( ) = dn ( e ) D e de = Am ph 5. Bilden nedn visr Brillouinzonen för silver som är fcc och hr en kubisk gitterprmeter på 4,9 Å. Beräkn k (bsolutbeloppet v vågvektorn) i vrder punkten X, L och K på ytn v Brillouinzonen? z X G W L U K y x
5 Silver är fcc med gitterprmeter = 4,9 Å. De primitiv gittervektorern (i det direkt gittret) för en fcc-struktur är (se Kittel): 1 = y + z ( ) ; = ( x + z ) ; 3 = ( x + y ) Volymen v den primitiv enhetscellen är: ( ) = V = 1 3 È Í Í = Î Í = Dett kn även inses från den kubisk enhetscellen för fcc som hr volymen 3 och 4 tomer i bsen, vilket ger tt den primitiv enhetscellen hr volymen 3 4. De reciprok gittervektorern blir nu: b 1 = p ( ) = p b = p ( ) = p b 3 = p ( ) = p 3 4 = p = p x + y + z ( ) 3 4 = p = p x y + z ( ) 3 4 = p = p x y - z ( ) Det reciprok gittret är således ett bcc-gitter med gitterprmetern b =, vilket viss i figuren nedn.. x x
6 Ur figurens geometri frmgår tt vståndet till de olik punktern på den inritde BZ-gränsen kn beräkns utifrån följnde smbnd. X: k = p =1, m -1 (hlv vståndet till gitterpunkten i ) L: k = 1 3 p =1,33 11 m -1 (hlv vståndet tillgitterpunkten i p p p ) K: Ligger längs (11)-riktningen och hr smm vstånd till origo som till p p p gitterpunkten i. Låt punkten K:s läge längs (11)-riktningen vr ( x x ). Då måste det enligt Pythgors sts gäll tt: x = p + p -x = + 8p - x + x fi x = 3p =1,69 11 m -1
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri
Läs merRäkneövning 1 atomstruktur
Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel
Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter
Läs merMateriens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
Läs mer( ) Räkneövning 3 röntgen. ( ) = Â f j exp -ir j G hkl
Räkneövning 3 röntgen 1. Natrium, Na, har en bcc-struktur med gitterparametern 4,225 Å. I ett röntgenexperiment på ett polykristallint Na-prov använder man sig av Cu-K a - strålning med våglängden 1,5405
Läs merORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Läs merORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Läs merTMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Läs mer1.1 Sfäriska koordinater
Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..
Läs merRÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Läs merSfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Läs merTentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
Läs merTrigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Läs merLINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Läs mer1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Läs merVolum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Läs merTentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst
Läs merKvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
Läs merEnligt Hunds första regel är spin maximal. Med tvνa elektroner i fem orbitaler tillνater
Problem. Vad är enligt Hunds reglar grundtillstνandet av deföljande fria joner? Använd spektroskopisk notation. Till exempel, i Eu + (4f 7 ) skulle rätt svar vara 8 S 7=.Gekvanttal för banrörelsemängdsmoment,
Läs merTENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011
TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 Tid: 2012-08-24 kl. 08.30 Lokal: VV- salar Hjälpmedel: Physics Handbook, egen formelsamling på ett A4 blad (fram och baksidan), typgodkänd räknare eller
Läs merTENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011
TENTAMEN I FASTA TILLSTÅNDETS FYSIK F3/KF3 FFY011 Tid: Lokal: 2011-03-18 förmiddag VV salar Hjälpmedel: Hjälpmedel: Physics Handbook, bifogad formelsamling, typgodkänd räknare eller annan räknare i fickformat
Läs merPASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Läs merByt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Läs merAppendix. De plana triangelsatserna. D c
ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:
Läs mer9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Läs merLösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den
Läs merAnalys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
Läs merLösningar till repetitionstentamen i EF för π3 och F3
Lösningr till repetitionstentmen i EF för π3 oh F3 Lösning problem Från Poyntingvektorn (r, t = E(r, t H(r, t = A ẑ η 0 konstterr vi tt vågens utbredningsriktning ê är vilket leder till tt dess vågvektor
Läs merTENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
Läs merLaboration i röntgendiffraktion och laserdiffraktion för E
Laboration i röntgendiffraktion och laserdiffraktion för E Mats Göthelid Plats: Forum Kista. Samma som för laborationerna i Fysik1. Hiss A våning 8 Uppgifter: Laborationen består av två delar: 1) strukturbestämning
Läs merDiskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Läs merMatris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Läs mer13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Läs mer19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Läs merAnvändande av formler för balk på elastiskt underlag
Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller
Läs merLösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i
Läs merTentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl
Tentmen i Elektromgnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 9 ugusti, 8, kl. 14. 19., lokl: MA9A Kursnsvrig lärre: Gerhrd Kristensson, tel. 45 6 & Anders Krlsson tel.
Läs merLösningar och kommentarer till uppgifter i 1.2
Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr
Läs mer9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
Läs merSF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Läs merEGENVÄRDEN och EGENVEKTORER
EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär
Läs merNågra integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Läs merIntegraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Läs merMATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier
Läs merSammanfattning, Dag 9
Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet
Läs merVilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Läs merMängder i R n. Funktioner från R n till R p
Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)
Läs merx 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Läs merDefinition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)
Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given
Läs merSidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Läs merEn skarp version av Iliev-Sendovs hypotes
School of Mthemtics nd Systems Engineering Reports from MSI - Rpporter från MSI En skrp version v Iliev-Sendovs hypotes Elin Berggren Feb 009 MSI Report 09005 Växjö University ISSN 650-647 SE-35 95 VÄXJÖ
Läs merTATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Läs merIntegralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Läs merFinaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Läs merLösningsförslag till fråga 5
Lösningsförslg till fråg 5 Smmnfttning Följnde lceringr för unktern, som frmgår v Tbell, är de bäst vi hr funnit. Utförligre beskrivningr v ders lägen följer i texten: Fråg ), n unkter i en kvdrt n Plcering
Läs merINLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp
rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som
Läs merGauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson
Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när
Läs merTATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler
TATA4: Föreläsning 1 Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 15 november 18 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer,
Läs merKontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj
Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n
Läs merKOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) 1. GITTER. RECIPROKT GITTER. KRISTALLPLAN.
KOMPLETTERANDE FORMELSAMLING FÖR FASTA TILLSTÅNDET I (reviderad version) Nedanstående är en minneslista över väsentliga formler och detaljer i den inledande kursen i fasta tillståndets fysik. Observera
Läs merFrågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.
Läs merSF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Läs merTentamen i ETE115 Ellära och elektronik, 3/6 2017
Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V
Läs merExponentiella förändringar
Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt
Läs merDefinition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är
Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt
Läs merPreliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
Läs merEnhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt
Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden
Läs merGeometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?
Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde
Läs merHF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER
DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.
Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B
Läs merUppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Läs merMA002X Bastermin - matematik VT16
MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs mer1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv.
1. (a) (1 poäng) Rita i figuren en translationsvektor T som överför mönstret på sig själv. Solution: Man ser efter ett tag att några kombinationer återkommer, till exempel vertikala eller horisontella
Läs merSF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
Läs mera sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0
18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.
Läs merGör slag i saken! Frank Bach
Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn
Läs merUttryck höjden mot c påtvåolikasätt:
Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:
Läs merIntegraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
Läs merLösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr
Läs mer( ) = B 0 samt att B z ( ) måste vara begränsad. Detta ger
Lösningsförslag till deltentamen i IM601 Fasta tillståndets fysik Londons ekvation Måndagen den augusti, 011 Teoridel 1. a) Från Amperes lag och det givna postulatet får vi att: B = m 0 j fi B = m 0 j
Läs merUppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Läs merGOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna
GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merEvighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969
Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:
Läs merFöreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:
Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde
Läs merTATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
Läs merTentamen ETE115 Ellära och elektronik för F och N,
Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig
Läs mer3. Kristallinitet. 3.1 Kristallstruktur I Matematiska gitter II Matematiska gitter I. 3.1 Kristallstruktur
3. Kristallinitet 3.1.1 Matematiska gitter 3.1.1.1 De 5 2-dimensionella gittren 3.1.1.2 De 7 kristallsystemen och 14 Bravais-gittren i 3D 3.1.2 Kristallstruktur = gitter + bas 3.1.4 Specifika kristallstrukturer
Läs mer3.1 Kristallstruktur Matematiska gitter De 5 2-dimensionella gittren De 7 kristallsystemen och 14 Bravais-gittren i 3D
3. Kristallinitet 3.1 Kristallstruktur 3.1.1 Matematiska gitter 3.1.1.1 De 5 2-dimensionella gittren 3.1.1.2 De 7 kristallsystemen och 14 Bravais-gittren i 3D 3.1.2 Kristallstruktur = gitter + bas 3.1.4
Läs merTATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
Läs merDispersionsrelation för fononer hos en diatomär atomkedja
Dispersionsrelation för fononer hos en diatomär atomkedja Betrakta en endimensionell kedja av atomer med alternerande atomslag (massor M 1 respektive M ), dvs. kedjan består av ett endimensionellt gitter
Läs merTentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Läs merLÖSNINGAR TILL PROBLEM I KAPITEL 4. Masscentrums x-koordinat för den sammansatta kroppen är allmänt. 1 g1 2 g2 3 g3 4 g4.
ÖSNINA TI POBEM I KAPITE P. z åt kroppens totl ss vr, så tt vrje rk stång hr ssn och längden. O Msscentru för en rk hoogen stång ligger självklrt i itten. Msscentrus -koordint för den snstt kroppen är
Läs merGrundläggande matematisk statistik
Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel
Läs merVolym och dubbelintegraler över en rektangel
Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =
Läs merTillämpning av integraler
CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr
Läs mer