Räkneövning 1 atomstruktur
|
|
- Marianne Ström
- för 8 år sedan
- Visningar:
Transkript
1 Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren nedn. Rit ut primitiv gittervektorer 1 och smt en primitiv enhetscell? Primitiv gittervektorer och enhetscell kn väljs på mång olik sätt. Två olik sätt viss i figuren nedn. Av dess förslg ser vi tt enhetscellen hr två tomer i bsen.
2 . Hur mång närmst grnnr hr en tom i bcc- respektive i fcc-strukturern? (Vis hur mn kommer frm till dess resultt.) För bcc är det enklst tt betrkt den centrl tomen i strukturen. Dess närmste grnnr är hörntomern i den kubisk enhetscellen (vstånd 3 ), medn vståndet till mitttomen i näst enhetscell är. Således finns det 8 närmste grnnr. För fcc är det enklst tt betrkt det tätpckde (111)-plnet. I själv plnet finns det 6 närmste grnnr. Ovnför plnet smt under plnet kn vi lägg vrder 3 tomer på smm vstånd som de övrig närmste grnnrn, Tillsmmns blir det = 1 närmste grnnr. bcc-struktur (111) - pln fcc-struktur 3. Använd hårdsfärspproximtionen och nt tt tomer som är närmste grnnr tngerr vrndr. Beräkn pckningsgrden (den ndel v den totl kristllvolymen som är fylld v tomer) för fcc-strukturen? Den kubisk enhetscellen i fcc-strukturen hr volymen 3 och innehåller 4 styck tomer (8 hörntomer och 6 sidotomer ger = 4 tomer i cellen). Dess tomer gör kontkt med vrndr längs sidns digonl, vrför vi hr tt = 4r fi r = och pckningsgrden blir ( ) f = 4 4pr3 3 3 = 16p 3 Ê 1 ˆ Á Ë 3 = p 3 ª 0,74
3 4. Strontiumtitnt (se figur) hr gitterprmetern Å och de ingående tomern hr tomvikter enligt figuren. Beräkn densiteten för strontiumtitnt? Titn, Ti, 67,90 u Strontium, Sr, 87,6 u Syre, 0, 16,00 u Av figuren ser vi tt det finns följnde ntl tomer v vrder slget i enhetscellen: Sr: 1 tom Ê 1 Ti: 1 tom ( 8 Á ˆ =1 tom) Ë 8 Ê 1ˆ O: 3 tomer (1 Á = 3 tomer) Ë 4 Den kemisk formeln för strontiumtitnt är således SrTiO 3. Vi kn nu enkelt beräkn densiteten utifrån ntlet tomer i enhetscellen, tomviktern och gitterprmetern. r = m V = m Sr +m Ti +3m O 3 Numeriskt blir dett: r = ( 87,6 + 67, ,00 ) 1, ( 3, ) 3 kg m 3 = 5, kg m 3 5. Yttrium, Y, hr en hexgonl tätpckd struktur (hcp) med gitterprmetrrn = 3,65 Å och c = 5,73 Å (i figuren nedn hr positionern på de yttriumtomer som ligger i mitten v strukturen mrkerts med röd linjer). ) Utgående från det givn koordintsystemet, bestäm gittervektorern 1, och 3 smt beräkn volymen v den blåmrkerde cellen hos yttrium? b) Är den blåmrkerde cellen en primitiv enhetscell? Motiver ditt svr!
4 3 c x 1 y ) Av den sexfldig symmetrin i plnet frmgår tt vinkeln melln 1 och måste vr 10. Atomvstånden är också desmm, vilket betyder tt tomern sitter i liksidig tringlr med vinklrn 60. Trigonometri ger nu tt: 1 = 3 x ˆ + y ˆ ; = - 3 x ˆ + y ˆ ; Cellvolymen blir då: 3 = cˆ z ( ) = Á 3 V = 1 3 Ê Ë È Ê - 3 ˆ Ê 0ˆ ˆ Í Á Á Ê 0 Í Á 0 = Á 3 Í Á Ë 0 Á Î Ë c Ë Ê c ˆ ˆ Á 0 c 3 Á = c 3 Ë 0 Insättning v numerisk värden för yttrium ger tt: V = 3,65 5,73 3 Å 3 = 66,1 Å 3 b) Den mrkerde enhetscellen är den primitiv enhetscellen för en hcp-struktur. Det enklste sättet tt se dett är genom tt betrkt en rottion v strukturen runt 3, där det omedelbrt inses tt mn måste roter 10 för tt kunn återupprep tomstrukturen (en rottion på 60 återupprepr inte strukturen). Vi hr således en trefldig rottionssymmetri hos strukturen, vilket även måste återspegls hos den primitiv enhetscellen, med en vinkel på 10 melln xlrn hos densmm.
5 6. Rit ut ett (110)-pln i en bcc-struktur smt beräkn hur stor ndel v dett pln som är täckt v tomer i hårdsfärspproximtionen? Ett (110)-pln skär x-xeln i punkten /1=, skär y-xeln i punkten /1= smt skär z-xeln i punkten i punkten /0=. Dett ger följnde figur: z r y x Andelen v (110)-plnet som är täckt v tomer är: Ê ˆ Á pr Ë 4 Ê f = = pá r ˆ Ë 3 = p 16 ª 0,833 Här hr vi utnyttjt geometrin som ger tt 4r = 3 i bcc-strukturen. 7. Beräkn bindningsvinkeln i bcc-strukturen nedn? z y x
6 Rit upp den tringel som definierr vinkeln och beräkn vstånden. / / b Vi ser direkt tt vståndet b är hlv digonlen i den kubisk enhetscellen, vrför vi får tt b = 3. Trigonometri ger nu tt: sin = b = 3 = 1 3 fi = rcsin 1 3 = 70,53
N atom m tot. r = Z m atom
Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel
Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter
Läs merGeometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?
Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde
Läs merTMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Läs merFinaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Läs merTrigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Läs merKvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
Läs merMateriens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
Läs merSfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Läs merORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Läs mer( ) Räkneövning 3 röntgen. ( ) = Â f j exp -ir j G hkl
Räkneövning 3 röntgen 1. Natrium, Na, har en bcc-struktur med gitterparametern 4,225 Å. I ett röntgenexperiment på ett polykristallint Na-prov använder man sig av Cu-K a - strålning med våglängden 1,5405
Läs merTentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
Läs mer1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Läs merAppendix. De plana triangelsatserna. D c
ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:
Läs mera sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0
18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.
Läs merHF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER
DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi
Läs merMatematiska uppgifter
Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v
Läs merORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Läs merPASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Läs merDefinition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)
Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given
Läs merByt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Läs merLösningsförslag till fråga 5
Lösningsförslg till fråg 5 Smmnfttning Följnde lceringr för unktern, som frmgår v Tbell, är de bäst vi hr funnit. Utförligre beskrivningr v ders lägen följer i texten: Fråg ), n unkter i en kvdrt n Plcering
Läs merVolum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Läs merVektorer. Avsnitt 1. Ange lägesvektorerna för de två väteatomerna på formen: r = x ˆx + y ˆx
Avsnitt 1 Vektorer 1.1 Skissen nedn visr molekylgeometrin för H 2 O, där syretomen befinner sig i origo och vätetomern lägger symmetriskt kring x-xeln. Bindningslängden är = 96 pm och bindningsvinkeln
Läs merDefinition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är
Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt
Läs merUttryck höjden mot c påtvåolikasätt:
Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:
Läs merInledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.
Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln
Läs merKan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Läs merTATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler
TATA4: Föreläsning 1 Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 15 november 18 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer,
Läs merFrågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.
Läs merTentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl
Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt
Läs merNautisk matematik, LNC022, Lösningar
Nutisk mtemtik, LN022, 2012-05-21 Lösningr 1. () För vilken eller vilk vinklr v melln 0 oh 180 är sin v = 0, 25? Räknren ger oss v 14, 5, då finns okså lösningen 180 14, 5 = 165, 5 i det givn intervllet.
Läs merDiskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Läs merFöreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merTENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
Läs merLösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den
Läs merGör slag i saken! Frank Bach
Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn
Läs merTentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2013-01-09 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Läs merTentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007
Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd
Läs merAnvändande av formler för balk på elastiskt underlag
Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller
Läs merRepetitionsuppgifter i matematik
Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde
Läs merMA002X Bastermin - matematik VT16
MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:
Läs merSkriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Läs mer19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Läs merLösningsförslag till finaltävlingen den 19 november 2005
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Lösningsförslg till finltävlingen den 19 novemer 2005 1 Vi utvecklr de åd leden och får ekvtionen vilken efter förenkling kn skrivs x 3 + xy + x 2 y
Läs merTentamen ETE115 Ellära och elektronik för F och N,
Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig
Läs merTATA42: Föreläsning 11 Kurvlängd, area och volym
TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt
Läs merNågra integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Läs mer============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
Läs mer10. Tillämpningar av integraler
90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re
Läs merTillämpning av integraler
CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr
Läs merx 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Läs merTATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
Läs merTATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
Läs merGauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson
Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när
Läs merTATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Läs merAnalys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
Läs mer1.1 Sfäriska koordinater
Föreläsning 3 Mång fysiklisk problem hr någon slgs symmetri. Mest vnligt förekommnde är sfärisk cylinisk. Det visr sig tt mn kn förenkl beräkningr betydligt om mn nvänder sfärisk /eller cylinisk koordinter..
Läs mer1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
Läs merLösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i
Läs mer1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:
Läs merVilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Läs merLösningar och kommentarer till uppgifter i 1.2
Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr
Läs merLamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING
INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de
Läs merIntegraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Läs merIM2601 Fasta tillståndets fysik
IM2601 Fasta tillståndets fysik Introduktion Kursen i ett större perspektiv Klassificering av fasta material Klassificering av kristallina material - atomstruktur 1 Forskning inom fysik idag - en översikt
Läs merLINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Läs mer9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Läs merDefinition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att
Läs merINLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp
rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som
Läs merUppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Läs merTillämpad Matematik I Övning 4
HH/ITE/BN Tillämpd Mtemtik I, Övning 8 6 Tillämpd Mtemtik I Övning 6 8 Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm,
Läs merSF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Läs mer9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
Läs merRÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Läs merMatematisk statistik för B, K, N, BME och Kemister
Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 2 John Lindström 3 ugusti 217 John Lindström - johnl@mths.lth.se FMSF7/MASB2 F1 1/22 Grundläggnde begrepp Stokstisk vribel Snnolikhetsfunktion
Läs mer6 Greens formel, Stokes sats och lite därtill
6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt
Läs merTentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Läs merTentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Onsdagen den 30 maj, Teoridel Ê Á Ê. B B T Ë k B T Ê. exp m BBˆ.
Lösningsförslag till deltentamen i IM60 Fasta tillståndets fysik Paramagnetism i ett tvånivåsystem Onsdagen den 30 maj, 0 Teoridel. a) För m S = - är m S z = -m B S z = +m B och energin blir U = -m B B
Läs merEnhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt
Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden
Läs mer14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
Läs merCampingpolicy för Tanums kommun
1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn
Läs merEn skarp version av Iliev-Sendovs hypotes
School of Mthemtics nd Systems Engineering Reports from MSI - Rpporter från MSI En skrp version v Iliev-Sendovs hypotes Elin Berggren Feb 009 MSI Report 09005 Växjö University ISSN 650-647 SE-35 95 VÄXJÖ
Läs merLösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Läs mer13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Läs merTENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng
TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8
Läs merArea([a; b] [c; d])) = (b a)(d c)
Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner
Läs merAnalys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013
Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två
Läs merOleopass Bypass-oljeavskiljare av betong för markförläggning
Instlltionsnvisning Oleopss Bypss-oljevskiljre v etong för mrkförläggning Figur 1 P C H G F E D B I J L M Q 0 O N O Innehåll: Uppyggnd och ingående komponenter... 1 Hlssystem... 2 Lossning... 2 Schkt,
Läs merTentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2012-08-16 kl. 8.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består
Läs merSF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Läs merSammanfattning, Dag 9
Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet
Läs merTentamen i EDA320 Digitalteknik-syntes för D2
CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl. 08.45-2.45, Sl: mg. Exmintor: Peter Dhlgren Tel. expedition
Läs merSlutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär
Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering
Läs mer