Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007
|
|
- Gerd Jonasson
- för 6 år sedan
- Visningar:
Transkript
1 Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd senst en månd därefter. Hjälpmedel: Formelsmling i hållfsthetslär, mtemtisk hndböcker, formelbld för kompositmeknik och räknedos. Exmintor på M: Fred Nilsson, tel P: Jons Neumeister, tel T: Sören Östlund, tel BD, IPI Kristofer Gmstedt, tel BI Bo lfredsson, tel OBS! Tentnd skll kunn vis legitimtion och kvitto på erlgd kårvgift. Skriv endst på en sid v blden. Skriv tydligt nmn, progrm och personnummer på vrje bld. Rit gärn figurer i färg men ej med rödpenn. Lösningr som är otydlig och svår tt följ kommer inte tt bedöms. På en uppgift ges 6, 5, 4, eller 0 poäng. Till ditt tentmensresultt läggs de poäng du hr från hemuppgiftern. Betyget blir: 0-11,5 ger U; 12-1,5 ger komplettering till ; 14-21,5 ger ; 22-28,5 ger 4; ger 5. ECTS-betygsgränser: 0-11,5 ger F; 12-1,5 ger FX; 14-17,5 ger E; 18-21,5 ger D; 22-24,5 ger C; 25-28,5 ger B; ger. Komplettering till godkänt betyg (, E) sker förslgsvis torsdgen den 28 juni 2007 kl 1 till Betrkt ett stångbärverk enligt figuren. Bestäm den horisontell förskjutningen hos punkten C om stången BC utsätts för en temperturändring ΔT = T. Stängern är tillverkde v ett mteril med elsticitetsmodulen E och längdutvidgningskoefficienten α. Stängerns tvärsnittsreor är ngivn i figuren. D L L B 2 C Tentmen i Hållfsthetslär gkmpt, gkbd, gk BI, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni
2 2. En torsionsfjäder är v utrymmesskäl konstruerd med tre xlr inuti vrndr. Delr 1 och 2, respektive delr 2 och är inbördes förbundn med stel gvlr. De två rören och den homogen xeln hr mått enligt figuren. Bestäm vilken totl förvridning θ mn får vid änden där ett yttre vridmoment M v nbrings. xeldelrns geometrier frmgår ur figuren, mterilets skjuvmodul är G. stel stel 2 Snitt - Längder: L 1 = L = L M v, θ L 2 = 0.9 L 1 Inner- och ytterrdier: r 1i = 1.7 r, r 1y = 2 r r 2i = 1. r, r 2y = 1.5 r, r = r. En homogen blk enligt figuren belsts med en jämnt utbredd lst Q. Blken hr ett tvärsnitt i form v en liksidig tringel, med sidn, orienterd så tt en v sidorn är horisontell. Bestäm störst drgrespektive tryckspänning i konstruktionen p.g.. v böjning. Q 2L L -- Tvärsnittsform: 4. På mntelytn till slutet cylindriskt tryckkärl med mått enligt figuren, mäts töjningen i omkretsled upp till 6, då kärlet utsätts för ett inre övertryck p. Kärlet kn betrkts som tunnväggigt. Beräkn det inre övertrycket smt töjningen i längsled ε z. Mterilet är linjärt elstiskt med elsticitetsmodulen E = 2, MP och tvärkontrktionstlet ν = 0,. r ϕ t=0,025 m ϕ ε ϕ z r 2=1 m Tentmen i Hållfsthetslär gkmpt, gkbd, gk BI, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni
3 5. ) Bestäm säkerheten mot plsticering för det pln spänningstillstånd som viss i figuren till vänster. ( p). b) Därefter superponers en spänning σ 0 = 100 MP i 45 -riktningen (moturs från x-riktn). Bestäm säkerheten mot plsticering även för de kombinerde lstern. Se figuren till höger.( p). Mterilet hr sträckgränsen σ s = 280 MP och nts följ von Mises flythypotes. ) b) σ 0 = 100 MP y σ x = 90 MP σ y = -110 MP τ xy = -80 MP x y σ x = 90 MP σ y = -110 MP τ xy = -80 MP x σ 0 6. En komponent i en mskin skll dimensioners. Mterilvlet står melln en höghållfst luminiumlegering och ett höghållfst stål. Det hr frmkommit tt den störst risken för komponenten är momentnt brott från de defekter som kn förekomm. I smtlig fll nts förekommnde sprickor vr elliptisk (inre sprickor) eller hlvelliptisk (ytsprickor) med xelförhållndet /c=0,8. Sprickorn kn vidre nts vr mycket små i förhållnde till komponentens övrig dimensioner. Mn vill dimensioner komponenten för en normlspänning vinkelrätt mot sprickplnet som är 0, σ s ( σ s är sträckgränsen). Hur stor sprickor (inre och yt) kn tillåts i de olik mterilen, om säkerhetsfktorn mot brott skll vr 2? Mterildt enligt tbell och linjär brottmeknik kn nts gäll. Mteril Sträckgräns σ s /MP Brottseghet K Ic / MP m luminium 7075-T Stål SIS inre sprick 2c 2 ytsprick 2c Tentmen i Hållfsthetslär gkmpt, gkbd, gk BI, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007
4 1) 2) )
5 4) 5) 6)
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
Läs merTentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
Läs merAnvändande av formler för balk på elastiskt underlag
Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller
Läs merTentamen i EDA320 Digitalteknik-syntes för D2
CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl. 08.45-2.45, Sl: mg. Exmintor: Peter Dhlgren Tel. expedition
Läs mer13. Energimetoder. r R
13. Energimetoder 13.1 eräkn nedböjningen under lsten å kvrtscirkelbågen med krökningsrdien. Tg hänsyn till xil, skjuv och böjdeformtion. ågen hr ett mssivt cirkulärt tvärsnitt med rdien r «; mterilet
Läs merLösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
Läs merRandvillkoren tecknas
Tenis Högsoln i Linöping, IEI /Tore Dhlberg TENTMEN i Hållfsthetslär - Dimensioneringmetoder, TMHL09, 2007-06-05 l 8-12 R O B L E M med L Ö S N I N G R Del 1 - (Teoridel utn hjälpmedel) 1. En bl belsts
Läs merPreliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
Läs merKompletterande formelsamling i hållfasthetslära
Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr
Läs merLunds Tekniska Högskola, LTH
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Läs mer1. Ett material har dragprovkurva enligt figuren.
1. Ett material har dragprovkurva enligt figuren. a) Vad kallas ett sådant materialuppträdande? b) Rita i figuren in vad som händer vid avlastning till spänning = 0 från det markerade tillståndet ( 1,
Läs merFrågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.
Läs merTekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
Läs merGeometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?
Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:
Läs merGrundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
Läs merTentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
Läs merKvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
Läs merMateriens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
Läs mer1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Läs merTentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
Läs merMATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12
Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling
Läs merTENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
Läs merKontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj
Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n
Läs mer6 Allmänna dimensioneringsregler för stålkonstruktioner
6 Allmänn dimensioneringsregler Tbell 6.1 Dimensioneringsvärdet s hållfsthet i brottgränstillstånd (ULS). där: f yd f ud f y f u γ M0 =1,0 är dimensioneringsvärdet för sträckgränsen. är dimensioneringsvärdet
Läs merP R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
Läs merTMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Läs merTENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Läs merTentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Läs merLösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
Läs merFinaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Läs merKAPITEL 1 Introduction
KAPITEL 1 Introduction 1) Vilken är skillnden melln tt nge totl livslängd ( totl lie pproch ) jämört med tt h en deekttolernt utgångspunkt ( deect-tolernt pproch )? 2) Vd innebär HCF och LCF och vd krkteriserr
Läs merLösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Läs merRäkneövning 1 atomstruktur
Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren
Läs merSF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
Läs merTentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 29 augusti, 2008, kl
Tentmen i Elektromgnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 9 ugusti, 8, kl. 14. 19., lokl: MA9A Kursnsvrig lärre: Gerhrd Kristensson, tel. 45 6 & Anders Krlsson tel.
Läs merTentamensKod:
ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:
Läs merTekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
Läs merSkriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Läs mer1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde
Läs merFöreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Läs merTentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Läs merLÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Läs mer9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (EITF85)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF) och F3 (EITF85) Ti och plts: 3 oktober, 8, kl. 4. 9., lokl: MA A H. Kursnsvrig lärre: Aners Krlsson, tel. 4 89 och 733 35958. Tillåtn hjälpmeel:
Läs merLösningsskisser till Tentamen 0i Hållfasthetslära 1 för 0 Z2 (TME017), = @ verkar 8 (enbart) skjuvspänningen xy =1.5MPa. med, i detta fall,
Huvudspänningar oc uvudspänningsriktningar n från: Huvudtöjningar oc uvudtöjningsriktningar n från: (S I)n = 0 ) det(s I) =0 ösningsskisser till där S är spänningsmatrisen Tentamen 0i Hållfastetslära för
Läs merTekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband
Läs merHållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går
Läs merUppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Läs merDiskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Läs merTentamen i ELEKTROMAGNETISM I, för F1 och Q1 (1FA514)
Uppsl universitet Institutionen för fysik och stronomi Gbriell Andersson Skrivtid: 5 tim Tentmen i ELEKTROMAGNETISM I, 2013-05-31 för F1 och Q1 (1FA514) Kn även skrivs v studenter på ndr progrm där 1FA514
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merTentamen i Hållfasthetslära AK2 för M Torsdag , kl
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merTentamen i EITF90 Ellära och elektronik, 28/8 2018
Tentmen i EITF9 Ellär och elektronik, 8/8 8 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Läs merTekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.
Läs mera sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0
18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.
Läs merTentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Läs merKan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Läs merByt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Läs merHållfasthetslära Sammanfattning
2004-12-09 Enaxlig drag/tryck & skjuvning Anders Ekberg Hållfasthetslära Sammanfattning Anders Ekberg Ekvationsnummer hänvisar till Hans Lundh, Grundläggande Hållfasthetslära, Stockholm, 2000 Denna sammanfattning
Läs merStångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014
Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Laboration 4 mars 4 Stångbärverk Hållfasthetslärans grunder Civilingenjörsprogrammet i teknisk fysik Knut Knut....4 y/ L.5.6.7.8.9 Knut
Läs merTentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Läs merSkriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.
Läs merIntegraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Läs merBelastningsanalys, 5 poäng Töjning Materialegenskaper - Hookes lag
Töjning - Strain Töjning har med en kropps deformation att göra. Genom ett materials elasticitet ändras dess dimensioner när det belastas En lång kropp förlängs mer än en kort kropp om tvärsnitt och belastning
Läs merLösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri
Läs merGOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna
GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv
Läs merTENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA81) Tid: Fredagen den 19:e januari 27, klockan 14 18, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 15 och 17 ösningar: anslås på kurshemsidan
Läs merTentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för:
ENEGITEKNIK I 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4K0B En Nmn: ------------------------------------------------------------------------------------------------------- ersonnummer:
Läs merLösningsförslag, Inlämningsuppgift 2, PPU203 VT16.
Lösningsförslag, Inlämningsuppgift 2, PPU203 VT16. Deluppgift 1: En segelbåt med vinden rakt i ryggen har hissat spinnakern. Anta att segelbåtens mast är ledad i botten, spinnakern drar masttoppen snett
Läs merTrigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Läs merLösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)
Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den
Läs merSpänning och töjning (kap 4) Stång
Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)
Läs merTentamen i Konstruktionsteknik
Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 3 Juni 2013 kl. 8.00 13.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter
Läs merTentamen ETE115 Ellära och elektronik för F och N,
Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig
Läs merAppendix. De plana triangelsatserna. D c
ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:
Läs merLösningar till tentamen i EF för π3 och F3
Lösningr till tentmen i EF för π och F Tid och plts: 7 jnuri, 4, kl. 8.., lokl: MA9, EF. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem Den totlt upplgrde elektrosttisk energin ges v W = i,j= i
Läs merInstitutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014
Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok
Läs merTATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Läs merTENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström
Läs merTentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)
Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY31) 013-05-8 kl. 08.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn) - egn bokmärken ok, dock ej formler, nteckningr miniräknre - grfräknre
Läs merTekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel)
DEL - (Teoridel uan hjälpmedel). Vilken yp av ekvaion är dea: LÖSNINGAR ε x = E (σ x νσ y )+α T Ange vad sorheerna ε x, σ x, σ y, E, ν, α och T beyder, inklusive deras dimension (enhe) i SI-enheer. E maerialsamband
Läs merVolym och dubbelintegraler över en rektangel
Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =
Läs merTentamen i Mekanik I del 1 Statik och partikeldynamik
Tentmen i Meni I del Stti och prtieldynmi TMME7 03-08-7, l 4.00-9.00 Tentmensod: TEN Tentsl: TERE, TER Exmintor: Peter Schmidt Tentjour: Peter Schmidt, Tel. 8 7 43, (Besöer slrn c 5.00 och 7.30) Kursdministrtör:
Läs merTentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15
Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.
Läs merHållfasthetslära Z2, MME175 lp 3, 2005
Hållfasthetslära Z2, MME175 lp 3, 2005 Examinator: Magnus Ekh (mekh@am.chalmers.se), tele: 7723479 Kurspoäng: 3 Kurslitteratur: "Grundläggande hållfasthetslära", Hans Lundh, KTH, Stockholm. "Exempelsamling
Läs merHållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom
Läs merTentamen i ETE115 Ellära och elektronik, 3/6 2017
Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V
Läs merVolum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Läs merTentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst
Läs merTENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på
Läs merBelastningsanalys, 5 poäng Tvärkontraktion Temp. inverkan Statiskt obestämd belastning
Tvärkontraktion När en kropp belastas med en axiell last i en riktning förändras längden inte bara i den lastens riktning Det sker en samtidig kontraktion (sammandragning) i riktningar tvärs dragriktningen.
Läs merTentamen i ETE115 Ellära och elektronik, 10/1 2015
Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in
Läs merTentamen i. Konstruktionsteknik. 26 maj 2009 kl
Bygg och Miljöteknolo gi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 26 maj 2009 kl. 8.00 13.00 Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter kan
Läs mer= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
Läs merHållfasthetslära Lektion 2. Hookes lag Materialdata - Dragprov
Hållfasthetslära Lektion 2 Hookes lag Materialdata - Dragprov Dagens lektion Mål med dagens lektion Sammanfattning av förra lektionen Vad har vi lärt oss hittills? Hookes lag Hur förhåller sig normalspänning
Läs merTentamen i Elektromagnetisk fältteori för π3 och Modellering och simulering inom fältteori för F3, 17 december, 2007, kl. 8 13, lokal: Gasque
Tentmen i Elektromgnetisk fältteori för π och Modellering och simulering inom fältteori för F, 17 decemer, 2007, kl. 8 1, lokl: Gsque Kursnsvrig lärre: Gerhrd Kristensson, tel. 222 45 62 & Anders Krlsson
Läs mer10. Tillämpningar av integraler
90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re
Läs mer