Tentamen i EDA320 Digitalteknik-syntes för D2
|
|
- Mona Hellström
- för 8 år sedan
- Visningar:
Transkript
1 CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl , Sl: mg. Exmintor: Peter Dhlgren Tel. expedition Telefon under tentmenstid: Lösningrn nslås tisdgen den 24 ugusti kl 9.00 på kursens hemsid: ( Betygslistn nslås tisdgen den 7 september kl 0.00 på institutionens nslgstvl. Grnskning v rättning får ske tisdgen den 7 september kl på institutionen. Plts för grnskning är rum 543 på institutionen för dtorteknik (Pln 5). Tillåtn hjälpmedel: Ing tillåtn hjälpmedel. Dett innefttr även smtlig typer v klkyltorer och ll tbellverk. Allmänt: Fullständig redovisningr och motiveringr krävs för smtlig behndlde uppgifter. För full poäng på de uppgifter som omfttr konstruktioner krävs förutom rätt funktion även en optiml (miniml) eller när optiml lösning. Fungernde men onödigt komplicerde lösningr ger vriernde poängvdrg beroende på hur mycket lösningen vviker från den optiml. Betygsskl: Poäng < 8 8-,5 2-4,5 5 Betyg Underkänd Peter Dhlgren, Göteborg 999
2 Digitlteknik-syntes D2 (EDA 320) tentmen sid 2(5). Figur visr en täckningstbell till en switchfunktion. Rdern -f representerr primimpliktorer smt kolumnern m -m 6 representerr mintermer. Det får förutsätts tt smtlig primimpliktorer hr lik stor kostnd vid relisering. (2 p) () Bestäm täckningsfunktionen P. (b) Bestäm smtlig rd- och kolumn-dominnser i tbellen. (c) Bestäm vilk primimpliktorer som bildr den miniml täckningen. Minterm Primimpliktor b c d e f m m 2 m 3 m 4 m 5 m 6 Figur. Täckningstbell till uppgift. 2. Betrkt kopplingen i Figur 2. Bestäm det logisk tillståndet för utsignlen G vid 3-värd logik { 0,, } för följnde två insignlsvektorer: ( p) () (b) bc bc = = 0 0 b G c Figur 2. Koppling till uppgift 2.
3 Digitlteknik-syntes D2 (EDA 320) tentmen sid 3(5) 3. Bestäm under vilket tidsintervll utsignlen H grntert ntger logisk hög nivå () i kopplingen i Figur 3 vid nvändning v den s.k. mbiguity gte dely model som fördröjningsmodell. För insignlen gäller: ( p) = 0 för t < 0 för 0 t 3τ 0 för t > 3τ t p = [ τ, 2τ] t p2 = [ 2τ, 3τ] Fördöjning: t p = [ t pmin, T pmx ] b= c= H τ betecknr en tidsenhet G G2 Figur 3. Koppling till uppgift Bestäm med Tisons metod smtlig primimpliktorer smt en miniml disjunktiv form till funktionen: f( x, y, z) = xyz + xz + xy + yz (2 p) 5. Funktionen F = yw( x + z) + xzw skll relisers som ett minimlt hsrdfritt nät. Relisering skll utförs i en PLA-krets v typ NOR-NOR som viss på sidn 5 i tesen. För full poäng skll ett minimlt ntl rder i PLA-mtrisen utnyttjs. Använd sidn 5 som del v redovisd lösning. (3 p) 6. De deciml siffrorn 0-9 är kodde med 4 binär siffror enligt NBCD-koden. En lång följd v kodord nländer på seriell form med den mest signifiknt binär siffrn först till ett synkront sekvensnät. Vrje binär siffr är synkroniserd med sekvensnätets ktiv klockflnk (omslg omedelbrt efter klockflnken). Kodorden följer omedelbrt efter vrndr. Konstruer sekvensnätet så tt dess utsignl u = om och endst om det mottgn kodordet motsvrr en deciml siffr 3. Utsignlen u = skll inträff i smm klockpulsintervll som den sist binär siffrn (den minst signifiknt biten) i kodordet uppträder som insignl. Under övrig klockpulsintervll skll gäll tt u = 0. Det får förutsätts tt endst kodord tillhörnde NBCD-koden förekommer smt tt sekvensnätet externt kn plcers i ett strttillstånd med smtlig q-signler = 0. Sekvensnätet skll konstruers med JK-vippor (högst tre stycken för full poäng). () Bestäm en fullständig tillståndsgrf smt en kodd tillståndstbell. (2 p) (b) Bestäm miniml disjunktiv former för insignlern (J, K ) till JK-vippn vrs utsignl är q smt för utsignlen u. Uttryck för J- och K-funktionern till övrig vippor behöver ej bestämms. ( p) Ingen kretsrelisering behöver upprits.
4 Digitlteknik-syntes D2 (EDA 320) tentmen sid 4(5) 7. Figur 4 visr δ(λ)-tbellen för ett synkront sekvensnät. För sekvensnätet gäller, tt insignlern ldrig ändrr värde smtidigt smt tt omgivningen är långsm (fundmentl mode). Bestäm en δ(λ)-tbell med ett minimlt ntl inre tillstånd, vilken täcker den givn δ(λ)-tbellen. (3 p) δ(λ) (-) 3(-) () () - 3(0) 2(0) (-) 3(0) 3(0) 2(0) 4(0) 3(0) - (-) 4(0) Figur 4. δ(λ)-tbell till uppgift Bestäm testvektorfunktionern T q ( ) smt T q ( ) för ett stuck-t-0 (s--0) respektive stuck-t- (s--) fel vid nod q i kopplingen i Figur 5, där = x, x 2,, x n utgör nätets extern insignler smt Z och Z 2 dess observerbr utsignler. Testvektorfunktionern skll uttrycks som funktioner v: d d F ( ) ; F 2 ( ) ; F3 (, y) smt F4 (, q). (3 p) dy dq F i representerr godtycklig kombintorisk funktioner. Extern insignler F ( ) F 2 ( ) q y F 3 (, y) Z F 4 (, q) Z 2 Figur 5. Koppling till uppgift 8.
5 Digitlteknik-syntes D2 (EDA 320) tentmen sid 5(5) Textt nmn Personnr. Löpnde sidnr. NOR-NOR PLA till uppgift 5 x y z w Förbindelse i progrmmerbr re mrkers med: För full poäng skll ett minmlt ntl rder i PLA-mtrisen nvänds. 0
Tentamen i EDA320 Digitalteknik för D2
CHALMERS TEKNISKA HÖGSKOLA Institutionen för datorteknik Tentamen i EDA320 Digitalteknik för D2 Tentamenstid: onsdagen den 2 mars 997 kl 4.5-8.5. Sal: vv Examinator: Peter Dahlgren Tel. expedition 03-772677.
IE1204 Digital Design
IE1204 Digitl Design F1 F3 F2 F4 Ö1 Booles lgebr, Grindr MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombintorisk kretsr F7 F8 Ö4 F9 Ö5 Multipleor KK2 LAB2 Låskretsr, vippor, FSM F10 F11 Ö6
Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007
Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Tentamen ETE115 Ellära och elektronik för F och N,
Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig
Tentamen i ETE115 Ellära och elektronik, 10/1 2015
Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in
Tentamen i ETE115 Ellära och elektronik, 3/6 2017
Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V
1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde
Tentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj
Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Matematiska uppgifter
Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v
Digital- och datorteknik
Digital- och datorteknik Föreläsning #13 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad kännetecknar en tillståndsmaskin? En synkron tillståndsmaskin
9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
Tentamen i Digitalteknik, TSEA22
Försättsblad till skriftlig tentamen vid Linköpings universitet, Datorteknik, IY 1(4) Tentamen i Digitalteknik, TEA22 Datum för tentamen 120529 al T1, T2, KÅRA Tid 14.00-18.00 Kurskod Provkod Kursnamn/benämning
D2 och E3. EDA321 Digitalteknik-syntes. Fredag den 13 januari 2012, fm i M-salarna
EDA321 Digitalteknik-syntes D2 och E3 GU DIT795 Tentamen (EDA321-0205) Fredag den 13 januari 2012, fm i M-salarna Examinator Arne Linde, tel. 772 1683 Tillåtna hjälpmedel Inga hjälpmedel tillåtna. Detta
Tentamen i EITF90 Ellära och elektronik, 28/8 2018
Tentmen i EITF9 Ellär och elektronik, 8/8 8 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
Diskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Tentamen i Digitalteknik, EITF65
Elektro- och informationsteknik Tentamen i Digitalteknik, EITF65 3 januari 2018, kl. 14-19 Skriv anonymkod och identifierare, eller personnummer, på alla papper. Börja en ny uppgift på ett nytt papper.
MATEMATISK STATISTIK I FORTSÄTTNINGSKURS. Tentamen måndagen den 17 oktober 2016 kl 8 12
Kurskod: TAMS65 Provkod: TEN MATEMATISK STATISTIK I FORTSÄTTNINGSKURS Tentmen måndgen den 7 oktober 206 kl 8 2 Hjälpmedel: Formelsmling i mtemtisk sttistik utgiven v mtemtisk institutionen och/eller formelsmling
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng
TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
CHECKLISTA FÖR PERSONALRUM
CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
IE1204/IE1205 Digital Design
TENTAMEN IE1204/IE1205 Digital Design 2012-12-13, 09.00-13.00 Inga hjälpmedel är tillåtna! Hjälpmedel Tentamen består av tre delar med sammanlagd tolv uppgifter, och totalt 30 poäng. Del A1 (Analys) innehåller
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15
Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.
Digital- och datorteknik
Digital- och datorteknik Föreläsning #9 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola ekvensnät Vad kännetecknar ett sekvensnät? I ett sekvensnät
Tentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst
Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1
Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Från Wikipedia: Sekvensnät Ett sekvensnäts utgångsvärde beror inte bara på indata, utan även i vilken ordning datan kommer (dess sekvens).
Tentamen. EDA432 Digital- och datorteknik, It DIT790 Digital- och datorteknik, GU. Onsdag 12 Januari 2011, kl
Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA Tentamen EDA432 Digital- och datorteknik, It DIT790 Digital- och datorteknik, GU Onsdag 12 Januari 2011, kl. 14.00-18.00 Examinatorer
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Digitalteknik TSIU05 Kursinformation
Digitlteknik TSIU05 Kursinformtion Michel Josefsson 27 ugusti 2018 Innehåll 1 Allmänt 5 2 Digitlteknik 6 hp 7 3 Mätteknik 2 hp 11 4 Övrigt 13 3 1 Allmänt Kursen estår v två prllell spår, nämligen digitlteknik
FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK
FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som
14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Kan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Räkneövning 1 atomstruktur
Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren
Tentamen i Digitalteknik TSEA22
Tentamen i Digitalteknik TSEA22 Datum för tentamen 100601 Sal TERC,TER2 Tid 14-18 Kurskod TSEA22 Provkod TEN 1 Kursnamn Digitalteknik Institution ISY Antal uppgifter 5 Antal sidor 5 Jour/Kursansvarig Olle
Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.
Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Lösningsförslag till tentamen i Digitalteknik, TSEA22
Försättsblad till skriftlig tentamen vid Linköpings universitet, Datorteknik, ISY (4) Lösningsförslag till tentamen i Digitalteknik, TSEA Datum för tentamen 3009 Salar U4, U7, U0 Tid 4.00-8.00 Kurskod
Namn och matrikelnummer: 1.a) Redogör kort för begreppet strikt ansvar inom skadeståndsrätten (5 p)
Introduernde kurs i hndelsrätt 10.12.2002, Helsingfors oh Vs Skrivtid: 3 timmr Fråg 1 (Övrig frågor se särskild frågeformulär). Oserver tt tentmen omfttr fem (5) olik frågeformulär oh tt ll dess formulär
a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0
18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.
Gigaset SL100/150 colour
s Issued by Siemens Home nd Office Communiction Devices GmbH & Co. KG Schlvenhorst 66 D-46395 Bocholt Siemens Home nd Office Communiction Devices GmbH & Co. KG 2005 All rights reserved. Subject to vilbility.
Materiens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
AUBER 95 9 jan LÖSNINGAR STEG 1:
AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.
Analys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
EGENVÄRDEN och EGENVEKTORER
EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär
Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1
Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell
Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl
Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
N atom m tot. r = Z m atom
Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v
SVERIGES LANTBRUKSUNIVERSITET
SVERIGES LANTBRUKSUNIVERSITET Skyddseffekt mot snytggeskdor för cypermetrin, imidkloprid, lmd-cyhlotrin och Conniflex Smmnställning v försök nlgd 22-26 på As och Tönnersjöhedens försöksprker. Delrpport
Omtentamen IE Digital Design Måndag 14/
Omtentamen IE204-5 Digital Design Måndag 4/3 206 4.00-8.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri
Tentamen med lösningar i IE1204/5 Digital Design Måndag 27/
Tentamen med lösningar i IE04/5 Digital Design Måndag 7/0 04 9.00-3.00 Allmän information Examinator: Ingo Sander. Ansvarig lärare: Elena Dubrova /William Sandvist, tel 08-7904487 Tentamensuppgifterna
Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969
Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:
Tentamen i IE1204/5 Digital Design onsdagen den 5/
Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista
Internetförsäljning av graviditetstester
Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds
LABORATIONSINSTRUKTION. Avkodare, adderare och ALU med parallell VHDL
Högskoln Dlrn Elektroteknik LABORATION LABORATIONSINSTRUKTION Avkodre, dderre och ALU med prllell VHDL KURS Digitlteknik LAB NR Ver 1109 3 INNEHÅLL 1. Kodomvndlre, BCD/7-segment 2. Adderre med grindr 3.
Grundläggande Datorteknik Digital- och datorteknik
Grundläggande Datorteknik Digital- och datorteknik Kursens mål: Fatta hur en dator är uppbggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW samverkar Digital teknik Dator teknik Grundläggande
Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl
Institutionen för systemteknik, ISY, LiTH Tentamen i Digitalteknik TSIU05/TEN1 Tid: 2016 10 26 kl. 14 18 Lokal : TER3 TER4 Ansvarig lärare: Michael Josefsson. Besöker lokalen kl 16. Tel.: 013-28 12 64
Digital Design IE1204/5
Digitl Design IE4/5 Övningshäfte Smmnställt v Willim Sndqvist willim@kth.se ICT/Elektroniksystem Tlsystem oh koder. Nednstående deiml tl med sen är givn. Ange motsvrnde inär tl. 9 7 d 53. Omvndl nednstående
ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt
Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden
TentamensKod:
ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF1) och F3 (ETE55) Tid och plts: 7 jnuri, 215, kl. 8. 13., lokl: MA9, E F. Kursnsvrig lärre: Anders Krlsson, tel. 222 4 89. Tillåtn hjälpmedel:
SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER
rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
Omtentamen med lösningar i IE1204/5 Digital Design Fredag 10/
Omtentamen med lösningar i IE24/5 Digital Design Fredag /4 25 8.-2. Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandvist, tel 8-794487 / Fredrik Jonsson Tentamensuppgifterna behöver
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel
Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter
Tentamen i IE1204/5 Digital Design måndagen den 15/
Tentamen i IE1204/5 Digital Design måndagen den 15/10 2012 9.00-13.00 Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204), Tentamensuppgifterna
Tentamen i Digital Design
Kungliga Tekniska Högskolan Tentamen i Digital Design Kursnummer : Kursansvarig: 2B56 :e fo ingenjör Lars Hellberg tel 79 7795 Datum: 27-5-25 Tid: Kl 4. - 9. Tentamen rättad 27-6-5 Klagotiden utgår: 27-6-29
Exempel 3 på Tentamen
Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA Exempel 3 på Tentamen Grundläggande datorteknik Examinator Kontaktperson under tentamen Tillåtna hjälpmedel Häfte Instruktionslista
TMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
Grundläggande matematisk statistik
Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel
Kallelse till årsstämma i Samfälligheten Askträdet
Kllelse till årsstämm i Smfälligheten Askträdet Hej, Vrmt välkomn till års stämm för medlemmrn i Smfälligheten Askträdet; Torsdg mrs 9. på Förskoln Tårpilsgränd Väl mött, Styrelsen . Vl v mötesordförnde
EDA Digital och Datorteknik 2009/10
EDA 45 - Digitl och Dtorteknik 2009/0 Kursen hnlr om en teknik som ligger till grun för välbeknt vrgsprylr Mobiltelefoner, meispelre; mp3, IPOD igitlboxr, "lptops, hemm-bio spelkonsoler mikrovågsugnr huslrm,
Användande av formler för balk på elastiskt underlag
Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller
Repetition TSIU05 Digitalteknik Di/EL. Michael Josefsson
Repetition TSIU05 Digitalteknik Di/EL Michael Josefsson Här kommer några frågeställningar och uppgifter du kan använda för att använda som egenkontroll på om du förstått huvudinnehållet i respektive föreläsning.
Digital- och datorteknik
Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens
Exempel 2 på Tentamen med lösningar
Institutionen för data- och informationsteknik CHALMERS TEKNISKA HÖGSKOLA Exempel 2 på Tentamen med lösningar Grundläggande datorteknik Examinator Kontaktperson under tentamen Tillåtna hjälpmedel Häfte
0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
Byt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Allmän studieplan för utbildning på forskarnivå i ämnet medicinsk vetenskap (Dnr /2017)
Allmän studiepln för utbildning på forskrnivå i ämnet medicinsk vetenskp (Dnr 3-3225/2017) Gäller fr.o.m. 1 jnuri 2018 Fstställd v Styrelsen för forskrutbildning 2017-09-11 2 Allmän studiepln för utbildning