Digitalteknik TSIU05 Kursinformation
|
|
- Karolina Berg
- för 6 år sedan
- Visningar:
Transkript
1 Digitlteknik TSIU05 Kursinformtion Michel Josefsson 27 ugusti 2018
2
3 Innehåll 1 Allmänt 5 2 Digitlteknik 6 hp 7 3 Mätteknik 2 hp 11 4 Övrigt 13 3
4
5 1 Allmänt Kursen estår v två prllell spår, nämligen digitlteknik och mätteknik. Kursinformtionen är uppdeld i dess två spår så för tt få en totl överlick över kursen, glöm inte tt läs åd eskrivningrn. TSIU05 Digitlteknik/Mätteknik. D1 logik/grindr M1 D2 inär tl e1 M 1 M2 D3 normlformer e2 M3 D4 tl&koder D5 sekv.nät I D6 sekv.nät II e3 e4 e5 e6 D 1 M 2 D7 speciell nät D8 system e7 e8 e9 e10 D 2 D 3 D 4 M 3 M 4 Kursen estår v två prllell spår, ett i digitlteknik och ett i mätteknik. Tyngdpunkten ligger på digitlteknik, den hr flest moment och det är också den som exminers genom en vslutnde tentmen. Mättekniken hr en stödjnde roll där elektrisk egrepp från gymnsiet repeters och förstärks. Mättekniken underlättr för lortionern i denn kurs men även i efterföljnde dtorteknik- och inte minst mikrodtorprojektkurser. 5
6 1 Allmänt Jg skulle tro tt nedlgd tid i kursen fördelr sig som 70 % digitlteknik och 30 % mätteknik. Mycket i mättekniken ör vr repetition medn digitltekniken är helt ny för de flest. 6
7 2 Digitlteknik 6 hp Digitlteknikvsnittet ehndlr strukturerde metoder för konstruktion och nlys v digitl elektronik. Användningen v kundspecifik integrerde kretsr i olik former ökr snt. Dett fktum ställer krv på konstruktören tt nvänd välstrukturerde metoder för specifiktion, konstruktion och funktionsverifiering. I kursen ingår grundläggnde moment såsom Boolesk lger, minimering med Krnugh-digrm smt metoder för konstruktion v synkron sekvensnät. Undervisning Undervisningen edrivs i form v föreläsningr och lektioner med räkneövningr smt lortioner. Under lektionstid kommer någr v de i lektionsplneringen ngivn exemplen tt räkns. Resternde utgör hemuppgifter. Föreläsningr Ungefärligt upplägg Mindre vritioner kn uppstå. Föreläsningrn styrs v det seprt föreläsningsunderlget. Kpitel- och sidreferenser är för Hemert: Digitl kretsr. Nr Tem Kpitel Sid 1 ogisk grindr 2, , 72 76, Boolesk lger Normlformer, minimering 4 4.1, , Tl och koder 1.1, , 25-27, Sekvenskretsr I Sekvenskretsr II 2.2, , Speciell nät , , Digitl system 5.4, , Detljert innehåll för föreläsning 1 10 F1. ogik Vi presenterr logisk värden som 1-0, snn-flsk, på-v osv. ogisk lger kommer nturligt efter studie v enklre kopplingsschemt med strömrytre. Brytre v typen normlt öppen och normlt sluten införs. ogisk invertering diskuters. Avslutningsvis vslöjs grindfunktioner, grindsymoler och snningsteller för AND/OR/NOT och XOR. Ett utdelt exempel som tillämpning på snningstell nlysers och ekvtioner skrivs. 7
8 2 Digitlteknik 6 hp F2. Boolesk lger Utgående från F1:s tillämpningsexempel ygger vi vidre och märker tt det måste finns räknelgr för logisk uttryck. Axiom och de vnlig lgrn för ssocition, kommuttion, sorption, distriution, consensus smt de Morgn presenters. Någr förenklingr v uttryck genomförs. Jämförelse med ldderschem nämns. Grindsymolern och funktionern för NAND och NOR speciellt i smnd med de Morgns lgr nvänds. Något elementärt om inär tl och positionsssystemet kommer också. F3. Komintorik och tlrepresenttioner Här presenterr vi mer formellt egreppet komintorik, speciellt summ-v-produkt-formen (SP-formen). Tlrepresenttioner som hexdeciml tl och (N)BCDtl. F4. Komintorik. Genomrett exempel På föreläsningen presenters ett lterntiv till SP-formen: PS-formen. PS- och SP-formen är vrndrs duler på sätt och vis. Vi kommer dessutom gå igenom ett större komintoriskt exempel där åde ritmetik, plnering och struktur och komintorik nturligt kommer in. Grykod presenters också. F5. Vippor och sekvensnät Näst stor vsnitt i kursen är sekvensnät. Vi presenterr komponenten vippn, ett 1-its minne, och kn med vår tidigre kunskper i komintorik tillverk sekvensnät med etydligt mer spännnde egenskper än de rent komintorisk. Innehållet knyts ihop och vsluts i näst föreläsning. F6. Vippor och sekvensnät forts Fortsättning på förr föreläsningen. Se F5 ngående innehållet. F7. Speciell nät F8. Digitl system ektioner Huvudskligen nvänds lektionern för tt vverk uppgifter enligt nedn. Klssen och lektionsssitenten estämmer upplägget. ektionern kn också nvänds för enskilt rete med frågestund. Nummer Behndlr uppgifter ur oken Tem , Grindr, lger , 4.4, 4.5, 4.9, 4.10, 4.15 Komintorisk nät, c, 1.2, 1.3, 1.7 Tl och koder , 5.6, Vippor och tillstånd, sekvensnät, , 5.11, (5.12), 5.13 Sekvensnät, S160-räknre , Konstruktion v sekvensnät 9 Repetition. Bestäms v klssen! 10 Exempeltentmen 8
9 ortioner ortionern är oligtorisk. ortionern skll genomförs i grupper med 2 elever per grupp. Nödvändig föreredelseuppgifter skll vr utförd inför lortionstillfället. ortionstiden nvänds för tt genomför lortionen och räcker inte till för tt även förered den. En uppgift är föreeredd när ll design är färdig och dokumenterd. Dett inkluderr komponentvl, kpselnumrering och elektriskt schem. ortionstillfället är ett kopplingstillfälle. Det finns inte tid tt lös uppgiftern på ltillfället. Kurslittertur Digitlteknik Smtlig kurslittertur, förutom Hemerts ok, är nedlddningsr pdf:er vrs filnmn är sorterde i följnde ktegorier: 1. Digitlteknik Föreläsningsreltert 2. Digitlteknik ortionsreltert 3. Mätteknik Föreläsningsreltert 4. Mätteknik ortionsreltert Tentmensreltert 7. Övningsuppgifter 8. Bredvidläsning För digitlteknik finns följnde mteril: Huvudok: rs-hugo Hemert: Digitl kretsr, Studentlittertur. Föreläsningsunderlg (1_F1-8.pdf), nedlddningsr pdf Exempel till först föreläsningen (1_F1ex.pdf), nedlddningsr pdf Repetitionsfrågor efter respektive föreläsning (1_RepF1-8.pdf), nedlddningsr pdf ortionshndledningr (2_AB0-3.pdf), nedlddningsr pdf Tentmenssmling (6_Tentsmling.pdf), nedlddningsr pdf Tentmenssmling (7_osningr.pdf), nedlddningsr pdf Kursomfttning Föreläsningr: 8 x 2 h = 16 h ektioner: 10 x 2 h = 20 h ortioner: 4 x 4 h = 12 h En skriftlig tentmen, 4 h 9
10
11 3 Mätteknik 2 hp Mätteknikinslget introducerr grundläggnde elektronik på ett ingenjörsmässigt sätt med lortioner tätt kopplde till föreläsningr. I tre föreläsningr presenters grundläggnde likströms- och växelströmsteori. På lortionern ekntr sig studenten med dess egrepp genom tt gör en serie uppkopplingr och mätningr. Efter kursen sk studenten h kopplingsvn, grundläggnde komponentkännedom, kunn utför enkl mätningr och även viss felsökning på elektrisk kretsr. Multimeter och oscilloskop nvänds. Föreläsningr Det ingår tre föreläsningr i denn del. Nr Innehåll 1 2 ikströmsteori, resistns, serie- och prllellkoppling, tvåpol, komponenter, instrument 3 Växelströmsteori, decielegreppet, ndredd, kondenstor, oscilloskop ortioner och exmintion Mättekniklrn är två timmr lång. Betrkt dem som mät-tillfällen även om vi lortionsssistenter gör llt vi kn för tt du smtidigt sk förstå vd som händer. Se till tt gå från len med mätvärden du litr på tillräckligt för tt kunn gör lrpporten på ett r sätt. Smtlig lortioner skll dokumenters och redogörs i en kort rpport (exempelrpport kommer tt dels ut i pppersform). Rpportern sk utsätts för peer-grnskning v en kurskmrt innn inlämning till exmintor. Rpporten ges värderingen Godkänd eller Retur. Smtlig rpporter måste vr godkänd för etyget godkänt på dett moment. rn genomförs så långt det är möjligt i grupper om två studenter. Är det trångt kn det li någr tre-grupper också men det är undntg isåfll. gruppern slumps frm på själv len. Så du sk inte från örjn vet vem du kommer l med. rpportern är individuell, dvs vrje student måste förftt sin egen lrpport om inget nnt sägs. Använd de värden du mätt upp i len. Två lrpporter från smm grupp serr sig då på smm mätserie men ser ntgligen i övrigt olik ut. Rpportern måste vr r, dvs 11
12 3 Mätteknik 2 hp tydlig, snn, egriplig och vr på exkt TVÅ sidor. En rimlighetsedömning v mätresultten kommer tt görs. HT2018: rpporten till mätl1 skll vr inne senst tisdg 18/9 kl 1300 (exkt lltså!) För sent inlämnd l = ingen inlämnd l Kurslittertur Mätteknik För mätteknik finns följnde mteril tt ldd ner: Föreläsningsunderlg (3_F1-3.pdf), nedlddningsr pdf ortionshndledning (4_AB1-4.pdf), nedlddningsr pdf 12
13 4 Övrigt Komponentern i mätl1 och ll digitllr tillhör den så kllde 74-serien. De är v tillverkningstekniken TT och orden TT och 74-serien hr livit synonymer med tiden 1. På någon föreläsning i digitlteknik kommer jg lämn ut mer info om dess, men det finns inget som hindrr en googling på 74Sxx (där xx är exvis 00, 02, 04, 08, 10, 32) och koll i de dtld som då kommer upp. På vår egen dtldsserver Vnheden finns en list på de TT-komponenter vi hr. Adressen till Vnheden är (klick sedn på logikretsr i vänsterpnelen). För mätl1 ehöver du h dtld med lyout på de tre olik sorterns kretsr. Schemt i lhäftet är gjort med det utmärkt progrmmet Circuitl som simulerr kretsr v olik sorter. Det är väldigt enkelt tt komm igång med och mn kn simuler åde digitl och nlog kretsr med den. Kn vr kul. Rekommenders. Köp instrument? Skulle du vilj skff ett mätinstrument likt de vi hr på lortionen för egn undersöknigr, så är vilken multimeter/dvm som helst tillräckligt r. Viss hr utomtsäkring vid överelstning- /felinkoppling medn ndr hr en lös glssäkring inuti som kn ehöv yts då och då. Vet vd mn mäter på är dett inget prolem, men är mn slrvig så kn utomtsäkringen rädd dgen. De DVM:er jg nvänder hemm köpte jg en gång på City-Gross (!) men kjell.com hr liknnde. Biltem (finns på Torny) är också en säker käll till mätinstrument för en illig peng
IE1204 Digital Design
IE1204 Digitl Design F1 F3 F2 F4 Ö1 Booles lgebr, Grindr MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombintorisk kretsr F7 F8 Ö4 F9 Ö5 Multipleor KK2 LAB2 Låskretsr, vippor, FSM F10 F11 Ö6
Exponentiella förändringar
Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt
Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj
Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n
Tentamen i EDA320 Digitalteknik-syntes för D2
CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl. 08.45-2.45, Sl: mg. Exmintor: Peter Dhlgren Tel. expedition
Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.
Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.
AUBER 95 9 jan LÖSNINGAR STEG 1:
AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.
Skriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Tentamen i ETE115 Ellära och elektronik, 25/8 2015
Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten
XIV. Elektriska strömmar
Elektromgnetismens grunder Strömmens riktning Mn definierr tt strömmen går från plus (+) till minus (-). För tt få till stånd en ström måste mn. Spänningskäll 2. Elektriskt lednde ledningr 3. Sluten krets
14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
Matematisk statistik för B, K, N, BME och Kemister. Matematisk statistik slumpens matematik. Exempel: Utsläpp från Källby reningsverk.
Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 1 John Lindström 1 september 2014 John Lindström - johnl@mths.lth.se FMS086/MASB02 F1 2/26 Exempel Tillämpningr Signlbehndling Mtemtisk sttistik
1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
Byt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
Kan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Operativsystemets uppgifter. Föreläsning 6 Operativsystem. Skydd, allmänt. Operativsystem, historik
Opertivsystemets uppgifter Föreläsning 6 Opertivsystem Opertivsystemets uppgifter Historik Skydd: in- oh utmtning, minne, CPU Proesser, tidsdelning Sidindelt minne, virtuellt minne Filsystem Opertivsystemet
Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Tentamen i Databasteknik
Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig
Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär
Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering
Bokstavsräkning. Regler och knep vid bokstavsräkning
Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds
Integraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
Skapa uppmärksamhet och få fler besökare till din monter!
Skp uppmärksmhet och få fler esökre till din monter! För tt vinn den tuff tävlingen om uppmärksmheten, på en plts där hel rnschen är smld, gäller det tt slå på stor trummn och tl om tt du finns. Till en
Guide - Hur du gör din ansökan
Guide - Hur du gör din nsökn För tt komm till nsökningswebben går du in på www.gymnsievlsjuhärd.se och klickr på Ansökningswebb. Men innn du går dit läs igenom informtion under Ansökn och Antgning. Ansökningswebben
Tentamen i ETE115 Ellära och elektronik, 4/1 2017
Tentmen i ETE5 Ellär och elektronik, 4/ 07 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. v 0 i 0 Beräkn
Rationella uttryck. Förlängning och förkortning
Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing
Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15
Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
Kvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
MEDIA PRO. Introduktion BYGG DIN EGEN PC
BYGG DIN EGEN PC MEDIA PRO Introduktion Dett är Kjell & Compnys snguide till hur Dtorpketet MEDIA PRO monters. Att ygg en dtor är idg myket enkelt oh kräver ingen tidigre erfrenhet. Det ehövs ing djupgående
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Plan för lika rättigheter och möjligheter i arbetslivet uppdrag till kommunstyrelseförvaltningen
2016-05-23 Sid 1/2 Tjänsteskrivelse Dnr: LKS 2016-235 Kommunstyrelseförvltningen Leif Schöndell, 0523-61 31 01 leif.schondell@lysekil.se Pln för lik rättigheter och möjligheter i rbetslivet uppdrg till
Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969
Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK
FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
Läsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Naturresurser. Vatten. Kapitel 10. Översiktsplan 2000
Kpitel 10 Nturresurser Att hushåll med jordens nturresurser är en viktig del i den översiktlig fysisk plneringen. Mål Tillgång till vtten v god kvlité sk säkrs för frmtiden. Läckge v näringsämnen och ndr
Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab
Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
Grundläggande matematisk statistik
Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Programmeringsguide ipfg 1.6
Progrmmeringsguide ipfg 1.6 Progrmmeringsklr i-ört pprter (CIC, knl, fullonh) Progrmmeringsklr kom-ört pprter CS-44 Phonk-version Progrmmeringsklr miropprter CS-44 Phonk-version 1 2 1 2 1 2 ipfg 1.6 stndrd
Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.
REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som
Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Tentamen i ETE115 Ellära och elektronik, 10/1 2015
Tentmen i ETE Ellär och elektronik, 0/ 20 Tillåtn hjälpmedel: Formelsmling i kretsteori. Observer tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. g 2 v in
1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(7) 9 jnuri 009 Institutionen för elektro och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen jnuri 009 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Rektangulär kanal, K. Produktbeteckning. Beteckningsexempel. Sida A (se storlekstabell) Sida B (se storlekstabell)
K Rektngulär knl, K Produkteteckning Produkt K c d Sid A (se storlekstell) Sid B (se storlekstell) Längd 1=2000 mm 2= 1250 mm 3= 1000 mm 4= 600 mm 5= Löpnde längd nges i klrtext (mx 2500 mm) 1= Skrv i
Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Teoridel
Lösningsförslg till deltentmen i IM601 Fst tillståndets fysik Gitter och bs i dimensioner Fredgen den 18 mrs, 011 Teoridel 1. ) Den primitiv enhetscellen är den minst enhetscell som ger trnsltionssymmetri
GOLV. Norgips Golvskivor används som underlag för golv av trä, vinyl, mattor och andra beläggningar. Här de tre viktigaste konstruktionerna
GOLV Norgips Golvskivor nvänds som underlg för golv v trä, vinyl, mttor och ndr beläggningr. Här de tre viktigste konstruktionern 1. Ett lg golvskivor på träunderlg 2. Flytnde golv med två lg golvskiv
TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng
TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8
Så här gör du? Innehåll
hp dvd writer Så här gör du? Innehåll hur vet jg vilket progrm jg sk nvänd? 1 svensk hur kopierr jg en skiv? 2 hur överför jg min nd till en skiv? 4 hur skpr jg en dvd-film? 9 hur redigerr jg en video-dvd-skiv?
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Campingpolicy för Tanums kommun
1(8) Cmpingpolicy för Tnums kommun 1. Bkgrund Strömstds och Tnums kommuner diskuterde gemensmt sin syn på cmpingverksmhetern i respektive kommun år 2003 och kunde då se ett stort behov v tt en likrtd syn
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
KOMMLIN FILIPSTADS. Fax: 0590-615 99 E-post: kommun@fi lipstad.se. Revisionsrapport angående gemensam administrativ nämnd
FILIPSTADS KOMMLIN Dtum 2013-03-12 För kdnnedom: Kommunstyrelsen Kommuffillmhige Revisionsrpport ngående gemensm dministrtiv nämnd Vi hr, tillsmmns med revisorem i Kristinehmns, Krlskog och Storfors kommuner
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Datorernas matematik
Stockholms mtemtisk cirkel Dtorerns mtemtik Dniel Ahlsén Jor Bgge Institutionen för mtemtik, KTH och Mtemtisk institutionen, Stockholms universitet 2019 2020 Stockholms mtemtisk cirkel genom tidern (tidigre
SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN
Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Internetförsäljning av graviditetstester
Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds
Tentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Rapport gällande LUS- resultat under höstterminen 2011
Rpport gällnde LUS- resultt under höstterminen 2011 Kommunen hr sedn mång år tillk eslutt tt ll låg- och mellnstdieskolor sk gör ett läsutvecklingstest (LUS) på vrje rn en till två gånger per termin. Dett
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Allmän studieplan för utbildning på forskarnivå i ämnet medicinsk vetenskap (Dnr /2017)
Allmän studiepln för utbildning på forskrnivå i ämnet medicinsk vetenskp (Dnr 3-3225/2017) Gäller fr.o.m. 1 jnuri 2018 Fstställd v Styrelsen för forskrutbildning 2017-09-11 2 Allmän studiepln för utbildning
Digitala system EDI610 Elektro- och informationsteknik
Digitala system EDI610 Elektro- och informationsteknik Digitala System EDI610 Aktiv under hela första året, höst- och vår-termin Poäng 15.0 Godkännande; U,3,4,5 Under hösten i huvudsak Digitalteknik Under
temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden
temung.se T E M AG RU P P E N U N G A I A R B E T S L I V E T n n u k k s g n u r All e d u t s r e l l e b job EUROPEISKA UNIONEN Europeisk socilfonden »GÅ UT GYMNASIET«Mång ung upplever stress och tjt
SLING MONTERINGS- OCH BRUKSANVISNING
SLING MONTERINGS- OCH BRUKSANVISNING FOC_SLING_1107 Introduktion Dett är en ruksnvisning för det dynmisk rmstödet SLING som monters på rullstol, stol eller nnn nordning. SLING tillverks v FOCAL Meditech,
Matematisk statistik för B, K, N, BME och Kemister
Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 2 John Lindström 3 ugusti 217 John Lindström - johnl@mths.lth.se FMSF7/MASB2 F1 1/22 Grundläggnde begrepp Stokstisk vribel Snnolikhetsfunktion
Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov
Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen
KANOTSLALOMARRANGÖRER
HANDBOK FÖR KANOTSLALOMARRANGÖRER Smmnställd v Kerstin Öerg 1 INLEDNING I smnd med de rrngemng jg deltgit i, hr vi inom orgnistionen gjort plnering och hft möten för tt följ upp tävlingen i syfte tt förättr
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007
Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
vara n-dimensionella vektorer. Skalärprodukten av a och b betecknas a b ) vara tvådimensionella vektorer. Skalärprodukten av a och b är
Armin Hliloic: EXTRA ÖVNINGAR Sklärprodkt och ektorprojektion SKALÄRPRODUKT. EGENSKAPER. GEOMETRISK TOLKNING. PROJEKTION AV EN VEKTOR PÅ EN RÄT LINJE Sklärprodkt i R n, R och R : Definition. Låt,,...,
Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]
Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även
1 Bestäm Théveninekvivalenten med avseende på nodparet a-b i nedanstående krets.
(9) 2 oktoer 2008 Institutionen för elektro- och informtionsteknik Dniel Sjöerg ETE5 Ellär och elektronik, tentmen oktoer 2008 Tillåtn hjälpmedel: formelsmling i kretsteori. Oserver tt uppgiftern inte
Sfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )
Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------
12 frågor om patent RESEARCHA-ÖVNING
reser 12 frågor om ptent En uppfinning är i sig ett llmänt begrepp och kn omftt vrje ny idé på ll möjlig områden. En uppfinning måste däremot, för tt kunn beviljs ptent, uppfyll viss bestämd kriterier.
KLARA Manual för kemikalieregistrerare
KLARA Mnul för kemiklieregistrerre Version 16.4 (2015-05-08) Utrbetd v Anders Thorén och Björn Orheim Först utgåv 2002-11-01 Innehåll Introduktion 3 Vd är KLARA? 3 Systemkrv och övrig informtion 3 Vd säger
Repetitionsuppgifter i matematik
Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde
definitioner och begrepp
0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl
Repetition TSIU05 Digitalteknik Di/EL. Michael Josefsson
Repetition TSIU05 Digitalteknik Di/EL Michael Josefsson Här kommer några frågeställningar och uppgifter du kan använda för att använda som egenkontroll på om du förstått huvudinnehållet i respektive föreläsning.
Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Matematiska uppgifter
Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr