TATA42: Föreläsning 4 Generaliserade integraler

Storlek: px
Starta visningen från sidan:

Download "TATA42: Föreläsning 4 Generaliserade integraler"

Transkript

1 TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om en integrl konvergerr eller divergerr. Inte lik mycket på vd det ekt värdet blir. Låt oss börj med tt definier vd vi menr med en generliserd integrl. Definition. Låt f vr kontinuerlig på ], b[. En integrl f() d säges vr generliserd i om = eller om f() är obegränsd då +, smt generliserd i b om b = eller om f() är obegränsd då b. Vi säger helt enkelt tt en integrl är generliserd i en punkt om det uppstår problem med begränsningen i punkten. Noter tt krvet på tt f är kontinuerlig på ], b[ är strkre än nödvändigt. Vi skulle kunn nöj oss med tt kräv tt f är Riemnnintegrbel på ], b[ (eller mer korrekt på ll slutn delintervll v ], b[). Integrlen integrlen ˆ 7 ˆ2 Eempel d är inte generliserd, integrlen d är generliserd i både och i. d är generliserd i + och + 2 Så hur menr vi då tt vi sk hnter generliserde integrler? Definition. Om f är kontinuerlig på ], b[ så definierr vi den generliserde integrlen enligt f() d = lim s + ˆ c s f() d + lim t b om båd gränsvärden eisterr ändligt (oberoende v vrndr). ˆ t c f() d, där < c < b, john.thim@liu.se

2 Mn kn gnsk enkelt vis tt vlet v c inte påverkr resulttet (vrför?). Vi tr med båd potentiellt generliserde punktern på en gång, men i fllet tt integrlen inte är generliserd smmnfller gränsvärdet med den klssisk definitionen på Riemnnintegrlen. Dett ligger också till grund för följnde sts. Sts. Om g() d eisterr (som ändlig gränsvärden) så gäller för konstnter c och c 2 tt f() d och Linjäritet ( c f() + c 2 g() ) d = c f() d + c 2 g() d. När vi säger tt en generliserd integrl eisterr nvänder vi iblnd begreppet konvergent. Definition. Om den generliserde integrlen eisterr kllr vi den för konvergent. I de fll där något v gränsvärden inte eisterr kllr vi integrlen för divergent. Värt tt noter är tt en vnlig Riemnn-integrl v en Riemnnintegrbel funktion på ett intervll [, b] självklrt är konvergent. Undersök om (den generliserde) integrlen Eempel d är konvergent. Lösning. Vi börjr med tt skiss den re vi kn tolk integrlen som. y y = b 2

3 Integrlen är generliserd i både = och i. Vi behöver lltså gör två undersökningr. Vi börjr med och väljer c = : ˆ d = [ 2 ] = 2 2 2, då +. Mot = går det lltså tt definier integrlen. Vd händer i b =? Vi undersöker: Alltså divergerr d = [ 2 ] b = 2 b 2, då b. d och då är även hel integrlen i frågn divergent. Det räcker lltså i det här fllet tt undersök den ndr biten eftersom den är divergent. Hr mn en ning om tt något är divergent bör mn börj med den delen. Undersök om cos d är konvergent. Eempel Lösning. Vi vet hur cosinus ser ut och det är endst i b = integrlen är generliserd. Utn tt tänk så mycket kn vi direkt från definitionen test: cos d = [sin ] b = sin b?, då b. Gränsvärdet skns lltså i dett fll i stället för tt bli oändligt stort. Integrlen divergerr ändå. Mer villkorlig konvergens; symmetri Här kn mn knske funder lite över hur ren är fördeld. Cosinus är en periodisk funktion som befinner sig lik mycket ovnför -eln som under, borde då inte den positiv och negtiv ren t ut vrndr och integrlen bli noll? Svret är mj.. Enligt definitionen ovn så är integrlen divergent. Ing tveksmheter lls. Divergent. Vill vi tt svret sk bli noll (pg v re-rgumentet) måste vi definier begreppet konvergent integrl på något nnt sätt. Dett kn görs och mn prtr då om (ännu mer) villkorligt konvergent integrler. Cuchys principlvärde är ett eempel som nvänds på intervll symmetrisk kring = : ˆ (ˆ ɛ ˆ ) p.v. f()d = lim f() d + f() d. ɛ + Dett gränsvärde kn eister även då integrlen inte är konvergent som vi definiert det tidigre. Betrkt eempelvis f() = / för. ɛ För tt t bort dess vrter v möjlig konvergens introducerr vi begreppet bsolutkonvergens. 3

4 Definition. Om f() d < kllr vi Absolutkonvergens f() d för bsolutkonvergent. Fler sker bör kommenters ngående denn definition. Vi summerr lite viktig fkt. (i) Om (ii) Om f() d < så är f() d konvergent. f() d är bsolutkonvergent gäller f() d f() d. (iii) Om f() för < < b så eisterr lltid gränsvärden lim och lim t b ˆ t c f() d om vi tillåter resulttet. (iv) Speciellt gäller föregående för f(). s + ˆ c s f() d Vi överlämnr till boken tt bevis påståenden Definition. Om f och f() d är divergent skriver vi f() d =. Dett betyder inte tt integrlen är konvergent, utn br ett kortre sätt tt nge tt integrlen v en icke-negtiv funktion divergerr. Vi kn inte skriv på dett sätt om inte f() (tänk till eempel på eemplet med f() = cos vi såg tidigre). Vis tt sin d är konvergent. Eempel Lösning. Tricket är tt prtilintegrer: sin d = [ cos ] b Integrlen i högerledet är bsolutkonvergent eftersom cos d 2 cos 2 d. [ d = ] b = 2 b 4

5 då b. Alltså är integrlen vi strtde med konvergent eftersom cos b cos cos b då b. Mn kn också vis tt integrlen inte är bsolutkonvergent (mn blir då tvungen tt nlyser lite noggrnnre hur sin ser ut för < < ). Tekniken som nvänds ovn för tt konstter tt cos är bsolutkonvergent är en mycket nvändbr jämförelseprincip. Låt oss formuler den mer generellt. 2 Sts. Om f() g() för < < b så gäller tt: (i) g() d konvergent f() d konvergent. f() d g() d. Speciellt gäller (ii) f() d divergent g() d divergent. Är ln 3 d konvergent? Eempel Lösning. Vi vet från grundkursen tt ln för >, så ln är också snt för >. Således måste ˆ ln d 3 d < 2 eftersom d = då b. Vi hr nu enligt jämförelsestsen ovn vist tt 2 b integrlen i fråg är konvergent. Avgör om ˆ 3 d är konvergent Lösning. Vi ser tt för : eftersom + 2. Då vi vet tt följer det v föregående sts tt kompkt (och slrvigt) som Eempel = 3 = ˆ ˆ ˆ d är konvergent och ˆ ˆ 3 d = 3 d så 3 d är konvergent. Oft skriver vi dett lite mer ˆ + 2 d 3 d < 2 5

6 ˆ eftersom vi vet tt d <. Vi jämför oft med uttryck v formen α, så följnde eempel är br tt komm ihåg. Följnde påståenden gäller: Vnlig jämförelsefunktioner (i) (ii) ˆ d < om och endst om α < ; α d < om och endst om α >. α Beviset v påståenden ovn hndlr br om tt räkn ut integrlern. Vi ser tt om α : ˆ [ ] α d = = α α α α α α då om och endst om α <. Om α > blir den ndr termen oändlig. Vd händer då när α =? Vi undersöker: ˆ d = [ln ] = ln då +. Integrlenˆär lltså inte konvergent i dett fll. Fllen för d hnters på smm sätt. Kortfttt ser vi tt α [ ] α b d = = b α α α α α om och endst om α >. Om α = blir det en logritm nlogt med ovn: d = [ln ]b = ln b då b. Integrlen d är divergent eftersom 3 ˆ + 2 d = Eempel Olikheten följer från tt + 2/ 3 då. ˆ 3 d ( + 2/ ) d =. Mn kn även nöj sig med tt undersök hur funktionern beter sig loklt kring de generliserde punktern. Mer precist kn vi gör följnde. 6

7 Sts. Låt f och g vr kontinuerlig funktioner sådn tt: (i) f() och g(), eller f() och g(), på ], b[; (ii) f() d och (iii) < lim b f() g() <. Då gäller tt g() d är generliserde endst i = b; f() d är konvergent g() d är konvergent. Det fktum tt gränsvärdet eisterr (möjligen lik med ) följer för tt det är icke-negtiv funktioner vi rbetr med (eller mer korrekt tt funktionern inte välr tecken). Att vi kräver tt gränsvärdet för kvoten f/g ligger strikt melln och innebär tt f och g beter sig ungefär likdnt när vi närmr oss b. Då förefller det rimligt tt båd integrlern ender konvergerr eller divergerr. Ett noggrnnre bevis återfinnes i boken. På smm sätt kn vi gör om integrlern endst är generliserde i =. Om så är fllet och f() < lim + g() < så är ender båd integrlern konvergent eller divergent. Avgör om Eempel ( ) e / sin d är konvergent. Lösning. Eftersom > vet vi tt e / > så den först fktorn i integrnden är negtiv medn för stor kommer sin tt vr positiv. Vi Mclurinutvecklr (i vribeln t = / respektive s = / ) och ser tt Vi jämför med ( e / ) sin = 3/2 stsen ovn) och ser tt ( e / ) sin ( + O ( 2 )) ( = + O ( ) 2. ( + O som är negtiv (men så länge f och g hr smm tecken går llt br i / 3/2 = + O 7 ( ), då ))

8 och således konvergerr integrlen i fråg om och endst om d konvergerr. Svret är 3/2 lltså konvergent eftersom den sist integrlen är känt konvergent (se jämförelsefunktionern ovn). Avgör om ˆ ln( + ) d är konvergent. Eempel Lösning. Eftersom > vet vi tt ln( + ) > så integrnden är positiv. Integrlen är generliserd i = så vi Mclurinutvecklr för tt se hur beteendet ser ut: ln( + ) + O() = = ( ) + O. Det dominernde beteendet ges lltså v / så vi jämför med denn funktion: ln( + ) = + O( ), då +. Således är integrlen i fråg konvergent om och endst om denn integrl är divergent så ˆ ln( + ) ˆ d är divergent. Ett lite svårre eempel? Här kommer en gmml uppgift-5 från en tent. d är konvergent. Vi vet tt Konvergerr integrlen Eempel ( ) sin rctn d? Motiver noggrnt. ln( + ) Lösning. Eftersom integrlen är generliserd både i och så delr vi upp i två delr: ( ) ( ) ˆ sin rctn sin rctn d + ln( + ) d. ln( + ) Vi börjr med tt undersök integrlen på [, ]. För ], ] gäller tt ( ) sin rctn ln( + ) rctn ln( + ). Nu vet vi tt rctn och ln( + ) då, så rctn lim + ln( + ) =. 8

9 Låt därför g() = och f() = g() rctn för >. Då är f, g ln( + ) för > och både f och g är kontinuerlig för >. Vidre visde vi ovn tt f() g() ], [ då +, så enligt jämförelsestsen på gränsvärdesform följer det tt ( ) ˆ sin rctn d ln( + ) kommer vr bsolutkonvergent eftersom vi vet tt ˆ d <. Vi undersöker nu integrlen på [, [. Vi skriver ( ) ( sin rctn f() = + O ( ) ) rctn = 3/2 ln( + ) ln( + ) ( ( )) = + O rctn ln( + ) 3/2 så vi låter g() = 3/2 för >. Då gäller tt ln( + ) ( ( )) f() g() = + O rctn π, då. 3/2 2 Eftersom f och g är kontinuerlig och icke-negtiv på ], [ smt tt gränsvärdet mot för f/g är π 2 ], [ så följer det från jämförelsestsen på gränsvärdesform tt f() d är konvergent om och endst om g() d är konvergent. Vi undersöker denn integrl: 3/2 ln( + ) d d ln 2 3/2 eftersom ln( + ) ln 2 för. Den sist integrlen är känd som konvergent (α = 3/2 är större än ). Svr. Konvergent! Uppgifter v typen ovn brukr vr tråkig läsning vid rättning. Det är missuppfttningr om vd som är förutsättningr och följder, slrv med tt preciser tt krv är uppfylld smt missförstånd om vd jämförelsestsern egentligen säger. Ett förslg på lösningsgång när det gäller jämförelsestsen på gränsvärdesform följer. 9

10 . Del upp integrlen så tt vrje delintegrl är generliserd i högst en punkt. Betrkt sedn en integrl i tget. 2. Antg tt f() d endst är generliserd i =. Identifier hur integrnden beter sig när = (den punkt integrlen är generliserd i). Använd Mclurinutvecklingr, uppskttningr eller gissningr. Vi sk vis i näst steg tt vlet är vettigt. 3. Konstter tt f() inte håller på tt väl tecken när =. 4. Antg tt vi tycker f() beter sig som g() när. Typiskt här är tt vi skriver f() = f() f() g(). Vi visr sen tt om lim = L så sk < L < gäll g() + g() (om f() är positiv när = ). Blir L = hr vi vlt g() så tt g() väer betydligt snbbre än f(). Får vi L = så väer g() lldeles för långsmt. Det är lltså viktigt tt konstter tt < L <. 5. Avgör konvergens för I = g() d. Om integrlen blir för komplicerd knske det finns bättre vl för g(). Konstter om integrlen är konvergent eller divergent. 6. Hänvis till jämförelsestsen på gränsvärdesform och dr slutstsen tt konvergent precis då Förslg på lösningsgång g() d är konvergent (vilket vi precis undersökte). f() d är

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

TATA42: Envariabelanalys 2 VT 2018

TATA42: Envariabelanalys 2 VT 2018 TATA42: Envribelnlys 2 VT 28 Föreläsningsnteckningr John Thim, MAI L =? TATA42: Föreläsning Mclurinutecklingr John Thim 4 mrs 28 Introduktion Tänk er följnde sitution. En snäll funktion f är given, men

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

TATA42: Föreläsning 11 Kurvlängd, area och volym

TATA42: Föreläsning 11 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler TATA4: Föreläsning 1 Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 15 november 18 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer,

Läs mer

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson

Gauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när

Läs mer

TATA42: Envariabelanalys 2 VT 2016

TATA42: Envariabelanalys 2 VT 2016 TATA4: Envribelnlys VT 6 Föreläsningsnteckningr John Thim, MAI L =? TATA4: Föreläsning Kurvlängd, re och volym John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 28 mj 209 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsnvisningr till kpitel 4.1 4.6 4.1 Konturer Dett är ett vsnitt om kurvor och hur mn prmetriserr kurvor, som borde vr en repetition från lägre kurser. Låt oss gå igenom lite ändå. Definition 4.1. Låt

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Envariabelanalys. Tomas Ekholm. Institutionen för matematik

Envariabelanalys. Tomas Ekholm. Institutionen för matematik Envribelnlys Toms Ekholm Institutionen för mtemtik Innehåll Att läs innn vi börjr 5. Vrför läs mtemtik?...................... 5.2 Definitioner, stser och bevis................... 5.3 Mängder...............................

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Svar till uppgifter 42 SF1602 Di. Int.

Svar till uppgifter 42 SF1602 Di. Int. Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)

Läs mer

Mat Grundkurs i matematik 1, del II

Mat Grundkurs i matematik 1, del II Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

Topologi och konvergens

Topologi och konvergens Topologi och konvergens för viss kurser vid Uppsl universitet Smmnställt v Anders Vretbld 997 års upplg, översedd 28 Innehåll Topologisk grundbegrepp. Öppn och slutn mängder 3.2 Gränsvärde och kontinuitet

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

9 Dubbelintegralens definition

9 Dubbelintegralens definition Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Envariabelanalys, del 2

Envariabelanalys, del 2 Envribelnlys, del 2 Toms Sjödin Dett är tänkt tt vr en smmnfttning v det jg nser vr den viktigste teorin i kursen. Ing eempel ges, och det är inte lls tänkt tt på något vis vr ett substitut för kursboken.

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

Integralkalkyl. Den bestämda integralen. Om Maclaurinutvecklingar. Integralen mäter en area. Analys360 (Grundkurs) Instuderingsuppgifter

Integralkalkyl. Den bestämda integralen. Om Maclaurinutvecklingar. Integralen mäter en area. Analys360 (Grundkurs) Instuderingsuppgifter Integrlll Anls6 (Grundurs) Instuderingsuppgifter Dess övningr är det tänt du s gör i nslutning till tt du läser huvudteten. De flest v övningrn hr, om inte lösningr, så i vrje fll nvisningr till hur uppgiften

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH Anlys 360 En webbserd nlyskurs Grundbok Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Integrlklkyl (3) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14

1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14 Innehåll 1 Inledning 2 2 Måttet v en öppen mängd 3 3 Integrlen v en kontinuerlig funktion 9 4 Jämförelse med Riemnnintegrlen 14 5 Skivformeln och itererd integrtion 17 6 Generliserde positiv integrler

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Envariabelanalys. Tomas Ekholm. Institutionen för matematik

Envariabelanalys. Tomas Ekholm. Institutionen för matematik Envribelnlys Toms Ekholm Institutionen för mtemtik Innehåll Att läs innn vi börjr 5. Vrför läs mtemtik?..................... 5.2 Uppmning till läsren v dett häfte............. 5.3 Definitioner, stser och

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n

gränsvärde existerar, vilket förefaller vara en naturlig definition (jämför med de generaliserade integralerna). I exemplet ovan ser vi att 3 = 3 n n TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 5 mars 208 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

TATA42: Föreläsning 1 Kurvlängd, area och volym

TATA42: Föreläsning 1 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

6 Greens formel, Stokes sats och lite därtill

6 Greens formel, Stokes sats och lite därtill 6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

Matris invers, invers linjär transformation.

Matris invers, invers linjär transformation. Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

Om konvergens av funktionsföljder

Om konvergens av funktionsföljder Anlys 36 En webbserd nlyskurs Anlysens grunder Om konvergens v funktionsföljder Anders Källén MtemtikCentrum LTH nderskllen@gmil.om Om konvergens v funktionsföljder 1 (12) Introduktion I det här kpitlet

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Analys 360 En webbaserad analyskurs Grundbok. X. Integralkalkyl. MatematikCentrum LTH

Analys 360 En webbaserad analyskurs Grundbok. X. Integralkalkyl. MatematikCentrum LTH Anlys 36 En webbserd nlyskurs Grundbok X. Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com X. Integrlklkyl (8) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Matematisk Analys

ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Matematisk Analys Mtemticentrum Mtemti NF ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Mtemtis Anlys en vribel Toms Clesson och Per-Anders Ivert Generliserde integrler och summor. Generliserde integrler över obegränsde intervll

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

TATA42: Föreläsning 5 Serier ( generaliserade summor )

TATA42: Föreläsning 5 Serier ( generaliserade summor ) TATA42: Föreläsning 5 Serier ( generaliserade summor ) Johan Thim 0 januari 207 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje

Läs mer

Numerisk Integration En inledning för Z1

Numerisk Integration En inledning för Z1 Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och

Läs mer

Kontinuerliga variabler

Kontinuerliga variabler Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

Mat Grundkurs i matematik 1, del III

Mat Grundkurs i matematik 1, del III Mt-1.1510 Grundkurs i mtemtik 1, del III G. Gripenberg TKK 2 december 2010 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del III 2 december 2010 1 / 59 Vribelbyte b F (g(x))g (x) dx = b d F (g(x))

Läs mer

Mängder i R n. Funktioner från R n till R p

Mängder i R n. Funktioner från R n till R p Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)

Läs mer

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson

Spelteori: En studie av hur pokerproblemet delvis lösts. Mika Gustafsson Spelteori: En studie v hur pokerproblemet delvis lösts Mik Gustfsson Smmnfttning Spelteorin föddes 198 då von Neumnn mtemtiskt lyckdes påvis bluffens nödvändighet i spel med ofullständig informtion. Dett

Läs mer

ENVARIABELANALYS, DEL 2 TOMAS SJÖDIN

ENVARIABELANALYS, DEL 2 TOMAS SJÖDIN ENVARIABELANALYS, DEL 2 TOMAS SJÖDIN Dett är tänkt tt vr en smmnfttning v det jg nser vr den viktigste teorin i kursen. Ing exempel ges, och det är inte lls tänkt tt på något vis vr ett substitut för kursboken.

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer