Induktion LCB 2000/2001

Storlek: px
Starta visningen från sidan:

Download "Induktion LCB 2000/2001"

Transkript

1 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n Men det är mycet vnligt tt följden i stället definiers vi en reursionsformel; en formel som (i enlste fll) nger hur vrje element n beräns ur det föregående. Ett exempel är (2) n n 2n n 2 Tillsmmns med ett begynnelsevärde definierr reursionsformeln entydigt tlföljden. Med definierr ftist reursionsformeln (??) smm tlföljd som (??). En llmän (enstegs) reursionsformel n hr utseendet F n n 2 (3) för någon given funtion F v en vribel. Formeln innebär tt tlföljdens element beräns itertivt, successivt ett i tget. Dett förfrnde är väl lämpt för progrmmering, och det är lätt tt få en dtor tt producer en tbell över ll element i följden upp till någon prtis gräns given v msinpcitet, eonomi, ppperstillgång eller nnt. Nturligtvis är mn tvungen tt slut förr eller senre. Om mn vill gör ett generellt uttlnde om ll element i följden så räcer det emellertid inte med en ändlig tbell. Ett bevis fordrs, som verligen täcer ll fll. Metoden med indution är npssd för bevis v uttlnden ngående reursivt definierde följder. Vi ger någr exempel. Exempel. Definier en tlföljd n genom reursionsformeln 2 n n 2 Från det givn begynnelsevärdet n vi successivt berän Vi påstår nu: ll element i följden stisfierr n 4. Ett sådnt påstående sulle nturligtvis unn vederläggs om mn genom tt successivt berän elementen i följden så småningom unde finn ett som är större än 4. Däremot fordrr ett bevis för tt stsen är snn verifition v smtlig element, och en sådn n mn inte få på det sättet. Vi visr nu hur mn genomför ett indutionsbevis v stsen. Dett n läsren själv verifier genom tt sätt in (??) i (??).

2 2. Först verifierr vi tt påståendet är snt för begynnelseelementet. Dett är nturligtvis helt självlrt i föreliggnde fll: vi hr ju tt Vi genomför nu det så llde indutionssteget. I dett introducerr vi ett indutionsntgnde; en hypotes vrs snningshlt vi inte vet något om, men som vi ändå tr till utgångspunt för det fortstt resonemnget. Vi ntr tt påståendet är snt för ett bestämt heltl n, dvs. vi ntr tt 4 för något. Med denn hypotes som grund visr vi tt påståendet är snt för näst element i följden. Reursionsformeln uttrycer i, och v indutionshypotesen följer därför tt Observer nog vd vi nu hr bevist: det är inte tt 4 för ll, utn tt 4 för ett visst index under förutsättning tt 4. För tt gör dett resonemng till ett bevis utnyttjr vi nu tt vi redn verifiert formeln för n. Av indutionssteget följer då tt den är snn för n. Användning v indutionssteget en gång till visr tt formeln är snn för n 2, därefter för n 3, osv. Det följer tt n 4 för ll n, och beviset är lrt. 2 3 n När mn nvänder summsymbol med ett godtycligt (ändligt) ntl termer, som i n i x i x x x n s n s n x n n 2 s x så döljer sig här i själv veret en reursiv definition. Om summn betecns s n så är Här ges en reursiv definition v summföljden s n. Det är nturligtvis denn definition som måste nvänds om mn vill onstruer ett dtorprogrm som sriver ut summns värde för oli n. Denn reursiv definition gör tt indutionsbevis är nturlig för en del formler rörnde summor. Vi illustrerr dett i näst exempel. Där låter vi reursionen strt med n i stället för n, vilet nturligtvis inte medför någon principiell förändring. Exempel 2. Bevis för vrje positivt heltl n följnde formel för summn v vdrtern på de först n positiv hel tlen: 2 n n n 2n i i

3 . REKURSION OCH INDUKTION; ENKLA FALL 3 Lösning: Inför summföljden 2 3 s s s enligt reursionsformeln ovn, som i dett fll hr utseendet n n 2 n 2 3 s s 2 n s Påståendet som sll viss är då tt s n n n 2n n 2. Vi verifierr först tt formeln gäller för n. I högerledet står det då 2 3, och eftersom s är dett lrt. 2. Antg nu tt formeln är snn för ett visst tl n, dvs. tt s 2 (indutionsntgndet). Under denn förutsättning verifierr vi formeln för näst tl s i summföljden. Med nvändning v först reursionsformeln och sedn indutionsntgndet får vi s s Dett n srivs om på följnde sätt: s Därmed är indutionssteget genomfört. n Eftersom formeln redn är verifierd i fllet följer som i exempel?? tt den gäller för ll positiv heltl n. För tt inte ge läsren intrycet tt indutionsbevis br n nvänds till tt bevis uttlnden om reursivt definierde tlföljder ger vi nu två lite nnorlund exempel. Det först n ver lite uriosbetont, men när mn renst bort bgrunden hndlr det ftist om ett mtemtist uttlnde. Exempel 3. Vis tt vilet brev som helst med porto över eller li med 2 cent (merinst exempel!) n frners med tillgång till enbrt 3 cents och 7 cents frimären. Lösning: Det hndlr om tt vis tt vilet heltl n 2 som helst n srivs på formen n x3 y7 x y heltl, x y (Mn ser lätt tt tlet inte hr denn egensp.) Vi nvänder indution över n.. För strtvärdet n 2 gäller 2 4 3, så tt x 4, y duger. 2. Gör indutionsntgndet tt tlet n srivs på dett sätt, x3 y7

4 4 med lämplig x y. Antg först tt x 2. Då får vi tt x 2 3 y7 x 2 3 y 7 som hr den önsde formen. Om x 2, dvs. x eller x, är y 2 eftersom 2. Då n vi sriv x3 y x 5 3 y 2 7 som ocså är v rätt form. Dess två fll täcer ll möjligheter. Alltså: om 2 n uttrycs som ice-negtiv ombintioner v 3 och 7 så gäller dett även. Av indutionssteget och ontrollen v strtvärdet följer nu vårt påstående. Nu ger vi ett exempel på så lld lgoritmnlys. Exempel 4. Låt A n vr en list innehållnde reell tl ordnde i storlesordning. Antlet element i listn nts vr en potens v 2, A n 2 n. Låt r vr ett reellt tl. Vi s studer problemet tt vgör om tlet r finns med på listn. Huruvid så är fllet eller inte undersöes genom tt, helst på ett systemtist sätt, jämför r med oli element på listn. En jämförelse med ett element x innebär tt lrgör vilet som är snt v r x, r x, r x. Vi sll nu vis: För tt vgör om r finns med på listn A n rävs högst n jämförelser, n 2.. Betrt först fllet n, då listn A innehåller ett end element. Då rävs jämförelse (är r?) för tt vgör om r finns på listn. Stsen stämmer lltså i dett fll. 2. Som indutionsntgnde ntr vi nu tt stsen n är snn för. Mer precist ntr vi tt det för vrje list med 2 element räcer med jämförelser för tt vgör om r finns med. Betrt nu en list A med element. Del upp mängden A i två disjunt delr, A B C så tt vrje element i B är mindre än eller li med vrje element i C, och så tt B C 2. Betecn med x det störst elementet i listn B. Vi n nu förfr på följnde sätt. r Jämför först r med x. Om x är vi nturligtvis lr. Om r x drr vi slutstsen tt r i vrje fll inte finns i C, och om r x så n r inte finns i B. I det senre fllet undersöer vi om r finns i C. Dett räver högst jämförelser enligt indutionsntgndet. På smm sätt rävs högst jämförelser för tt i det först fllet vgör om r finns i B. Ränr vi in den först jämförelsen finner vi tt högst 2 jämförelser rävs för tt vgör om r finns i A. Därmed hr vi fullbordt indutionsbeviset. Anmärning. Den ngivn metoden för söning i en ordnd list lls binärsöning. Då ntlet element inte är en potens v 2 innebär resulttet tt det rävs högst cir 2 logm jämförelser för tt vgör om r finns med i en list med m element.

5 2. INDUKTIONSAXIOMET 5 Exempel 5. Iblnd, då indutionssteget änns trivilt och mn föredrr tt redovis resonemnget utn tt sriv ner detljern, tlr mn om dold indution. Betrt till exempel den tlföljd som definiers v det reursiv smbndet 2 (4) med begynnelsevärde 2. Här får vi successivt 2 3 (dold indution) tt 2 2! I (??) hr vi tydligen en reursiv definition v -fultet. På linnde sätt döljer sig ett indutionsförfrnde då mn omedelbrt drr slutstsen tt tringeloliheten för omplex tl z z 2 z z z 2 z gäller för ett godtycligt ntl termer så snrt mn hr bevist den för två termer. Exempel. En geometris tlföljd definiers v tt votern melln successiv element är onstnt, li med något tl x (voten) som är oberoende v : 2 x 2 Dett innebär tt 2 x x x 2 2 x Elementen i en geometris tlföljd n således srivs 2 x Vi erinrr om formeln för den geometris summn: x 2 n x n x x x (observer sillnden mot (??), där voten beror v ). Vi får successivt (dold indution) om x För x är summn li med n. Formeln n beviss genom indution (övning) eller på nnt sätt (se Persson-Böiers, Anlys i en vribel, sid. 3). 2 Indutionsxiomet Att mn i exemplen ovn verligen når ll positiv heltl på det ngivn sättet, genom tt först verifier begynnelsefllet n och sedn vis tt fllet n implicerr fllet n, brur lls indutionsprincipen. Ett bevis v denn sulle nturligtvis fordr tt mn först ger en strit definition v de hel tlen. Vi hr inte för vsit tt gör dett här. Det är emellertid möjligt tt genomför en sträng teori för hel tl. Ett berömt xiomsystem för dess, på vilet teorin n utvecls, är Penos fem xiom. Ett v Penos xiom är följnde. INDUKTIONSAXIOMET. Låt I vr en delmängd v de positiv hel tlen Z. Antg tt 2 Därmed blir vrje tl det geometris medelvärdet v det föregående och efterföljnde tlet:.

6 . I, 2. I I. Då är I Z. Det är lrt tt indutionsbevisen i exempel???? ovn n återförs på indutionsxiomet. En vitig egensp hos de positiv heltlen, som följer v indutionsxiomet, är VÄLORDNINGSPRINCIPEN. Vrje ice-tom delmängd v Z innehåller ett minst element. Läsren n själv övertyg sig om tt till exempel mängden Q v positiv rtionell tl inte hr denn egensp. BEVIS för tt välordningsprincipen följer v indutionsxiomet. Det är lrt tt det räcer tt betrt ändlig delmängder v Z. Därmed n vi formuler vårt uttlnde på följnde sätt: vrje mängd i Z med n element hr ett minst element. I denn formulering n stsen beviss med indution över n.. Det är lrt tt vrje mängd med element hr ett minst element. 2. Antg tt vrje mängd med element hr ett minst element. Betrt en mängd A 2 med element. Enligt indutionsntgndet hr delmängden A 2 ett minst element, ll det m. Nu n vi särsilj två fll. m Om så är m minst element i A. Om m så är minst element i A. Således hr A ett minst element. Enligt indutionsprincipen är nu påståendet bevist. Läsren nse tycer tt välordningsprincipen är mycet mer självlr än indutionsxiomet. De är i själv veret evivlent; utgår mn från välordningsprincipen n mn bevis indutionsxiomet. För den intresserde ger vi dett bevis. BEVIS för tt indutionsxiomet följer v välordningsprincipen. Betrt omplementet C till mängden I i Z. Vi är färdig om vi n vis tt C är tom. Antg tt C /. Då hr C ett minst element m enligt välordningsprincipen. Av den först förutsättningen i indutionsxiomet följer tt m. Eftersom m är minst element i C ingår inte m i C. Men då följer v den ndr förutsättningen tt m inte tillhör C! Vi hr fått en motsägelse. Följtligen är vårt ntgnde ovn fel, och C är tom. Beviset är lrt. 3 Mer om reursion och indution Mer omplicerde reursionsformler än den enl enstegsformeln (??) ovn föreommer. och 2. I så fll rävs nturligtvis två strtvärden för tt följden sll vr entydigt definierd. Med lämplig modifitioner n ett indutionsbevis genomförs även i denn sitution. Till exempel n få bero på de två föregående tlen

7 3. MER OM REKURSION OCH INDUKTION 7 F Exempel 7. Den så llde Fiboncciföljden F n definiers genom (5) n F n F n 2 n 2 3 F F All element i följden är nturligtvis heltl. Vrje tl är summn v de två närmst föregående. Av reursionsformeln får vi tt de först tio tlen är () där Vi påstår nu: för elementen i Fiboncciföljden gäller formeln n n F 5 g n n g n 5 g (Tlet g är sedn de gml greern änt under nmnet gyllene snittet.) För senre behov observerr vi tt g g 2 Beviset går till på följnde sätt. n n n. Vi verifierr först formel (??) då och. För n blir högerledet li med, vilet överensstämmer med F i g 5 5 definitionen (??). För får vi i högerledet 5g som enligt (??) är li med F. 2. Vi gör nu indutionsntgndet tt (??) är snn n n n då 2 och. Under denn förutsättning visr vi tt (??) ocså gäller då. Av reursionformeln i (??) och indutionshypotesen får vi tt 2 g 2 g 2 F F F g g 2 5 Här är Liså är g g 2 g g g g g g g g 2 Därför är 5 F g g g g g g g g

8 8 5 dvs. formel (??) gäller då n Med resonemng n linnde det som vslutr exempel?? drr vi nu slutstsen tt (??) gäller för ll heltl. Anmärning. Eftersom g hr g n F n gränsvärdet då n. För stor n är lltså gn 5 I själv veret är F n li med det närmst heltlet till värden på n. gn redn för mycet måttlig Anmärning. Det n tycs märligt tt högerledet i (??), som ju innehåller 5 på mång ställen, ftist är ett heltl. Men nvänder mn binomilstsen på de två termern 5 ser mn tt ll termer innehållnde 5 försvinner, och tt ett heltl återstår. 2 n I exempel?? behövs en indutionprincip v generellre utformning än den vi nvänt tidigre. Även denn n emellertid återförs på indutionsxiomet så som vi formulert det ovn. Vi vstår från tt ge detljern. Ännu generellre former v indutionsbevis föreommer, till exempel följnde vrint. Mn verifierr först fllet n. I indutionssteget ntr mn sedn tt det tuell påståendet är snt för ll heltl melln och n, och verifierr det under denn förutsättning för näst heltl n. Exempel på ett sådnt indutionsbevis ommer tt ges senre, då vi visr tt vrje positivt heltl n srivs som en produt v primtl. Exempel 8. Typist för indutionsbevis är tt de nvändes för tt bevis resultt som mn slutit sig till på nnt sätt först, nse genom numeris experiment eller genom gissning. Det finns oft inget i själv indutionsförfrndet som ntyder vrför ett visst resultt är snt. Antg till exempel tt vi börjr experimenter med vdrtern på Fibonccitlen i (??) ovn. Vi finner tt 2 2 F 2 F F 2 F 2 F F 2 F 2 F2 2 F F 2 F 2 F2 2 F3 2 F n

9 3. MER OM REKURSION OCH INDUKTION 9 Då är ju ftist Är det lltid så tt (7) F 2 F 2 F 2 2 F F 2 F2 2 F F F 2 F3 2 2 F F F 2 F4 2 3 F 4 5 F F 2 F 2 Fn 2 F n F n? F 2 F 2 F2 2 F 2 F2 2 F3 2 Undersöning även då n 5 visr tt båd leden blir li med 4. Vi försöer nu bevis med indution tt (??) gäller för ll n. Betecn summn i vänster led med s n. Då är n n n n 2 3 s s F 2 och s. Vi ser tt det blir fråg om enel enstegs indution.. Fllet n hr vi redn verifiert i räningrn ovn. n 2. Antg (indutionsntgnde) tt (??) stämmer då, dvs. tt s F F För summn s får vi i så fll tt s s F 2 F F F 2 F F F Använder vi nu reursionsformeln (??) för Fibonccitlen får vi tt s F F n dvs. tt (??) gäller för. Därmed är indutionsbeviset fullbordt, och vi hr vist tt (??) ftist gäller för ll positiv heltl n. Avslutningsvis vill vi nämn tt indutionsbevis spelr en vitig roll vid så lld progrmverifiering; mn vill bevis tt ett visst dtorprogrm eller progrmvsnitt gör vd det är vsett tt gör, oberoende v vil indt som nvänds. Vi överlåter exempel på dett till en nnn urs.

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Ett förspel till Z -transformen Fibonaccitalen

Ett förspel till Z -transformen Fibonaccitalen Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.

Läs mer

LINJÄR ALGEBRA II LEKTION 1

LINJÄR ALGEBRA II LEKTION 1 LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen

Läs mer

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL

PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

4 Signaler och system i frekvensplanet Övningar

4 Signaler och system i frekvensplanet Övningar Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

Serier och potensserier

Serier och potensserier Serier oc potensserier J A S, t-05 Serier. Allmänt om serier När är en tlföljd lls uttrycet = 0 + + 2 + + + för en serie. Serien är börjr med index = 0, men det är inte nödvändigt. När ing missförstånd

Läs mer

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.

Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba. Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Matris invers, invers linjär transformation.

Matris invers, invers linjär transformation. Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,

Läs mer

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1

Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1 Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Internetförsäljning av graviditetstester

Internetförsäljning av graviditetstester Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

Vilken rät linje passar bäst till givna datapunkter?

Vilken rät linje passar bäst till givna datapunkter? Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.

Läs mer

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7. Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

RAPPORT. Kontroll av dricksvattenanläggningar 2009/2010. Tillsynsprojekt, Miljösamverkan Östergötland. DRICKSVATTEN

RAPPORT. Kontroll av dricksvattenanläggningar 2009/2010. Tillsynsprojekt, Miljösamverkan Östergötland. DRICKSVATTEN DRICKSVTTEN RPPORT Kontroll v dricsvttennläggningr 2009/2010. Tillsynsprojet, Miljösmvern Östergötlnd. Bgrund Ett behov v ompetensutvecling och smsyn vid ontroll v dricsvttennläggningr hr påtlts v flertlet

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär

Slutrapport Jordbruksverket Dnr. 25-12105/10 Kontroll av sniglar i ekologisk produktion av grönsaker och bär Slutrpport Jordruksverket Dnr. 25-125/ Kontroll v sniglr i ekologisk produktion v grönsker och är Projektledre: Birgitt Svensson, Område Hortikultur, SLU Innehåll sid Smmnfttning 3 Bkgrund / Motivering

Läs mer

CHECKLISTA FÖR PERSONALRUM

CHECKLISTA FÖR PERSONALRUM CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-

Läs mer

Matematik 5 Kap 1 Diskret matematik I

Matematik 5 Kap 1 Diskret matematik I Matemati 5 Kap 1 Disret matemati I Inledning Konretisering av ämnesplan (län) http://www.ioprog.se/public_html/ämnesplan_matemati/strutur_äm nesplan_matemati/strutur_ämnesplan_matemati.html Inledande ativitet

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]

Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag] Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

Grundläggande logik. Lösningsdel. Kaj B Hansen och Taeda Jovicic. Kapitel 2: Lösningar till övningarna på s 38-40. 2-6.1 (a) (A (B A)) är en formel.

Grundläggande logik. Lösningsdel. Kaj B Hansen och Taeda Jovicic. Kapitel 2: Lösningar till övningarna på s 38-40. 2-6.1 (a) (A (B A)) är en formel. Kpitel 2: Lösningr till övningrn på s 38-40 2-6.1 (A (B A)) är en formel. Kj B Hnsen och Ted Jovicic Grundläggnde logik (1) A och B är formler enligt (1) (2) A är en formel (*enligt (1)*) A är en formel

Läs mer

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden

temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden temung.se T E M AG RU P P E N U N G A I A R B E T S L I V E T n n u k k s g n u r All e d u t s r e l l e b job EUROPEISKA UNIONEN Europeisk socilfonden »GÅ UT GYMNASIET«Mång ung upplever stress och tjt

Läs mer

Volym och dubbelintegraler över en rektangel

Volym och dubbelintegraler över en rektangel Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =

Läs mer

Skriv tydligt! Uppgift 1 (5p)

Skriv tydligt! Uppgift 1 (5p) 1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!

Läs mer

Repetition 2. a) Delmängdskonstruktionen ger nedanstående DFA. Till höger med nya tillståndsnamn.

Repetition 2. a) Delmängdskonstruktionen ger nedanstående DFA. Till höger med nya tillståndsnamn. 1 Repetition 2.n Repetition 2 3 1. Betrt vidstående NFA. 1 2 ) Konstruer ed hjälp v delängdsonstrutionen en DFA evivlent ed NFA:n. ) Är den resulternde DFA:n inil? O ej, inier den! c) Konstruer ett reguljärt

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentmen TEN, HF, mj 8 Mtemtis sttisti Kursod HF Srivtid: 4:-8: Lärre och emintor : Armin Hlilovic Hjälmedel: Bifogt formelhäfte ("Formler och teller i sttisti " och miniränre v vilen ty som helst Förjudn

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

TILLÄMPNINGAR AV DIAGONALISERING Beräkning av potenser A n. Rekursiva samband (s.k. differensekvationer).

TILLÄMPNINGAR AV DIAGONALISERING Beräkning av potenser A n. Rekursiva samband (s.k. differensekvationer). rmi Hlilovic: ETR ÖVNINGR Tillämpigr v digoliserig TILLÄMPNINGR V DIGONLISERING Beräig v poteser. Reursiv smbd s.. differesevtioer. Beräig v poteser med hjälp v digoliserig Om mtrise är digoliserbr dvs

Läs mer

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER ANDRZEJ SZULKIN & MARTIN TAMM. Inledning Dett ompendium innehåller mteril som ompletterr ursboen Persson&Böiers, del 2. De inlednde fem vsnitten

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7.

Långtidssjukskrivna. diagnos, yrke, partiell sjukskrivning och återgång i arbete. En jämförelse mellan 2002 och 2003 REDOVISAR 2004:7. REDOVISAR 2004:7 Långtidssjukskrivn dignos, yrke, prtiell sjukskrivning och återgång i rbete En jämförelse melln 2002 och 2003 Smmnfttning Kvinnor svrr för 65 procent v de långvrig sjukskrivningrn som

Läs mer

Rationella uttryck. Förlängning och förkortning

Rationella uttryck. Förlängning och förkortning Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II Skrivtid: Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Tentmen Progrmmeringsteknik II 014-10-4 Skrivtid: 1400 1900 Tänk på följnde Skriv läsligt! Använd inte rödpenn! Skriv r på frmsidn v vrje ppper. Börj lltid ny uppgift på nytt ppper. Lägg uppgiftern i ordning.

Läs mer

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK

FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK FORMELLA SPRÅK, AUTOMATER OCH BERÄKNINGSTEORI ÖVNINGSUPPGIFTER PÅ REGULJÄRA SPRÅK Förord Dett kompendium innehåller övningr inom reguljär språk för kursen Formell språk, utomter och eräkningsteori som

Läs mer

ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Matematisk Analys

ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Matematisk Analys Mtemticentrum Mtemti NF ETT OSKRIVET KAPITEL I FORSLING NEYMARK: Mtemtis Anlys en vribel Toms Clesson och Per-Anders Ivert Generliserde integrler och summor. Generliserde integrler över obegränsde intervll

Läs mer

Skogstorp i framtiden

Skogstorp i framtiden I SKOGSTORP www.skogstorp.om/soildemokrtern Skogstorp i frmtiden Redovisning v enkät genomförd under perioden Novemer- Deemer 2005. 1. Tyker Du liksom fler v oss tt det ehövs yggs en förifrt utnför skogstorp?

Läs mer

14. MINSTAKVADRATMETODEN

14. MINSTAKVADRATMETODEN 4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER ANDRZEJ SZULKIN & MARTIN TAMM. Inledning Dett ompendium innehåller mteril som ompletterr ursboen Persson&Böiers, del 2. De inlednde fem vsnitten

Läs mer

Datorernas matematik

Datorernas matematik Stockholms mtemtisk cirkel Dtorerns mtemtik Dniel Ahlsén Jor Bgge Institutionen för mtemtik, KTH och Mtemtisk institutionen, Stockholms universitet 2019 2020 Stockholms mtemtisk cirkel genom tidern (tidigre

Läs mer

Månadsrapport maj 2014. Individ- och familjeomsorg

Månadsrapport maj 2014. Individ- och familjeomsorg Måndsrpport mj Individ- och fmiljeomsorg Innehållsförteckning 1 Ekonomi och verksmhet... 3 1.1 Resultt per verksmhet... 3 1.2 Investeringsuppföljning... 3 1.3 Volymer, sttistik och kostndsnyckeltl... 4

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

Diskreta stokastiska variabler

Diskreta stokastiska variabler Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt

Läs mer

Föreläsning 3: Strängmatchning

Föreläsning 3: Strängmatchning 2D1458, Prolemlösning oh progrmmering under press Föreläsning 3: Strängmthning Dtum: 2006-09-18 Srienter: Miel Elisson, Joim Erisson oh Mts Linnder Föreläsre: Miel Goldmnn Denn föreläsning ehndlr prolemet

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969

Evighetskalender. 19 a) nyårsdagen var år 2000 b) julafton kommer att vara på år 2010 c) de första människorna landade på månen, 20 juli 1969 Evighetsklender Vilken veckodg vr det när du föddes? På vilken veckodg fyller du 18 år? Med den här evighetsklendern kn du t red på det. Gör så här när du sk t red på veckodgen: Lägg ihop följnde fyr tl:

Läs mer

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER ANDRZEJ SZULKIN & MARTIN TAMM. Inledning Dett ompendium innehåller mteril som ompletterr ursboen Persson&Böiers, del 2. De inlednde fem vsnitten

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Addition och subtraktion

Addition och subtraktion Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik

Läs mer

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.

1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b. UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive

Läs mer

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.

Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a. 1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system. Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Repetitionsuppgifter i matematik

Repetitionsuppgifter i matematik Lärrprogrmmet Ingång Mtemtik och Lärnde Repetitionsuppgifter i mtemtik Inför vårterminens mtemtikstudier kn det vr r tt repeter grundläggnde räknefärdigheter. Dett mteril innehåller uppgifter inom följnde

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Analys o 3D Linjär algebra. Lektion 16.. p.1/53

Analys o 3D Linjär algebra. Lektion 16.. p.1/53 Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07 Föreläsningsmnus i mtemtisk sttistik för lntmätre, veck 3 och 4 HT07 Bengt Ringnér September 5, 2007 Inledning Dett är preliminärt undervisningsmteril. Synpunkter är välkomn. 2 Stokstisk vribler En stokstisk

Läs mer

Föreläsning 7b. 3329 Längdskalan är L = 2 3

Föreläsning 7b. 3329 Längdskalan är L = 2 3 Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2

Läs mer

Det energieffektiva kylbatteriet

Det energieffektiva kylbatteriet Croline Hglund, Civ.ing. SP Sveriges Provnings- och Forskningsinstitut, Energiteknik, Borås, croline.hglund@sp.se Per Fhlén, Prof. Inst. för Instlltionsteknik, CTH, Göteorg, per.fhlen@hvc.chers.se Det

Läs mer

Om användning av potensserier på kombinatorik och rekursionsekvationer

Om användning av potensserier på kombinatorik och rekursionsekvationer Om användning av potensserier på ombinatori och reursionsevationer Anders Källén MatematiCentrum LTH andersallen@gmailcom Sammanfattning Vid analys av både ombinatorisa problem och för att lösa reursionsevationer

Läs mer