Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
|
|
- Dan Eklund
- för 8 år sedan
- Visningar:
Transkript
1 CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det inte finns någon nvändbr primitiv funktion. Det kn också vr så tt integrnden br är känd i viss punkter, t.ex. vi hr en serie med mätdt. Beräkningsmetoder Den geometrisk tolkningen v integrlen f(x) dx är ren v ytn melln grfen v integrnden och x-xeln, dvs. y =, melln x = och x = b. x = x = b Vi gör en likformig indelning v intervllet x b = x < x < x < < x n < så tt vi får n lik lång delintervll x i x x i med bredden h = b n. Sedn delr vi upp integrlen i en summ v delintegrler över vrje delintervll f(x) dx = i= xi x i f(x) dx x = x i- x i
2 Om vi pproximerr f(x) med f(x i ) i intervllen x i x x i får vi vänster rektngelregel f(x) dx h f(x i ) i= x = x i- x i Om vi pproximerr f(x) med f(x i ) i intervllen x i x x i får vi höger rektngelregel f(x) dx h f(x i ) i= x = x i- x i Om vi pproximerr f(x) med f(m i ) i intervllen x i x x i, där m i är mittpuktern i intervllen, får vi mittpunktsmetoden ( ) xi + x i f(x) dx M n = h f i= x = x i- x i I Adms kpitel 5 definiers (konstruers) integrlen f(x) dx med hjälp v Riemnnsummn f(c i )h i i= Metodern ovn är olik vrinter v Riemnnsummor, med c i = x i, c i = x i respektive c i = m i, och h i = h.
3 Vi kn också pproximer integrlen med medelvärdet v vänster och höger rektngelregel och får då trpetsmetoden f(x) dx T n = i= h (f(x i ) + f(x i )) x = x i- x i Antg tt vi vill beräkn x sin(x) dx med vänster rektngelregel med n =. Vi skulle kunn gör så här >> n=; >> =; b=; >> f=@(x)x.*sin(x); >> h=(b-)/n >> q=; >> for i=:n- x=+i*h; q=q+h*f(x); end >> q Att nvänd en for-sts är oftst inte effektivt i Mtlb. Vi genererr hellre en vektor v ll funktionsvärden f(x i ) och sedn summerr dess enligt >> n=; >> =; b=; >> f=@(x)x.*sin(x); >> x=linspce(,b,n+); >> h=(b-)/n; >> q=sum(h*f(x(:n))) Dett sätt tt orgniser en beräkning klls tt vektoriser den, dvs. mn genererr först en eller fler vektorer och utför sedn den önskde beräkningen på dem. De komponentvis opertionern.*./.^ är exempel på vektoriserde opertioner. Vi nvände funktionen sum som snbbt summerr en vektor. Uppgift. Beräkn en pproximtion v integrlen x sin(x) dx med vänster och höger rektngelregel smt mittpunkts- och trpetsmetodern. Använd sum. Uppgift. Skriv en funktion med nmnet min_integrl och nropet q=min_integrl(f,i,n,k) som beräknr integrlen pproximtivt. Du skll nvänd progrmsklet min_integrl.m på Mtlb-hemsidn.
4 Uppgift. Test ditt progrm på följnde integrler. Vrier metodvl och ntl delintervll n. (). e x dx (b). dx (c). +x tn( x) dx Konvergens För metodern ovn gäller tt smtlig är konvergent, dvs. låter vi ntl delintervll n gå mot oädligheten så går pproximtionern mot integrlens värde. Vi ser på någr bilder för vänster rektngelregel där n blir llt större n = x = n =6 x = n =5 x = Vi ser tt vi llt bättre täcker upp ytn under grfen med llt fler och smlre stplr. Nu räcker det i prktiken inte med konvergens. Vi måste få en br pproximtion på en kort tid, dvs. inte behöv t n lltför stort. För vänster och höger rektngelregel gäller tt om vi fördubblr ntl delintervll så hlvers felet i pproximtionen v integrlen. För mittpunkts- och trpetsmetodern gäller vid smm fördubbling tt felet dels med fyr, dvs. mycket bättre utdelning. Uppgift 4. Vi ser på integrlen x sin(x) dx igen. Beräkn integrlen exkt (för hnd). Jämför exkt värde med de pproximtioner vi får med metodern ovn för olik ntl delintervll n. Hur stort blir felet? Tg t.ex först n = 5 och sedn n =, beräkn felen i pproximtionern och se efter hur felen förändrs. 4
5 4 Färdig progrm i Mtlb Det finns färdig funktioner i Mtlb för tt integrer. En sådn funktion är qudl. Nmnet qudl kräver en förklring. Att beräkn integrlen numeriskt klls numerisk kvdrtur (numericl qudrture) och en metod för numerisk kvdrtur brukr klls kvdrturregel (qudrture rule). Nmnet kvdrtur syftr på reberäkning, dvs. tt finn en kvdrt som hr smm re som en given yt i plnet. Vidre står l för Lobtto, en holländsk 8-tls mtemtiker som bl.. rbetde med kvdrtur. Vill vi beräkn integrlen v f(x) = x sin(x) över intervllet x med qudl skulle det kunn görs så här >> f=@(x)x.*sin(x); >> =; b=; >> q=qudl(f,,b) För tt slipp problem, t för vn tt beskriv integrnden som om du skulle rit dess funktionsgrf, dvs. tänk på x som en vektor och nvänd komponentvis opertioner. Uppgift 5. Gör uppgift 7 i Adms kpitel 5.7. Rit en bild v området. Använd qudl. Ledning: Se först på exempel i Adms sid 6. Uppgift 6. Beräkn ren v det slutn området melln grfern till funktionern g(x) = e x och h(x) = x x +. Rit en bild v området. Använd fzero, fill och qudl. 5
6 6
7 CTH/GU MVE6 - / Mtemtisk vetenskper Uppföljning v lbortion Målsättning Avsikten med denn lbortion är se lite på metoder för tt pproximer integrler f(x) dx. Mång integrnder, speciellt i smbnd med teknisk beräkningr, sknr nvändbr formler för primitiv funktion. Då återstår endst tt pproximer integrlen. Vi skriver ett litet eget progrm för integrlberäkning min_integrl, där vi prövr någr olik metoder. Avslutningsvis bekntr vi oss med qudl, ett färdigt progrm för integrlberäkning i Mtlb. Kommentrer och förklringr Vänster och höger rektngelregel klls för först ordningens metoder. Fördubblr vi ntlet delintervll så hlvers felet, dvs. pproximtionen blir dubbelt så noggrnn. Mittpunkts- och trpetsmetodern klls för ndr ordningens metoder. Fördubblr vi ntlet delintervll så dels felet med fyr, dvs. pproximtionen blir fyr gånger så noggrnn. De senre metodern är mycket mer effektiv. Dett är viktigt i teknisk beräkningr eftersom mn sälln beräknr en end integrl utn i llmännhet en stor mängd integrler (och då som en del i en större beräkning). Det färdig progrmmet qudl bygger på metoder som är mer vncerde är de vi tittt på och som vi inte hr möjlighet tt presenter här. Progrmmet är dessutom dptivt, det innebär tt integrtionspunktern inte plcers likformigt över intervllet utn där det lönr sig bäst med tnke på noggrnnhet och effektivitet. I uppgift 5 kn vi lätt se exkt vr grfern skär vrndr. Däremot i uppgift 6 måste vi bestämm skärningspunktern med en beräkningsmetod för ekvtionslösning, t.ex. fzero. Det går helt enkelt inte tt skriv upp en nvändbr formel för skärningspunktern. Lärndemål Efter denn lbortion skll du kunn redogör för den grundläggnde idéen bkom de olik metodern för integrlberäkning beräkn integrler f(x) dx, genom tt beskriv f som en function i Mtlb och beräkn en pproximtion med min_integrl eller qudl 7
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Läs merTillämpning av integraler
CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr
Läs merSF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Läs merSF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Läs merLäsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
Läs merLaborationstillfälle 3 Numerisk integration
Lbortionstillfälle 3 Numerisk integrtion Målsättning vid lbtillfälle 3: Klr v lbortionsuppgift. Innn dess läser mn hel texten nog. I mån v tid görs övning, men den är gnsk svår. Numerisk integrtion Oft
Läs merAnalys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013
Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två
Läs merTillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.
TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys
Läs merVolum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
Läs mer9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Läs merLöpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab
Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Linjära ekvationssystem. Repetition av FN3 (GNM kap 4.
Denn föreläsning DN11 Numerisk metoder och grundläggnde progrmmering FN4 9--17 Hedvig Kjellström hedvig@csc.kth.se! Repetition v FN3 (GNM kp 4.1)! Interpoltion! Minst-kvdrtnpssning! Dignostiskt prov på
Läs merFöreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation
Föreläsning, Numme K2, 72 GNM Kp 6 Integrler & GNM 8:C Richrdsonextrpoltion yc yd y y y2 yb H c d b A = H ( ) y +y 2 = H 2 { h 2 y + } A = A +A 2 +A = 2 y 2 = h 2 y +y c +y d + 2 y b 2 (y +y c )+ h 2 (y
Läs merNumerisk Integration En inledning för Z1
Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och
Läs mer1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Läs merTATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
Läs merTATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
Läs merUppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Läs merArea([a; b] [c; d])) = (b a)(d c)
Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner
Läs merGeneraliserade integraler
Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst
Läs merLaboration i matematik Envariabelanalys 2
Lbortion i mtemtik Envribelnlys Per-Anders Boo Institutionen för mtemtik och mtemtisk sttistik Umeå universitet Jnuri Regler och llmän informtion om lbortionen I denn lbortion finns uppgifter som skll
Läs merDerivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola
Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten
Läs merVolym och dubbelintegraler över en rektangel
Volym oh dubbelintegrler över en rektngel All funktioner nedn nts vr kontinuerlig. Om f (x i intervllet [, b], så är ren v mängden {(x, y : y f (x, x b} lik med integrlen b f (x dx. Låt = [, b] [, d] =
Läs merTrigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...
Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................
Läs merIntegraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
Läs merMat Grundkurs i matematik 1, del II
Mt-1.1510 Grundkurs i mtemtik 1, del II G. Gripenberg TKK 12 november 2009 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del II 12 november 2009 1 / 44 Mx och min Om A R så är mx A det störst elementet
Läs mer13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Läs merByt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,
Läs merTMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Läs merSvar till uppgifter 42 SF1602 Di. Int.
Svr till uppgifter 42 SF62 Di. Int. Svr kortuppgifter. 3: i) Om f(x) är kontinuerlig på [, ] kn mn då skriv lim k k n= f(n/k) på ett enklre sätt? k Svr: J, dett är f(x)dx. (Rit en bild med grfen v f(x)
Läs merMat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
Läs mer9 Dubbelintegralens definition
Nr 9, 5 pril -5, Ameli 9 ubbelintegrlens definition 9. Enkelintegrlen En ursprunglig tolkning v en enkelintegrl är ren under dess grf dvs ren melln funktionsgrfen oh x-xeln. å räkns reor under (söder om)
Läs merTENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
Läs merAnalys 360 En webbaserad analyskurs Grundbok. Integralkalkyl. MatematikCentrum LTH
Anlys 360 En webbserd nlyskurs Grundbok Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Integrlklkyl (3) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn
Läs mer24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Läs merORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Läs mer6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET
UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket
Läs mer19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
Läs merSkriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Läs mer============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.
GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Läs merFinaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Läs merV1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:
Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde
Läs merV1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].
Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,
Läs merFöreläsningsmanus i matematisk statistik för lantmätare, vecka 3 och 4 HT07
Föreläsningsmnus i mtemtisk sttistik för lntmätre, veck 3 och 4 HT07 Bengt Ringnér September 5, 2007 Inledning Dett är preliminärt undervisningsmteril. Synpunkter är välkomn. 2 Stokstisk vribler En stokstisk
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merGrundläggande matematisk statistik
Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel
Läs merBjörnen och sköldpaddan Analys av en matematiskt paradoks
Björnen och sköldpddn Anlys v en mtemtiskt prdoks Brummelis, Nin Knin, Lille Skutt & Bmse Hndledre: Sklmn 10 pril 2015 Smmnfttning Syftet med denn (nonsens-)text är tt illustrer olik kommndon i LATEX.
Läs merTATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
Läs merFÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 21 december Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentmenskod (6 siffror): ELLER (fyll br i om du sknr tentmenskod): Personnummer: - Dtum: december Kursens nmn (inkl. grupp): Beräkningsvetenskp I (TD393), KF (TD399) Termin
Läs merStudieplanering till Kurs 3b Grön lärobok
Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång
Läs merPreliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
Läs merUPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION
OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i
Läs merSats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b
Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:
Läs merSammanfattning, Dag 9
Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet
Läs mer============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
Läs mer10. Tillämpningar av integraler
90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re
Läs merKvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Läs merKan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Läs merIntegraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. Från labben: Informationsteknologi. Beräkningsvetenskap I/KF
Integrler Från len: Integrler Beräkningsvetenskp I/KF Trpetsformeln oc Simpsons formel Integrler Integrler Från len: Från len: Adptiv metod (dptiv Simpson) Lösning v integrl i Mtl: när integrnden är kontinuerlig
Läs merORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Läs merGEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Läs merAnalys 360 En webbaserad analyskurs Grundbok. X. Integralkalkyl. MatematikCentrum LTH
Anlys 36 En webbserd nlyskurs Grundbok X. Integrlklkyl Anders Källén MtemtikCentrum LTH nderskllen@gmil.com X. Integrlklkyl (8) Introduktion Vi sk här introducer den bestämd integrlen f(x) dx. Den hr nästn
Läs merKOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015
KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och
Läs merVilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
Läs mer0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
Läs merGauss och Stokes analoga satser och fältsingulariteter: källor och virvlar Mats Persson
Föreläsning 14/9 Guss och tokes nlog stser och fältsingulriteter: källor och virvlr Mts Persson 1 tser nlog med Guss och tokes stser 1.1 tser nlog med Guss sts Det finns ett pr stser som är mycket när
Läs merNågra integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Läs merSfärisk trigonometri
Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller
Läs merENVARIABELANALYS - ETT KOMPLEMENT
ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som
Läs merTentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
Läs merDiskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
Läs merEtt förspel till Z -transformen Fibonaccitalen
Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.
Läs merMat Grundkurs i matematik 1, del III
Mt-1.1510 Grundkurs i mtemtik 1, del III G. Gripenberg TKK 2 december 2010 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del III 2 december 2010 1 / 59 Vribelbyte b F (g(x))g (x) dx = b d F (g(x))
Läs merKontinuerliga variabler
Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte
Läs merMatris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
Läs merTavelpresentation grupp 5E
Tvelpresenttion grupp 5E Elis Elmquist, Mtild Hnes, Isk Pettersson, Juli Wennerblom, John Jxing, Boel Brndström, Edvin Cllisen, Cjs Hjolmn 19 februri 2017 1 Multipelintegrler Frmställningen för definitionen
Läs merMatematisk statistik för B, K, N, BME och Kemister
Mtemtisk sttistik för B, K, N, BME och Kemister Föreläsning 2 John Lindström 3 ugusti 217 John Lindström - johnl@mths.lth.se FMSF7/MASB2 F1 1/22 Grundläggnde begrepp Stokstisk vribel Snnolikhetsfunktion
Läs mer9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
Läs merSIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr
Läs merPolynominterpolation av kontinuerliga
Polynominterpoltion v kontinuerlig funktioner Smmnfttning Anders Källén MtemtikCentrum LTH nderskllen@gmil.com I det här dokumentet diskuterr vi lite kring hur mn kn pproximer kontinuerlig funktioner med
Läs merAnalys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
Läs merFÖRELÄSNING 3 ANALYS MN1 DISTANS HT06
FÖRELÄSNING 3 ANALYS MN1 DISTANS HT06 JONAS ELIASSON Dett är föreläsningsnteckningr för distnskursen Mtemtik A - nlysdelen vid Uppsl universitet höstterminen 2006. 1. Integrler I denn sektion går vi igenom
Läs merAssociativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
Läs merRÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
Läs merFöreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Läs merUppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Läs mer1 Inledning 2. 2 Måttet av en öppen mängd 3. 3 Integralen av en kontinuerlig funktion 9. 4 Jämförelse med Riemannintegralen 14
Innehåll 1 Inledning 2 2 Måttet v en öppen mängd 3 3 Integrlen v en kontinuerlig funktion 9 4 Jämförelse med Riemnnintegrlen 14 5 Skivformeln och itererd integrtion 17 6 Generliserde positiv integrler
Läs merf(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.
Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln
Läs merINNEHALL. 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3
INNEHALL 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 t.3 DATORER Allmänt Digitl dtorer Orgnistion Ordmm Minnesenheten Aritmetisk enheten Styrenheten In/utenheten Avbrott Spräk och proglmm
Läs merLäsanvisningar till kapitel
Läsnvisningr till kpitel 4.1 4.6 4.1 Konturer Dett är ett vsnitt om kurvor och hur mn prmetriserr kurvor, som borde vr en repetition från lägre kurser. Låt oss gå igenom lite ändå. Definition 4.1. Låt
Läs merLösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Läs mer1. (6p) (a) Använd delmängdskonstruktionen för att tillverka en DFA ekvivalent med nedanstående NFA. (b) Är den resulterande DFA:n minimal? A a b.
UPPSAA UNIVERSITET Mtemtisk institutionen Slling (070-6527523) PROV I MATEMATIK AUTOMATATEORI 18 okt 2012 SKRIVTID: 8-13. HJÄPMEDE: Ing. MOTIVERA AA ÖSNINGAR NOGGRANT. BETYGSGRÄNSER: För etygen 3, 4 respektive
Läs merInför tentamen i Analys I och II, TNA008
Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2
Läs merPASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Läs merLINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Läs merStokastiska variabler
Kpitel 4 Stokstisk vribler Ett utfll v ett slumpmässigt försök är oft sådnt som inte direkt kn mäts. T.ex. försöket Kst med ett symmetriskt mynt hr utfllsrummet {kron, klve}. För tt kvntittivt nlyser försök
Läs merx 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Läs merAnvändande av formler för balk på elastiskt underlag
Användnde v formler för blk på elstiskt underlg Bilg 2 Sidn 1 v 1 Formler från [ ] hr nvänts i exelberäkningr för någr geometrier och någr lstfll. Dess exempel hr också beräknts med FEM för tt kontroller
Läs mer