IE1204 Digital Design
|
|
- Alexander Bernt Axelsson
- för 6 år sedan
- Visningar:
Transkript
1 IE1204 Digitl Design F1 F3 F2 F4 Ö1 Booles lgebr, Grindr MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombintorisk kretsr F7 F8 Ö4 F9 Ö5 Multipleor KK2 LAB2 Låskretsr, vippor, FSM F10 F11 Ö6 KK3 LAB3 FSM, VHDL introduktion F12 Ö7 F13 Asynkron FSM Ö8 F14 tentmen Minnen Föreläsningr och övningr bygger på vrndr! T lltid igen det Du misst! Läs på i förväg delt i undervisningen rbet igenom mterilet efteråt!
2 Kronljusströmställren 0, 1, 2, 3
3 Styr med binärkod
4 Dec Bin He Okt DA
5 ÖH 1.1c Decimltl till Binärtl binär vikter: ? 2
6 ÖH 1.1c Decimltl till Binärtl binär vikter: ? ( )
7 ÖH 1.2 Binärtl till Decimltl binär vikter: ? 10
8 ÖH 1.2 Binärtl till Decimltl binär vikter: ? ( )
9 ÖH 1.3c Binärt/Oktlt/Hedecimlt ? 16? 8
10 ÖH 1.3c Binärt/Oktlt/Hedecimlt ? 16?
11 ÖH 1.3c Binärt/Oktlt/Hedecimlt ? 16?
12 Booles Algebr George Boole mtemtiker ( ) Genom tt representer logisk uttryck på mtemtisk form, där smmnfogningsorden OR och AND motsvrde ett slgs ddition och multipliktion, blev det möjligt tt med en lgebr undersök om komplicerde logisk utsgor och resonemng, i slutändn vr snn eller flsk. Clude Shnnon mtemtiker/elektrotekniker ( ) 1938 "dmmde" Clude Shnnon v lgebrn och nvände den till elektrisk kontktnät. Sedn dess är Booles lgebr det huvudsklig verktyget för ll digitl konstruktion.
13 Venn-digrm llt inget utnför gemensmt med y tillsmmns med y tillsmmns med utnför y
14 ÖH 3.2 De Morgns lg med Venndigrm Bevis De Morgns lg med hjälp v Venndigrm.
15 ÖH 3.2 De Morgn
16 ÖH 3.2 De Morgn
17 ÖH 3.2 De Morgn
18 ÖH 3.2 De Morgn
19 ÖH 3.2 De Morgn Bevist!
20 (ÖH 5.1) Hur öppnr mn kodlåset? (minterm) Vilk knppr sk mn smtidigt tryck på för tt tänd lmpn? ( öppn kodlåset)
21 (ÖH 5.1) Hur öppnr mn kodlåset? (minterm) Vilk knppr sk mn smtidigt tryck på för tt tänd lmpn? ( öppn kodlåset) Svr: 4,d och 8,h men smtidigt måste mn undvik tt tryck på b c e f g i och k!
22 (ÖH 5.1) Hur öppnr mn kodlåset? (minterm) Vilk knppr sk mn smtidigt tryck på för tt tänd lmpn? ( öppn kodlåset) Svr: 4,d och 8,h men smtidigt måste mn undvik tt tryck på b c e f g i och k!
23 (ÖH 5.1) Hur öppnr mn kodlåset? (minterm) Vilk knppr sk mn smtidigt tryck på för tt tänd lmpn? ( öppn kodlåset) Svr: 4,d och 8,h men smtidigt måste mn undvik tt tryck på b c e f g i och k! En produktterm där ll vribler ingår klls för en minterm.
24 ÖH 3.3 Venndigrm
25 ÖH 3.3 Snningstbell - Venndigrm
26 ÖH 3.3b förenklt uttryck Ursprungligt uttryck.
27 ÖH 3.3b förenklt uttryck Ursprungligt uttryck. Förenklt!
28 Booles lgebr räknelgr Logisk ddition "", OR, och logisk multipliktion " ", AND, följer i stort sätt de vnlig norml lgebrisk distributiv, kommuttiv och ssocitiv lgrn (med ett "udd" undntg).
29 Förenklingsregler och teorem
30 ÖH 4.1(, b, c, h) Booles lgebr
31 ÖH 4.1 f c d d {bryt ut d} d ( c 1) d
32 ÖH 4.1b b b b b b c b b c b f ) ( 0 ) (
33 ÖH 4.1c f b b c
34 ÖH 4.1c f b b c ( ) b b c b b b c b ( b b) c
35 ÖH 4.1h f ( b )
36 ÖH 4.1h f ( b) { demorgn} b b
37 ÖH 4.4 Använd De Morgns lg
38 ÖH 4.4 bc c bc b b c bc bc bc bc bc bc bc c b c b c b c b c b c b bc c b c b c b bc bc c b c b ) ( ) ( ) ( ) ( ) ( ) )( )( ( ) )( )( ( ) )( )( ( Dubbler!
39 Logikgrindr
40 (ÖH 4.5) Grindtyper Ange nmn och utsignl 1/0 för följnde se grindtyper när insignlern är de som viss i figuren.
41 (ÖH 4.5) Grindtyper Ange nmn och utsignl 1/0 för följnde se grindtyper när insignlern är de som viss i figuren. AND 0
42 (ÖH 4.5) Grindtyper Ange nmn och utsignl 1/0 för följnde se grindtyper när insignlern är de som viss i figuren. AND 0 OR 1
43 (ÖH 4.5) Grindtyper Ange nmn och utsignl 1/0 för följnde se grindtyper när insignlern är de som viss i figuren. AND 0 OR 1 XOR 0
44 (ÖH 4.5) Grindtyper Ange nmn och utsignl 1/0 för följnde se grindtyper när insignlern är de som viss i figuren. AND NAND 0 0 OR 1 XOR 0
45 (ÖH 4.5) Grindtyper Ange nmn och utsignl 1/0 för följnde se grindtyper när insignlern är de som viss i figuren. AND NAND 0 0 OR NOR 1 1 XOR 0
46 (ÖH 4.5) Grindtyper Ange nmn och utsignl 1/0 för följnde se grindtyper när insignlern är de som viss i figuren. AND NAND 0 0 OR NOR 1 1 XOR XNOR 0 1
47 ÖH 4.7 Tidsdigrm och snningstbell
48 ÖH
49 ÖH
50 ÖH
51 ÖH 4.7
52 ÖH 4.12 Från tet till Boolsk ekvtioner
53 ÖH 4.12 XOR u 0 1 om och endst om ntingen både 0 och 2 är 0 eller 4 och 5 är olik AND XOR NOT u ( ) 5
54 ÖH 4.12 u 1 1 om och endst om 0 och 1 är lik och 5 är inversen v 2 XNOR AND XOR ) ( ) ( ) ( u
55 ÖH 4.12 u 2 0 om och endst om 0 är 1 och någon v 1 5 är 0 NOT AND OR NOT ) ( ) ( ) ( u u
56 ÖH Logiknät SP-form All logisk funktioner kn relisers med hjälp v grindtypern AND och OR kombinerde i två steg. Vi förutsätter här tt ingångs-vriblern även finns i inverterd form, om inte så behöver mn nturligtvis även inverterre NOT till dett. Mn kn reliser grindnätet direkt ur snningstbellen. Vrje "1" i tbellen är en minterm. Funktionen blir summn v dess mintermer. Mn säger tt funktionen är uttryckt på SP-form ( Summ v Produkter ). Men, det kn finns mycket enklre grindnät med färre grindr som gör smm rbete.
57 ÖH 5.2 SP och PS normlform
58 ÖH 5.2 SP-form En logisk funktion hr följnde snningstbell. Ange funktionen på SPnormlform (summ v produkter).
59 ÖH 5.2 SP-form En logisk funktion hr följnde snningstbell. Ange funktionen på SPnormlform (summ v produkter).
60 ÖH 5.2 SP-form En logisk funktion hr följnde snningstbell. Ange funktionen på SPnormlform (summ v produkter). f b c b c b c b c
61 ÖH 5.2 SP-form En logisk funktion hr följnde snningstbell. Ange funktionen på SPnormlform (summ v produkter). f b c b c b c b c
62 ÖH Logiknät PS-form Alterntivt kn mn inrikt sig på snningstbellens 0:or. Om ett grindnät återger funktionens 0:or korrekt så är ju även 1:orn rätt! Om således funktionen sk vr "0" för en viss vribelkombintion (,b) te. (0,0) så bildr mn summn ( b ). Den summn kn ju br bli "0" för kombintionen (0,0). En sådn summ klls för en mterm. Funktionen uttrycks som en produkt v ll sådn mtermer. Vrje mterm bidrr med en 0: från snningstbellen. Funktionen sägs vr uttryckt på PS-form ( Produkt v Summor ).
63 ÖH 5.2 PS-form En logisk funktion hr följnde snningstbell. Ange funktionen på PSnormlform (produkt v summor).
64 ÖH 5.2 PS-form En logisk funktion hr följnde snningstbell. Ange funktionen på PSnormlform (produkt v summor).
65 ÖH 5.2 PS-form En logisk funktion hr följnde snningstbell. Ange funktionen på PSnormlform (produkt v summor). ) ( ) ( ) ( ) ( c b c b c b c b f
66 ÖH 5.2 PS-form En logisk funktion hr följnde snningstbell. Ange funktionen på PSnormlform (produkt v summor). ) ( ) ( ) ( ) ( c b c b c b c b f
67 och Π SP och PS-formern brukr förenklt uttrycks genom en uppräkning v de ingående mtermerns/mintermerns ordningsnummer: f(,b) m(1,2) f(,b) ΠM(0,3)
68 ÖH 5.3 SP och PS -form
69 ÖH 5.3 ) )( ( (0,7) ),, ( 6) 5, 4, 3, 2, (1, 011,100,101,110) 010, (001, ),, ( ) ( ) ( ) ( ),, ( z y z y M z y f m m z y f yz yz yz yz yz yz z y y yz z z y z yz y z y f
70 Komplett logik NAND-NAND OR AND och NOT går tt frmställ med NAND-grindr. För logik-funktioner på SP-form kn mn byt AND-OR grindrn mot NAND-NAND "rkt v". Kostnden i ntl grindr blir densmm!
71 Komplett logik NOR-NOR OR AND och NOT går även tt frmställ med NORgrindr. För logikfunktioner på PS-form kn mn byt OR- AND grindrn mot NOR- NOR grindr "rkt v". Kostnden i ntl gindr blir densmm!
72 ÖH 5.5 NAND-grindr
73 ÖH 5.5 b c &? & Algebriskt: b c b c b c
74 (ÖH 4.11) Europeisk och Ameriknsk symboler Test dig själv
75 (ÖH 4.11) Europeisk och Ameriknsk symboler Test dig själv
Digital Design IE1204
Digital Design IE24 F2 : Logiska Grindar och Kretsar, Boolesk Algebra william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska
Rationella uttryck. Förlängning och förkortning
Sidor i boken 8-9, 0- Rtionell uttryck. Förlängning och förkortning Först någr begrepp. Aritmetik eller räknelär är den mest grundläggnde formen v mtemtik. Ett ritmetiskt uttryck innehåller tl, men ing
Tentamen i EDA320 Digitalteknik-syntes för D2
CHALMERS TEKNISKA HÖGSKOLA Institutionen för dtorteknik Tentmen i EDA320 Digitlteknik-syntes för D2 Tentmenstid: tisdgen den 24 ugusti 999, kl. 08.45-2.45, Sl: mg. Exmintor: Peter Dhlgren Tel. expedition
Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj
Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n
Digital Design IE1204
Digital Design IE24 F4 Karnaugh-diagrammet, två- och fler-nivå minimering william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB
x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46
Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl
Uppgiftssamling 5B1493, lektionerna 1 6. Lektion 1
Uppgiftssmling 5B1493, lektionern 1 6 Lektion 1 4. (Räkning med oändlig decimlbråk) Låt x = 0, 1 2 3 n och y = 0,b 1 b 2 b 3 b n ( i och b i siffror 0, 1,, 9).. Kn Du beskriv något förfrnde som säkert
Associativa lagen för multiplikation: (ab)c = a(bc). Kommutativa lagen för multiplikation: ab = ba.
Rtionell tl Låt oss skiss hur mn definierr de rtionell tlen utifrån heltlen. Förutom tt det ger en inblick i hur mtemtiken är uppbyggd, är dett är ett br exempel på ekvivlensreltioner och ekvivlensklsser.
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Matris invers, invers linjär transformation.
Mtris invers, invers linjär trnsformtion. Påminnelse om mtris beräkningr: ddition, multipliktion med sklärer och mtrisprodukt Algebrisk egenskper hos mtrisddition och multipliktion med ett tl (Ly Sts..,
IE1204 Digital Design
IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM
Analys o 3D Linjär algebra. Lektion 16.. p.1/53
Anlys o 3D Linjär lgebr Lektion 16. p.1/53 . p.2/53 v 3D Linjär lgebr Hr betrktt vektorer v typen etc resp dvs ordnde triplr v typen. reell tl 3D Linjär lgebr Punkt-vektor dulismen En ordnd tripel v typen
IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering
IE25 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering Mintermer 2 3 OR f En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
Integralen. f(x) dx exakt utan man får nöja sig med att beräkna
CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e
Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00
Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,
definitioner och begrepp
0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl
Mintermer. SP-form med tre mintermer. William Sandqvist
Mintermer OR f 2 3 En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som tillsammans gör att termen antar värdet. SP-form med tre mintermer. f = m
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Algebra. Kapitel 5 Algebra
Algebr Kpitel Algebr Kpitlet inleds med tt elevern ges möjlighet tt tolk och skriv lgebrisk uttrck. De räknr också ut värdet v olik uttrck. Elevern får sedn rbet med mönster. De ritr mönstren smt beskriver
Mat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
Digital Design IE1204
Digital Design IE1204 F10 Tillståndsautomater del II william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska
Digital Design IE1204/5
Digitl Design IE4/5 Övningshäfte Smmnställt v Willim Sndqvist willim@kth.se ICT/Elektroniksystem Tlsystem oh koder. Nednstående deiml tl med sen är givn. Ange motsvrnde inär tl. 9 7 d 53. Omvndl nednstående
Lösningar och kommentarer till uppgifter i 1.2
Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr
Diskreta stokastiska variabler
Definitioner: Diskret stokstisk vribler Utfllet i ett slumpmässigt försök i form v ett reellt tl, betrktt innn försöket utförts, klls för stokstisk vribel eller slumpvribel (oft betecknd ξ, η ) Ett resultt
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
Enhetsvektorer. Basvektorer i två dimensioner: Basvektorer i tre dimensioner: = i. Enhetsvektor i riktningen v: v v. Definition: Vektorprodukt
Vektorddition u v u + v u + v = + = u 2 v 2 u 2 + v 2 u v u + v u + v = u 2 + v 2 = u 2 + v 2 u 3 v 3 u 3 + v 3 Multipliktion med sklär u α u α u = α = u 2 α u 2 u α u α u = α u 2 = α u 2 u 3 α u 3 Längden
GEOMETRISKA VEKTORER Vektorer i rummet.
GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
Komplexa tal. j 2 = 1
Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Tentamen i IE1204/5 Digital Design onsdagen den 5/
Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista
Studieplanering till Kurs 3b Grön lärobok
Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång
ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.
Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild
Sanningstabell. En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false)
Sanningstabell En logisk funktion kan också beskrivas genom en sanningstabell (truth table) 1 står för sann (true) 0 står för falsk (false) ND OR Logiska grindar ND-grinden (OCH) IEC Symbol (International
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER
rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell
9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
24 Integraler av masstyp
Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter
Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck
KOMBINATORISK LOGIK Innehåll Definition av kombinatorisk logik Olika sätt att representera kombinatorisk logik Minimering av logiska uttryck Boolesk algebra Karnaugh-diagram Realisering av logiska funktioner
6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET
UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket
4 Signaler och system i frekvensplanet Övningar
Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern
Digitalteknik TSIU05 Kursinformation
Digitlteknik TSIU05 Kursinformtion Michel Josefsson 27 ugusti 2018 Innehåll 1 Allmänt 5 2 Digitlteknik 6 hp 7 3 Mätteknik 2 hp 11 4 Övrigt 13 3 1 Allmänt Kursen estår v två prllell spår, nämligen digitlteknik
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är
Switch. En switch har två lägen. Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten. Öppen. Symbol. William Sandqvist
Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen = = Symbol S Implementering av logiska funktioner Switchen kan användas för att implentera logiska funktioner Power
14. MINSTAKVADRATMETODEN
4 MINTAKADRATMETODEN Nu sk vi gå igenom någr olik sätt tt lös ekvtionssystemet Ax Om A är m n mtris med m n så sägs systemet vr överestämt och det sknr då i llmänhet lösningr Istället söker mn en pproximtiv
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8
Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr
Kvalificeringstävling den 2 oktober 2007
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v
IE1205 Digital Design. F2 : Logiska Grindar och Kretsar, Boolesk Algebra. Fredrik Jonsson KTH/ICT/ES
IE1205 Digital Design F2 : Logiska Grindar och Kretsar, oolesk Algebra Fredrik Jonsson KTH/ICT/ES fjon@kth.se Switch En switch har två lägen Sluten/Till (Closed/On) Öppen/Från (Open/Off) Sluten Öppen x
Bokstavsräkning. Regler och knep vid bokstavsräkning
Mtemtik Bokstvsräkning Du står nu inför en ny kurs i mtemtik, där meningen är tt du sk tillgodogör dig ny teorier, som smtlig leder frm till övningr och uppgifter. Även om du förstått vd teorin sk nvänds
Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )
Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------
Vilken rät linje passar bäst till givna datapunkter?
Vilken rät linje pssr bäst till givn dtpunkter? Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning I det här dokumentet diskuterr vi minst-kvdrtmetoden för skttning v en rät linje till dt.
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH
SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr
Kontinuerliga variabler
Kontinuerlig vribler c 005 Eric Järpe Högskoln i Hlmstd Antg tt vi kunde mät med oändligt stor noggrnnhet hur stor strömstyrk en viss typ v motstånd klrr. Ing mätningr skulle då vr exkt lik. Om vi mätte
Addition och subtraktion
Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik
Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?
Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde
Materiens Struktur. Lösningar
Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste
TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00
Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
CHECKLISTA FÖR PERSONALRUM
CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
Digital- och datorteknik
Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens
Läsanvisningar för MATEMATIK I, ANALYS
Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på
NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6
Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter
Generaliserade integraler
Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst
ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM
Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
uppdrag: matte Gunnar Kryger Andreas Hernvald Hans Persson Lena Zetterqvist Mattespanarna
uppdrg: mtte Gunnr Kryger ndres Hernvld Hns Perssn Len Zetterqvist Mttespnrn ISN 978-9-7-0- ndres Hernvld, Gunnr Kryger, Hns Perssn, Len Zetterqvist ch Liber re d k t i n Mirvi Unge Thrsén, Mri Österlund
Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper
CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det
Kan det vara möjligt att med endast
ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp
Tentamen i IE1204/5 Digital Design onsdagen den 5/
Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Allmän information Exaator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204) Tentamensuppgifterna behöver
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 5-7.
Uppsl Universitet Mtemtisk Institutionen Bo Styf LAoG I, 5 hp ES, KndM, MtemA -9-6 Smmnfttning v föreläsningrn 5-7. Föreläsningrn 5 7, 7/9 6/9 : Det kommer, liksom i lärooken, inte tt finns utrymme för
Tentamen 1 i Matematik 1, HF1903 Tor 25 sep 2014, kl 13:15-17:15
Tentmen i Mtemtik, HF93 To sep 4, kl 3:-7: Exminto: Amin Hlilovi Undevisnde läe: Håkn Stömeg, Jons Stenholm, Elis Sid Fö godkänt etyg kävs v mx 4 poäng Betygsgänse: Fö etyg A, B, C, D, E kävs, 9, 6, 3
Exponentiella förändringar
Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt
Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.
TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys
H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.
H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
IE1204 Digital Design
IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM
Digital elektronik CL0090
Digital elektronik CL0090 Föreläsning 2 2007-0-25 08.5 2.00 Naos De logiska unktionerna implementeras i grindar. Här visas de vanligaste. Svenska IEC standard SS IEC 87-2 Amerikanska ANSI/IEEE Std.9.984
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn
TATA42: Föreläsning 4 Generaliserade integraler
TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om
TMV151/TMV181. Fredrik Lindgren. 19 november 2013
TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
RÄTTNINGSMALL TILL KEMIOLYMPIADEN 2014, OMGÅNG 2
RÄTTNINGSMALL TILL EMIOLYMPIADEN 201, OMGÅNG 2 Nmn: Födelsedtum: Skol: Hemdress: e-post: Uppg. Endst svr ing uträkningr Poäng L 1 b c d e f 2 2 b c d e 2,1 cm 2 0,20 mol/dm 2 b 1 kp 2 5 2ClO 2 + 2OH ClO
a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0
18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.
Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b
Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:
Digital- och datorteknik
Digital- och datorteknik Föreläsning #4 Biträdande professor Jan Jonsson Instittionen för data- och informationsteknik Chalmers tekniska högskola SP- och PS-form: Boolesk algebra Vid förra föreläsningen
13 Generaliserade dubbelintegraler
Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,
TentamensKod:
ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:
SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag
SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på
Digital- och datorteknik
Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Instittionen för data- och informationsteknik Chalmers tekniska högskola Från data till digitala byggblock: Krsens inledande föreläsningarna
Matematiska uppgifter
Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v
Integraler och statistik
Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik
IE1204 Digital Design
IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM F0 F
Skriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!