Tentamen med lösningar i IE1204/5 Digital Design Måndag 27/
|
|
- Stig Bergman
- för 6 år sedan
- Visningar:
Transkript
1 Tentamen med lösningar i IE04/5 Digital Design Måndag 7/ Allmän information Examinator: Ingo Sander. Ansvarig lärare: Elena Dubrova /William Sandvist, tel Tentamensuppgifterna behöver inte återlämnas när du lämnar in din skrivning. Hjälpmedel: Inga hjälpmedel är tillåtna! Tentamen består av tre delar med sammanlagt uppgifter, och totalt 30 poäng: Del A (Analys) innehåller åtta korta uppgifter. Rätt besvarad uppgift ger för sex av uppgifterna en poäng och för två av uppgifterna två poäng. Felaktig besvarad ger 0 poäng. Det totala antalet poäng i del A är 0 poäng. För godkänt på del A krävs minst 6p, är det färre poäng rättar vi inte vidare. Del A (Konstruktionsmetodik) innehåller två metodikuppgifter om totalt 0 poäng. För att bli godkänd på tentamen krävs minst poäng från AA, är det färre poäng rättar vi inte vidare. Del B (Designproblem) innehåller två friare designuppgifter om totalt 0 poäng. Del B rättas bara om det finns minst p från tentamens A-del. OBS! I slutet av tentamenshäftet finns ett inlämningsblad för del A, som kan avskiljas för att lämnas in tillsammans med lösningarna för del A och del B. För ett godkänt betyg (E) krävs minst poäng på hela tentamen. Betyg ges enligt följande: F E D C B A Resultatet beräknas meddelas före måndagen den 7/ 04.
2 Del A: Analysuppgifter Endast svar krävs på uppgifterna i del A. Lämna svaren på inlämningsbladet för del A som du hittar på sista sidan av tentahäftet.. p/0p En funktion f(x, y, z) beskrivs med hjälp av ekvationen: f ( x, y, z) = x y y z x y z xyz Ange funktionen som minimal summa av produkter. f ( x, y, z ) = { SoP } = min?. Lösningsförslag f ( x, y, z) = x y y z x y z xyz = = y xz { Kmap} =. p/p/0p Ett fyrabitars tal x (x 3 x x x 0 ) ska multipliceras med konstanten 6. Detta sker genom att talet x ansluts till en fem bitars adderare som konfigurerats för att utföra operationen 6 x = ( x x) a) Rita hur adderaren ska konfigureras. Förutom de fyra bitarna i talet x så finns även bitar med värdet 0 och tillgängliga vid behov. Figuren finns även på svarsblanketten. b) Vilket är det största binära tal s (s 6 s 5 s 4 s 3 s s s 0 ) som kan förekomma på utgången efter det att kretsen konfigurerats för operationen? Svara binärt.. Lösningsförslag a) b) Största talet blir s max = 6 5 = 90. Eftersom miniräknare inte är tillåten vid tentamen kan vi denna gång välja att omvandla 90 till ett binärt tal på samma sätt som i uppgiften (ok även med andra omvandlingssätt):
3 3. p/0p Givet är ett Karnaughdiagram för en funktion av fyra variabler y = f(x 3, x, x, x 0 ). Ange funktionens invers som minimerad summa av produkter, SoP form. - i diagramet står för don t care. (Observera att vi söker funktionens invers). 3. Lösningsförslag 4. p/p/0p Figuren visar ett grindnät bestående av en nor-grind och en or-grind (till vänster i figuren). a) Ange den logiska funktion = f(a,b,c) som realiseras av kretsen. b) samma funktion kan realiseras med ett NAND-NAND-nät (till höger i figuren). Ange för variablerna a, b och c om dom ska vara inverterade eller oinverterade på ingångarna till detta nät. 4. Lösningsförslag f = ( a b) c = { dm } = a) = a b c 3
4 5. p/0p Ange den logiska funktion som realiseras av CMOS kretsen i figuren. 5. Lösningsförslag Inverteraren inverterar insignal B. I Pull Don nätet är transistorerna parallellkopplade. Pull Don nätet ger en inverterad funktion. Med de Morgans lag kan utrycket slutligen förenklas (ej nödvändigt). 6. p/0p Ett sekvensnät (en räknare) startar i tillståndet Ange räknesekvensen för de följande fyra klockpulserna. 6. Lösningsförslag 4
5 7. p/0p Figuren visar en slags asynkron låskrets. Grinden märkt M är en majoritetsgrind utgången antar det värde majoriteten av ingångarna har. Tag fram kretsens karakteristiska funktion. Y = f ( y, a, b) =? 7. Lösningsförslag 8. p/0p VHDL-koden beskriver en känd krets. Vilken? Välj mellan: a. En halvadderare. b. En heladderare. c. Två EXNOR-grindar. d. En JK-vippa. e. En SR-låskrets. f. En crossbar sitch. g. En multiplikationskrets. h. En divisionskrets. ENTITY gismo IS PORT ( c, b, a : IN STD_LOGIC ; x, y : OUT STD_LOGIC ) ; END gismo ; ARCHITECTURE beh OF gismo IS BEGIN x <= c XOR b XOR a ; y <= (a AND b) OR (c AND a) OR (c AND b) ; END beh ; 8. Lösningsförslag b. En heladderare. 5
6 Del A: Konstruktionsmetodik Observera! Del A rättas endast om Du är godkänd på del A 9. 4p Leksaksinstrument för små barn kan vara mycket störande. Du ska därför konstruera en dissonans-spärr blocket X i figuren. Man ska kunna trycka tangenterna c, d, e, f, g en i taget (y = ), men om man trycker flera tangenter samtidigt, ett ackord, så ska bara (vackert ljudande) kombinationer av tangenterna c, e, och g höras (y = ), övriga kombinationer är tysta (y = 0). a) (p) Ställ upp sanningstabellen y = f(c,d,e,f,g) eller som Karnaughdiagram direkt. Kan Du hitta något fall då värdet av y inte har någon betydelse? Använd i så fall detta detta som don t care (det kommer att löna sig). b) (p) Minimiera funktionen y och utryck den som summa av produkter (SoP) Använd don t care. c) (p) Invertera den minimerade funktionen y från b) med de Morgans lag. d) (p) Vi har ett restlager med tre och fyra ingångars NOR-grindar. Använd enbart dessa för att realisera funktionen. (Tips! Om en av NOR-grindarna används som inverterare på kretsens utgång så får Du användning för den inverterade funktionen från b). Tack för att Du konstruerade detta nät många småbarnsföräldrar kommer att tacka dig! 9. Lösningsförslag a) y = för c, d, e, f, g, ceg, ce, cg, eg totalt blir det nio ettor. Om ingen tangent är nedtryckt så behöver inte y = 0, då genereras ändå inget ljud så y kan lika gärna vara y =, och kan därför då sättas som don t care, y = -. 6
7 b) y = c e f g c d e g d f c) y = c e f g c d e g d f = { dm } = ( c e f = ( c e f g)( c d e g)( d f ) g) ( c d e g) ( d f ) = 0. 6p Ett synkront sekvensnät, ett skiftregister, används som en majority voter. Det värde eller 0 hos insignalen som förekommit flest gånger vid de senaste tre klockpulsflankerna visas på utgången y. Grindsymbolen med M är en majoritetsgrind, utgången antar samma värde som en majoritet av ingångarna har. a) (p) Analysera skiftregistret och rita tillståndsdiagram och tillståndstabell. (Tag hjälp av det påbörjade tillståndsdiagrammet med åtta tillstånd). b) (3p) Man kan alternativt göra en liknande krets på ett annat sätt som en Moore-automat med fyra tillstånd (inte exakt samma beteende). Resonera dig fram till tillståndsdiagram och tillståndstabell för ett sådant sekvensnät. Tag därefter fram uttrycken för nästa tillstånd och utsignal funktionerna. Använd tillståndskodningen 0 00, 0, 0,. Arbetsnamn på tillstånden kan vara Tripple zeroes Double zeroes Double ones Tripple ones. (Ta gärna hjälp av figuren med det påbörjade tillståndsdiagrammet, men rita en egen figur till svaret). 7
8 = f(, 0, ) 0 = f(, 0, ) y = f(, 0 ) c) (p) Realisera nästa tillståndsavkodaren med två stycken 4: multiplexorer. Utgå ifrån att signalen finns tillgänglig i inverterad form (om så skulle behövas). Se figuren. 0. Lösningsförslag a) b) 8
9 c) Del B. Designproblem Observera! Del B rättas endast om Du har mer än p på del AA.. 5p Sekvensdetektor. Du ska konstruera en synkron sekvenskrets, i form av en positivt flanktriggad Moore-automat. Insignalen är synkroniserad med klockpulserna C. Utsignalen z ska bli varje gång som värdet på insignalen varit oförändrat under två klockpulser. Denna ändring av utsignalen ska uppträda vid den klockpuls som följer efter klockpulserna med de lika värdena. Se ett förtydligande exempel nedan. : z: a) (3p) Ställ upp kretsens tillståndstabell och rita tillståndsdiagram. b) (p) Använd Binärkoden för att koda tillstånden och ställ upp den kodade tillståndstabellen. Tag fram de minimerade utrycken för nästa tillstånd och för utgångsvärdet. Något grindnät behöver inte ritas. 9
10 0. Lösningsförslag = 0 0 = = 0 0 y =
11 . (5p) Dual edge trigger. Konstruera ett asynkront sekvensnät som vid varje ändring (0 eller 0) av insignalen genererar en kort puls på utgången z. Vid oförändrad insignal är utgången z = 0. Utgångspulsens längd ges av tiden för tillståndsövergången i det asynkrona sekvensnätet. Se tidsdiagrammet för ett exempel. Svaret ska innehålla ett tillståndsdiagram, vid behov minimerad, flödestabell, och en lämplig tillståndstilldelning med en exitations-tabell som ger kapplöpningsfria nät. Du skall även ta fram de hasardfria uttrycken för nästa tillstånd samt ett uttryck för utgångsvärdet, och rita grindnäten med valfria grindar. Ledning: Man kan intuitivt komma fram till en lösning med fyra tillstånd.. Lösningsförslag De ostabila övergångstillstånden b och d med utsignalen genererar utgångspulserna. De fyra tillstånden kan kodas med Graykod Karnaughdiagrammens hoptagningar är direkt hasardfria. z = 0 0 = 0 = = nätet består enligt uttrycket av en tråd, men för att rättfärdiga delay-elementet så inför vi två inverterare för att ge nödvändig fördröjning! En alternativ lösning skulle kunna använda ett kombinatoriskt nät som utnyttjar en glitch på utgången för att få den önskade funktionen. Detta är inget sekvensnät.
12
13 Inlämningsblad för del A Blad ( tas loss och lämnas in tillsammans med lösningarna för del A och del B ) Efternamn: Förnamn: Personnummer: Skriv in dina svar för uppgifterna från del A ( till 8 ) Fråga Svar { }? f ( x, y, z ) = SoP = min a) b) s max =? (svara med ett binärtal) 3,,, ) { }? ( x3 x x x0 = min = y = f SoP 4 a) f ( a, b, c) =? b) a a, b b, c c 5 Y = f ( A, B) =? , 7 Y = f ( y, a, b) =? 8 a h? Nedanstående del fylls i av examinatorn! Del A Del A Del B Totalt Poäng 9 0 Summa Betyg 3
Tentamen med lösningar för IE1204/5 Digital Design Torsdag 15/
Tentamen med lösningar för IE4/5 Digital Design Torsdag 5/ 5 9.-. Allmän information Eaminator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist, tel 8-79 44 87. KTH Valhallavägen, Fredrik Jonsson,
Tentamen i IE1204/5 Digital Design Torsdag 29/
Tentamen i IE1204/5 Digital Design Torsdag 29/10 2015 9.00-13.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist
Omtentamen med lösningar i IE1204/5 Digital Design Fredag 10/
Omtentamen med lösningar i IE24/5 Digital Design Fredag /4 25 8.-2. Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandvist, tel 8-794487 / Fredrik Jonsson Tentamensuppgifterna behöver
Tentamen i IE1204/5 Digital Design onsdagen den 5/
Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Allmän information Exaator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204) Tentamensuppgifterna behöver
Tentamen i IE1204/5 Digital Design onsdagen den 5/
Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista
Tentamen i IE1204/5 Digital Design måndagen den 15/
Tentamen i IE1204/5 Digital Design måndagen den 15/10 2012 9.00-13.00 Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204), Tentamensuppgifterna
Omtentamen IE Digital Design Måndag 14/
Omtentamen IE204-5 Digital Design Måndag 4/3 206 4.00-8.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Tentamen i IE Digital Design Fredag 21/
Tentamen i IE204-5 Digital Design Fredag 2/0 206 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Tentamen IE Digital Design Fredag 15/
Tentamen IE204-5 Digital Design Fredag 5/ 206 4.00-8.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Tentamen med lösningar i IE1204/5 Digital Design Torsdag 29/
Tentamen med lösningar i IE4/5 Digital Design Torsdag 9/ 5 9.-. Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandvist tel 8-794487 Tentamensuppgifterna behöver inte återlämnas när
Tentamen IE Digital Design Måndag 23/
Tentamen IE104-5 Digital Design Måndag 3/10 017 14.00-18.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Tentamen med lösningar i IE Digital Design Fredag 15/
Tentamen med lösningar i IE4-5 Digital Design Fredag 5/ 6 4.-8. Allmän information (TCOMK, Ask for an english version of this exam if needed Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandvist
Tentamen IE Digital Design Fredag 13/
Tentamen IE204-5 Digital Design Fredag / 207 08.00-2.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Omtentamen med lösningar IE Digital Design Måndag 14/
Omtentamen med lösningar IE204-5 Digital Design Måndag 4/3 26 4.-8. Allmän information ( TCOMK, Ask for an english version of this exam if needed Examinator: Ingo Sander. Ansvarig lärare: Kista, William
Tentamen med lösningar i IE Digital Design Fredag 21/
Tentamen med lösningar i IE04-5 Digital Design Fredag /0 06 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William
Tentamen med lösningar IE Digital Design Måndag 23/
Tentamen med lösningar IE04-5 Digital Design Måndag 3/0 07 4.00-8.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William
Tentamen i IE1204/5 Digital Design Måndag 27/
Tentamen i IE1204/5 Digital Design Måndag 27/10 2014 9.00-13.00 Allmän information Examinator: Ingo Sander. Ansvarig lärare: Elena Dubrova /William Sandqvist, tel 08-7904487 Tentamensuppgifterna behöver
Tentamen med lösningar IE Digital Design Fredag 13/
Tentamen med lösningar IE24-5 Digital Design Fredag / 27 8.-2. Allmän information ( TCOMK, Ask for an english version of this eam if needed ) Eaminator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Tentamen IE1204 Digital Design Måndag 15/
Tentamen IE1204 Digital Design Måndag 15/1 2018 14.00-18.00 Allmän information (Ask for an English version of this exam if needed) Examinator: Carl-Mikael Zetterling Ansvarig lärare vid tentamen: Carl-Mikael
IE1204/5 Digital Design typtenta
IE1204/5 Digital Design typtenta Del A1 tio korta Analys-uppgifter 1p totalt 10p Rättas bara Rätt/Fel! Observera minst 6p på A1 om vi ska rätta vidare! Del A2 två Metodikuppgifter om totalt 10p. Rättas
IE1204/IE1205 Digital Design
TENTAMEN IE1204/IE1205 Digital Design 2012-12-13, 09.00-13.00 Inga hjälpmedel är tillåtna! Hjälpmedel Tentamen består av tre delar med sammanlagd tolv uppgifter, och totalt 30 poäng. Del A1 (Analys) innehåller
IE1204/5 Digital Design typtenta
IE1204/5 Digital Design typtenta Del A1 tio korta Analys-uppgifter 1p totalt 10p Rättas bara Rätt/Fel! Observera minst 6p på A1 om vi ska rätta vidare! Del A2 två Metodikuppgifter om totalt 10p. Rättas
Tentamen. TSEA22 Digitalteknik 5 juni, 2015, kl
Tentamen TSEA22 Digitalteknik 5 juni, 2015, kl. 08.00-12.00 Tillåtna hjälpmedel: Inga. Ansvarig lärare: Mattias Krysander Visning av skrivningen sker mellan 10.00-10.30 den 22 juni på Datorteknik. Totalt
IE1205 Digital Design: F9: Synkrona tillståndsautomater
IE25 Digital Design: F9: Synkrona tillståndsautomater Moore och Mealy automater F8 introducerade vippor och vi konstruerade räknare, skift-register etc. F9-F skall vi titta på hur generella tillståndsmaskiner
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 08-03-3 Sal (5) Tid 8- Kurskod TSEA Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
IE1204 Digital Design
IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM F0 F
Digital- och datorteknik
Digital- och datorteknik Föreläsning #13 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad kännetecknar en tillståndsmaskin? En synkron tillståndsmaskin
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2011-08-26 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel
Tentamen i Digital Design
Kungliga Tekniska Högskolan Tentamen i Digital Design Kursnummer : Kursansvarig: 2B56 :e fo ingenjör Lars Hellberg tel 79 7795 Datum: 27-5-25 Tid: Kl 4. - 9. Tentamen rättad 27-6-5 Klagotiden utgår: 27-6-29
Digital Design IE1204
Digital Design IE1204 F10 Tillståndsautomater del II william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-08-27 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna
F5 Introduktion till digitalteknik
Exklusiv eller XOR F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant På övning 2 stötte ni på uttrycket x = (a b) ( a b) som kan utläsas antingen a eller b, men inte både a och
Digital Design IE1204
Digital Design IE204 F2 Asynkrona sekvensnät del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7
Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1
Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Från Wikipedia: Sekvensnät Ett sekvensnäts utgångsvärde beror inte bara på indata, utan även i vilken ordning datan kommer (dess sekvens).
Lösningsförslag till tentamen i Digitalteknik, TSEA22
Försättsblad till skriftlig tentamen vid Linköpings universitet, Datorteknik, ISY (4) Lösningsförslag till tentamen i Digitalteknik, TSEA Datum för tentamen 3009 Salar U4, U7, U0 Tid 4.00-8.00 Kurskod
Asynkrona sekvensmaskiner
Asynkrona sekvensmaskiner En asynkron sekvensmaskin är en sekvensmaskin utan vippor Asynkrona sekvensmaskiner bygger på återkopplade kombinatoriska grindnätverk Vid analys antar man: Endast EN signal i
TSEA22 Digitalteknik 2019!
1(39) 2019 Mattias Krysander Ingemar Ragnemalm 1(39) Föreläsning 5. Sekv1. enna föreläsning: Vippor Sekvensnät Moore och Mealy 2(39)2(39) Förra föreläsningen: Labb 1. Adderare. Carryaccelerator Och ännu
Tentamen i Digitalteknik, TSEA22
Försättsblad till skriftlig tentamen vid Linköpings universitet, Datorteknik, IY 1(4) Tentamen i Digitalteknik, TEA22 Datum för tentamen 120529 al T1, T2, KÅRA Tid 14.00-18.00 Kurskod Provkod Kursnamn/benämning
Digital Design IE1204
Digital Design IE204 F2 Asynkrona sekvensnät del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2008-08-29 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Johan Eriksson Tel 070 589 7911 Tillåtna
Repetition och sammanfattning av syntes och analys av sekvensnät
Repetition och sammanfattning av syntes och analys av sekvensnät Sekvensnät = ihopkoppling av sekvenskretsar Består i praktiken av - minnesdel (sekvenskretsar) - kombinatorisk del. Sekvenskretsar = kretsar
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-06-04 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna
Digital Design IE1204
Digital Design IE1204 F9 Tillståndsautomater del1 william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-08-28 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna
Tentamensskrivning 11 januari 2016
Lunds Universitet LTH Ingenjörshögskolan IDA IEA Helsingborg Tentamensskrivning 11 januari 2016 EDI 610 Digitala system 15 poäng, varav tentamen 4,5 p Kursansvarig: Bernt-Arne Jönsson och Bertil Larsson
Tentamen i Digitalteknik, EITF65
Elektro- och informationsteknik Tentamen i Digitalteknik, EITF65 3 januari 2018, kl. 14-19 Skriv anonymkod och identifierare, eller personnummer, på alla papper. Börja en ny uppgift på ett nytt papper.
Digital Design IE1204
Digital Design IE204 F3 Asynkrona sekvensnät del 2 william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar
Tentamen i Digitalteknik TSEA22
Tentamen i Digitalteknik TSEA22 Datum för tentamen 100601 Sal TERC,TER2 Tid 14-18 Kurskod TSEA22 Provkod TEN 1 Kursnamn Digitalteknik Institution ISY Antal uppgifter 5 Antal sidor 5 Jour/Kursansvarig Olle
Digital- och datorteknik
Digital- och datorteknik Föreläsning #9 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola ekvensnät Vad kännetecknar ett sekvensnät? I ett sekvensnät
IE1204 Digital Design
IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM
Sekvensnät i VHDL del 2
Laboration 6 i digitala system ht-16 Sekvensnät i VHDL del 2 Realisering av Mealy och Moore i VHDL............................. Namn............................. Godkänd (datum/sign.) 2 Laborationens syfte
Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl
Institutionen för systemteknik, ISY, LiTH Tentamen i Digitalteknik TSIU05/TEN1 Tid: 2016 10 26 kl. 14 18 Lokal : TER3 TER4 Ansvarig lärare: Michael Josefsson. Besöker lokalen kl 16. Tel.: 013-28 12 64
Digital elektronik CL0090
Digital elektronik CL9 Föreläsning 3 27--29 8.5 2. My Talsystem Binära tal har basen 2 Exempel Det decimala talet 9 motsvarar 2 Den första ettan är MSB, Most Significant Bit, den andra ettan är LSB Least
Sekvensnät Som Du kommer ihåg
Sekvensnät Som Du kommer ihåg Designmetodik Grundläggande designmetodik för tillståndsmaskiner. 1. Analysera specifikationen för kretsen 2. Skapa tillståndsdiagram 3. Ställ upp tillståndstabellen 4. Minimera
Digital Design IE1204
Digital Design IE204 Kursomgång för Högskoleingenjörsinriktningarna: Datateknik, Elektronik och Datorteknik. Kandidatinriktningen: Informations- och Kommunikationsteknik F3 Asynkrona sekvensnät del 2 william@kth.se
DIGITALTEKNIK I. Laboration DE2. Sekvensnät och sekvenskretsar
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson, John Berge 203 DIGITALTEKNIK I Laboration DE2 Sekvensnät och sekvenskretsar Namn... Personnummer... Epost-adress... Datum för
D2 och E3. EDA321 Digitalteknik-syntes. Fredag den 13 januari 2012, fm i M-salarna
EDA321 Digitalteknik-syntes D2 och E3 GU DIT795 Tentamen (EDA321-0205) Fredag den 13 januari 2012, fm i M-salarna Examinator Arne Linde, tel. 772 1683 Tillåtna hjälpmedel Inga hjälpmedel tillåtna. Detta
Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp
Tentamen i Digitala system - EDI610 15hp varav denna tentamen 4,5hp Institutionen för elektro- och informationsteknik Campus Helsingborg, LTH 2016-12-22 8.00-13.00 Uppgifterna i tentamen ger totalt 60
Digital elektronik CL0090
Digital elektronik CL9 Föreläsning 5 27-2-2 8.5 2. Naxos Demonstration av uartus programvara. Genomgång av uartus flödesschema. Detta dokument finns på kurshemsidan. http://www.idt.mdh.se/kurser/cl9/ VHDL-kod
Repetition delay-element
Repetition delay-element Synkront sekvensnät Klockad vippa Asynkront sekvensnät ett konstgrepp: Delay-element Andra beteckningar: Y och y Gyllene regeln Endast EN signal åt gången ändras Exitationstabell
Sekvensnät. William Sandqvist
Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör att utsignalen påverkas av både nuvarande och föregående insignaler!
SEKVENSKRETSAR. Innehåll
SEKVENSKRETSAR Innehåll Synkrona sekvenskretsar Tillståndsdiagram / tillståndstabell Definition av Moore- och Mealy-maskiner Tillståndskodning Syntes av sekventiell logik Räknare SEKVENSKRETSAR EXEMPEL
Laboration D159. Sekvensnät beskrivna med VHDL och realiserade med PLD. Namn: Datum: Epostadr: Kurs:
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Lars Wållberg/Håkan Joëlson 2001-03-01 v 1.5 ELEKTRONIK Digitalteknik Laboration D159 Sekvensnät beskrivna med VHDL och realiserade med PLD
Laboration i digitalteknik Introduktion till digitalteknik
Linköpings universitet Institutionen för systemteknik Laborationer i digitalteknik Datorteknik 6 Laboration i digitalteknik Introduktion till digitalteknik TSEA Digitalteknik D TSEA5 Digitalteknik Y TDDC75
Konstruktionsmetodik för sekvenskretsar
Konstruktionsmetodik för sekvenskretsar Digitalteknik Föreläsning 7 Mattias Krysander Institutionen för systemteknik Dagens föreläsning Inför laboration 2 Synkronisering av insignaler Asynkrona ingångar
IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2
IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2 Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör
Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D
Lars-Erik Cederlöf Per Liljas Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D1 2001-05-28 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet
Programmerbar logik och VHDL. Föreläsning 4
Programmerbar logik och VHDL Föreläsning 4 Förra gången Strukturell VHDL Simulering med ISim Strukturell VHDL Simulering test_bench specificerar stimuli Simulatorn övervakar alla signaler, virtuell logik-analysator
Maurice Karnaugh. Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! William Sandqvist
Maurice Karnaugh Karnaugh-diagrammet gör det enkelt att minimera Boolska uttryck! En funktion av fyra variabler a b c d Sanningstabellen till höger innehåller 11 st 1:or och 5 st 0:or. Funktionen kan uttryckas
Digital Design IE1204
Digital Design IE204 F9 Tillståndsautomater del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7
Laboration D181. ELEKTRONIK Digitalteknik. Kombinatoriska kretsar, HCMOS. 2008-01-24 v 2.1
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Christer Ardlin/Lars Wållberg/ Dan Weinehall/Håkan Joëlson 2008-01-24 v 2.1 ELEKTRONIK Digitalteknik Laboration D181 Kombinatoriska kretsar,
Tentamen i EDA320 Digitalteknik för D2
CHALMERS TEKNISKA HÖGSKOLA Institutionen för datorteknik Tentamen i EDA320 Digitalteknik för D2 Tentamenstid: onsdagen den 2 mars 997 kl 4.5-8.5. Sal: vv Examinator: Peter Dahlgren Tel. expedition 03-772677.
Digital Design IE1204
Digital Design IE1204 F8 Vippor och låskretsar, räknare william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska
TSEA22 Digitalteknik 2019!
1(43) 2019 Mattias Krysander Ingemar Ragnemalm 1(43) Föreläsning 7. Sekv3. enna föreläsning: Lösningar närmare verkligheten Synkronisering Enpulsare Problem till design 2(43)2(43) Förra föreläsningen:
Tentamen i Digitala system - EITA15 15hp varav denna tentamen 4,5hp
Tentamen i Digitala system - EITA15 15hp varav denna tentamen 4,5hp Institutionen för elektro- och informationsteknik Campus Helsingborg, LTH 2018-01-09 8.00-13.00 (förlängd 14.00) Uppgifterna i tentamen
IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare
IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare IE1205 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska
Tentamen EDAA05 Datorer i system
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen EDAA05 Datorer i system 2011 10 17, 8.00 13.00 Tillåtna hjälpmedel: bifogad formel- och symbolsamling. För godkänt betyg på tentamen
Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D
Lars-Erik Cederlöf Tentamen i Grundläggande ellära och digitalteknik ETA 03 för D 2000-05-03 Tentamen omfattar 40 poäng, 2 poäng för varje uppgift. 20 poäng ger godkänd tentamen. Tillåtet hjälpmedel är
Digital Design IE1204
Digital Design IE1204 F8 Vippor och låskretsar, räknare william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska
Tentamen i Digitalteknik 5p
Dan Weinehall Håkan Joëlson 007-0-09 ELEA5 Tentamen i Digitalteknik 5p Datum: 007-0-09 Tid: 09:00-5:00 Sal: Hjälpmedel: VHDL-kompendierna: Grunderna i VHDL, Strukturell VHDL och testbädd Labinstruktioner
Digital Design IE1204
Digital Design IE24 F4 Karnaugh-diagrammet, två- och fler-nivå minimering william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB
Grundläggande Datorteknik Digital- och datorteknik
Grundläggande Datorteknik Digital- och datorteknik Kursens mål: Fatta hur en dator är uppbggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW samverkar Digital teknik Dator teknik Grundläggande
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 03-05-3 Salar U, KÅRA, U3 Tid -8 Kurskod TSEA Provkod TEN Kursnamn Digitalteknik Institution ISY Antal uppgifter som ingår
DIGITALTEKNIK. Laboration D172
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2006-02-24 v 1.2 DIGITALTEKNIK Laboration D172 Programmerbar logik (PLD) Programmeringsspråket VHDL Kombinatoriska funktioner
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2012-12-17 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel
IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering
IE25 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering Mintermer 2 3 OR f En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som
DIGITALTEKNIK I. Laboration DE1. Kombinatoriska nät och kretsar
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Björne Lindberg/Håkan Joëlson John Berge 2013 DIGITALTEKNIK I Laboration DE1 Kombinatoriska nät och kretsar Namn... Personnummer... Epost-adress...
Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I
Lösningsföslag till Exempel på tentamensuppgifter i Digitalteknik I Flervalsfrågor. A 2. C 3. B 4. D 5. A 6. B 7. C 8. D 9. C 0. B. B 2. C 3. A 4. C 5. A Problemuppgifter. Uttryckt i decimal form: A=28+32+8
Mintermer. SP-form med tre mintermer. William Sandqvist
Mintermer OR f 2 3 En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som tillsammans gör att termen antar värdet. SP-form med tre mintermer. f = m
Digitalteknik F9. Automater Minneselement. Digitalteknik F9 bild 1
Digitalteknik F9 Automater Minneselement Digitalteknik F9 bild Automater Från F minns vi följande om en automat (sekvenskrets): Utsignalerna beror av insignal och gammalt tillstånd: Insignaler Utsignaler
Repetition TSIU05 Digitalteknik Di/EL. Michael Josefsson
Repetition TSIU05 Digitalteknik Di/EL Michael Josefsson Här kommer några frågeställningar och uppgifter du kan använda för att använda som egenkontroll på om du förstått huvudinnehållet i respektive föreläsning.
F5 Introduktion till digitalteknik
George Boole och paraplyet F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant p = b! (s " r) George Boole (1815-1864) Professor i Matematik, Queens College, Cork, Irland 2 Exklusiv
Exempel på tentamensfrågor Digitalteknik
Exempel på tentamensfrågor Digitalteknik Till dessa frågor (som kommer från lite olika tidgare tentor) gällde förutsättningen: Hjälpmedel: Kurslitteratur, föreläsningsantecknigar lab. med mätresultat,
Programmerbar logik (PLD) Programmeringsspråket VHDL Kombinatoriska funktioner i VHDL för PLD Sekvensfunktioner i VHDL för PLD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2003-09-15 v 2.1 DIGITALTEKNIK Laboration D163 Programmerbar logik (PLD) Programmeringsspråket VHDL Kombinatoriska funktioner
Sekvensnät vippor, register och bussar
ekvensnät vippor, register och bussar agens föreläsning: Lärobok kap.5 Arbetsbok kap 8,9,10 Ur innehållet: Hur fungerar en -latch? Hur konstrueras JK-, - och T-vippor? er och excitationstabeller egister
DIGITALTEKNIK. Laboration D161. Kombinatoriska kretsar och nät
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik jörne Lindberg/Håkan Joëlson 2003-09-15 v 2.2 DIGITALTEKNIK Laboration D161 Kombinatoriska kretsar och nät Innehåll Uppgift 1...Grundläggande
-c wc. Pre- Next state Out- Vi ser att tillstånden är redan sorterade i grupper med olika utsignaler,
9.17 Vi översätter beskrivningen till ett flödesdiagram, Figur E9.17a -c -c z=1 E A z=1 E A z=0 z=0 z=0 D z=0 D Figur E9.17a Flödesdiagram B z=0 B z=0 C z=0 C z=0 som vi i sin tur översätter till en flödestabell,
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-06-01 Skrivtid 9.00-14.00 (5 timmar) Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376
Högskolan i Halmstad Digital- och Mikrodatorteknik 7.5p. Lista på registeruppsättningen i PIC16F877A Datablad TTL-kretsar 74-serien
DIGITAL- OCH MIKRODATORTEKNIK, U2 09.00 13.00 Tillåtna hjälpmedel: Instruktionslista PIC16F877A Lista på registeruppsättningen i PIC16F877A Datablad TTL-kretsar 74-serien Fullständiga lösningar skall inlämnas.
Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.
Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.. Uttryckt i decimal form: A=28+32+8 + 2 =70 B=59 C=7 A+B+C=246 2. Jag låter A' betyda "icke A" A'B'C'D'+ABC'D'+A'BCD'+AB'CD'=D'(A'(B'C'+BC)+A(BC'+B'C))=