IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2
|
|
- Rut Ström
- för 7 år sedan
- Visningar:
Transkript
1 IE1205 Digital Design: F10: Synkrona tillståndsautomater del 2
2 Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör att utsignalen påverkas av både nuvarande och föregående insignaler!
3 Grundläggande metod för konstruktion av statemaskiner 1. Analysera specifikationen för kretsen 2. Skapa tillståndsdiagram 3. Ställ upp tillståndstabellen 4. Minimera tillståndstabellen 5. Tilldela koder för tillstånden 6. Välj typ av vippor 7. Realisera kretsen mha Karnaugh-diagram Exempel: Flaskautomat
4 Moore-Automat Tillstånd (State) Ingångssignaler Nästa tillstånd (NEXT STATE DECODER) Tillståndsregister (STATE REGISTER) Utgångsavkodare (OUTPUT DECODER) Utgångssignaler Clk I en Moore-automat beror utgångssignalerna bara på nuvarande tillstånd 4
5 Input vs Output - Moore Tillståndet (State) ändras här (på klockflanken) Input-sekvens I 1 I 2 O 1 O 2 Output-sekvens Output syns efter att tillståndet (state) har ändrats
6 Mealy-Automaten (forts.) Tillstånd (State) Ingångssignaler Nästa tillstånd (NEXT STATE DECODER) Tillståndsregister (STATE REGISTER) Utgångsavkodare (OUTPUT DECODER) Utgångssignaler Clk I en Mealy-Automat beror utgångssignalerna både på nuvarande tillstånd och ingångarna 6
7 Input vs Output - Mealy Tillståndet (State) ändras här (på klockflanken) Input-sekvens I 1 I 2 O 1 O 2 Output-sekvens Output syns direkt efter att input har ändrats
8 Överblivna tillstånd Ibland får man några states över när man väljer kod. Överblivna states måste tas om hand så att inte statemaskinen låser sig vid uppstart (om man inte använder sig av reset vill säga)
9 Exempel: Sekvensräknare (0,0,1) 3 tillstånd => 2 vippor. Ett tillstånd över... Farlig övergång (automaten låser sig) S3 - S1 0 S0 0 Om maskinen råkar starta eller hamna i detta tillstånd vill vi att den så snart som möjligt hittar in i sekvensen. S2 1
10 Räknaren som automat Q + 1 D 1 Q 1 Nästa Tillstånds avkodare Q + 0 D 0 Q 0 Utgångs avkodare f Clock
11 Nextstate-funktionen S0 S1 S2 Nuv. värde Utsignal Nästa värde D-vippa Q 1 Q 0 f Q Q 0 D 1 D (ej 11) - -
12 ( RESET-generator chip ) Matningsspänning på ger RESET i 200 ms Om matningsspänningen får problem, eller sjunker under viss nivå, så blir det RESET Bättre än att behöva skaffa extra skydd, är att designa förebyggande och från början ta hand om alla tillstånd
13 Karnaughdiagram Q 0 Q Q 0 Q Q 0 Q Q 1 D1 Q0 Q 0 D0 Q1 Q0 f Q 1 OK, 10 inte 11!
14 State-tabell efter Karnaugh-minimering Nuv. värde Utsignal Nästa värde D-vippa Q 1 Q 0 f Q Q 0 D 1 D (ej 11) 1 0 Dvs, det extra tillståndet går in i S2 i huvudsekvensen...
15 Exempel: Sekvensräknare (0,0,1) S3 1 S0 0 S1 0 Om maskinen råkar starta i detta läge så kommer den att gå rakt till S2. S2 1 Bättre: Meddela att ett fel har inträffat!
16 Räknaren Q + 1 D 1 Q 1 Q1 Q 0 Q Q 0 1 Q0 Q + 0 D 0 Q 0 f Q 1 f Clock
17 Grindnät för sekvensen Q1 Q 0 Q + 1 D 1 Q 1 f Q 1 f Q Q 0 1 Q0 Q + 0 D 0 Q 0 Clock
18 Grindnät för sekvensen f Q 1 Q 0 Q 1 Q 0 Clk Alternativt sätt att rita
19 Tillståndsminimering När man konstruera komplexa tillståndsmaskiner så kan det lätt hända att det finns ekvivalenta och därmed redundanta tillstånd som kan tas bort för att få en effektivare implementering z=0 z=1 z=0 z=1 A B A B D C z=1 z=0 19
20 Exempel Tillståndsminimering A z = 1 B z = 1 D z = 1 C z = 0 F z = 0 G z = 0 E z = 0 Använder denna Moore-Automat minimalt antal tillstånd? 20
21 Tillståndsminimering Hur kan vi visa att två tillstånd är ekvivalenta? S i och S j är ekvivalenta om och endast om de, för varje möjlig insekvens, genererar identisk utsekvens oberoende om S i eller S j är ursprungligt tillstånd
22 Blockminimering Metod för att minimera antalet tillstånd 1. Börja med ett block 2. Gruppera tillstånd som har olika utsignaler 3. För varje tillstånd i respektive grupp, dela upp i nya grupper beroende på om dess efterföljande tillstånd är i olika grupper 4. Repetera tills föregående uppdelning ekvivalent med nuvarande
23 Tillståndsminimering Följande exempel illustrerar en minimeringsmetod för att förstå konceptet för tillståndsminimeringen Syntesverktyg använder andra algoritmer 23
24 Exempel Tillståndsminimering A z = 1 B z = 1 D z = 1 C z = 0 F z = 0 G z = 0 E z = 0 (Moore-Automat) 24
25 Tillståndsminimering Grundidé Två tillstånd är inte ekvivalenta om de har olika utgångsvärden, om 1. de har olika utgångsvärden A z = 1 B z = 0 25
26 Tillståndsminimering Grundidé Två tillstånd är inte ekvivalenta om de har olika utgångsvärden, 2. om åtminstone en av tillsåndsövergångarna går till olika efterföljande tillstånd A z = 1 B z = 1 w=1 w=1 C z = 1 D z = 0 26
27 Tillståndstabell Present Next state Output state z A B C 1 B D F 1 C F E 0 D B G 1 E F C 0 F E D 0 G F G 0 Ursprungligt tillståndsdiagram Ursprunglig tillståndstabell
28 Exempel Tillståndsminimering Start Bara en block med alla tillstånd P 1 =(ABCDEFG) 28
29 Exempel Tillståndsminimering Steg 1 Vilka tillstånd har olika utsignaler? ABD har utsignal z = 1 CEFG har utsignal z = 0 => P 2 =(ABD)(CEFG) 29
30 Exempel Tillståndsminimering Steg 2 Vilka tillstånd har olika följdtillstånd? Block ABD O-successor: A > B, B > D, D > B (alla övergångar till samma block) 1-successor: A > C, B > F, C > G (alla övergångar till samma block) Block CEFG O-successor: C > F, E > F, F > E, G > F (alla övergångar till samma block) 1-successor: C > E, E > C, F > D, G > G (F > D går till ett annat block) => P 3 =(ABD)(CEG)(F) 30
31 Exempel Tillståndsminimering Steg 3 Vilka tillstånd har olika följdtillstånd? I föregående iteration var alla övergångar från ABD till samma block (CEFG), men eftersom detta block ändrats (till (CEG)(F)) måste vi analysera ABD igen: Block ABD O-successor: A > B, B > D, D > B (alla övergångar till samma block) 1-successor: A > C, B > F, C > G (B > F går till ett annat block) => P 4 =(AD)(B)(CEG)(F) 31
32 Exempel Tillståndsminimering Steg 4 Vilka tillstånd har olika följdtillstånd? (Vi behöver bara analysera (CEG) Block CEFG O-successor: C > F, E > F, G > F (alla övergångar till samma block) 1-successor: C > E, E > C, G > G (alla övergångar till samma block) Iterationen är avslutat Fyra tillstånd behövs: P 4 =(AD)(B)(CEG)(F) 32
33 Slutgiltig Tillståndstabell Present Nextstate Output state z A B C 1 B A F 1 C F C 0 F C A 0 33
34 Slutgiltig Tillståndsdiagram A z = 1 C z = 0 B z = 1 F z = 0 34
35 Tillståndsminimering A z = 1 B z = 1 D z = 1 A z = 1 B z = 1 C z = 0 F z = 0 G z = 0 C z = 0 F z = 0 E z = 0 Före minimering Efter minimering
36 Analys av sykrona sekvensnät Given en implementering av en synkron krets, vi kan ta fram funktionen genom att göra syntesstegen I omvänd ordning! 1. Ta fram uttrycken för nästa-tillståndsavkodare utgångsavkodare 2. Ta fram tillståndstabellen 3. Rita tillståndsdiagrammet 36
37 Exempel Analys av sykrona sekvensnät Y 1 D Q y 1 z w Q Y 2 D Q y 2 Clock Q Resetn 37
38 Exempel Analys av sykrona sekvensnät Y 1 D Q y 1 z w Q Y 2 D Q y 2 Y Alt: 1 1 wy1 wy2 Clock Resetn Q Y Alt: 2 1 wy1 wy2 Y Alt: 3 1 wy1 wy2
39 Exempel Analys av sykrona sekvensnät 1. Ta fram uttrycken för nästa-tillståndsavkodare utgångsavkodare Y Y 1 2 z wy wy 1 1 y 1 y wy wy
40 Exempel Analys av sykrona sekvensnät 2. Ta fram tillståndstabellen Next State Present Output state y 2 y 1 z Y 2 Y 1 Y 2 Y Present Next state Output state z A A B 0 B A C 0 C A D 0 D A D 1 40
41 Tillståndsdiagram Present Next state Output state z A A B 0 B A C 0 C A D 0 D A D 1 w 0 A z = 0 w 1 B z = 0 Rita färdigt tillståndsdiagrammet själv. (På övning 6 löser vi ett liknande problem kretsen är en tre i rad - krets). C z = 0 D z = 1
42 Tillståndsdiagram Present Next state Output state z A A B 0 B A C 0 C A D 0 D A D 1 Ibland kan man behöva ändra ordningen på tillstånden för att få ett tydligare diagram w 0 w 0 A z = 0 C z = 0 w 1 w 0 w 1 w 1 w 0 B z = 0 D z = 1 w 1
43 Tillståndsdiagram Present Next state Output state z A A B 0 B A C 0 C A D 0 D A D 1 C och D har bytt plats snyggare, inga korsande tillståndspilar w 0 w 0 A z = 0 D z = 1 w 1 w 0 w 1 B z = 0 w 0 w 1 C z = 0 w 1
44 ASM-Charts För att beskriva större tillståndsmaskiner används ofta ett annat diagram: Algorithmic State Machine (ASM) Charts Det är ett flödesdiagram med tre element Tillståndslåda (State Box) Beslutslåda (Decision Box) Villkorlig utgångslåda (Conditional Output Box) 44
45 ASM-Charts En ASM-Chart är ett flödesdiagram med tre element State name 0 (False) Condition 1 (True) expression Output signals or actions (Moore type) Conditional outputs or actions (Mealy type) (b) Decision box (a) State box (c) Conditional output box 45
46 ASM-Charts Tillståndslåda (State Box) Representerar ett tillstånd i ett FSM utgångsvärden för tillståndet anges här (Moore-outputs) Beslutslåda (Decision Box) Beroende på värden på insignaler bestäms övergången till nästa tillstånd Villkorlig utgångslåda (Conditional outputs) Här anges värden av utgångarna vid en tillståndsövergång (Mealy-outputs) 46
47 två i rad Moore Reset 0 A w 1 Reset Clk w w z C B 0 w 1 C z 0 1 w Bara i tillstånd C har z värdet 1
48 två i rad Mealy 0 A: Z = 0 W 1 Reset z = 0 A Reset Clk w w z C z = 0 z = 1 B B: Z = W z = W Bara vid tillståndsövergången B-till-B med har z värdet 1
49 två i rad Mealy Reset 0 A w 1 Reset z = 0 A Reset Clk w w z C z = 0 z = 1 B B 0 1 w z z = 0 Bara vid tillståndsövergången B-till-B med har z värdet 1
50 Tillståndsautomater Formell Model För att behandla tillståndsmaskiner matematisk behöver man en formell model Följande model kan beskriva både Moore- och Mealy-automaten 50
51 Tillståndsautomater Formell Model w 1 z 1 Inputs w n Combinational circuit z m Outputs y k Y k Present-state variables Next-state variables y 1 Y 1 51
52 Tillståndsautomater Formell Model En tillståndsmaskin kan formell definieras med M ( W, Z, S, j, ) W, Z, och Y beskriver ingångarna, utgångarna och tillsånd j beskriver tillståndsövergångsfunktionen S( t 1) j [ W( t), S( t)] λ beskriver utgångsfunktion Z [ W( t), S( t)] Z [ S( t)] Mealy maskin Moore maskin 52
53 Formell modell för tillståndsautomat ),,,, ( j S Z W M )) ( ), ( ( ) ( )) ( ( ) ( )) ( ), ( ( ) ( t S t W t t S t t S t W t t S Mealy Moore j )...,... (... )... (... )...,... (... ) ( y y w w z z Z y y z z Z y y w w Y Y t t S k n m Mealy k m Moore k n k j
54 Tillståndsmaskiner Överblivna tillstånd Tillståndsminimering ASM-chart Formell modell
Sekvensnät Som Du kommer ihåg
Sekvensnät Som Du kommer ihåg Designmetodik Grundläggande designmetodik för tillståndsmaskiner. 1. Analysera specifikationen för kretsen 2. Skapa tillståndsdiagram 3. Ställ upp tillståndstabellen 4. Minimera
Digital Design IE1204
Digital Design IE1204 F10 Tillståndsautomater del II william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska
IE1205 Digital Design: F9: Synkrona tillståndsautomater
IE25 Digital Design: F9: Synkrona tillståndsautomater Moore och Mealy automater F8 introducerade vippor och vi konstruerade räknare, skift-register etc. F9-F skall vi titta på hur generella tillståndsmaskiner
Digital Design IE1204
Digital Design IE1204 F9 Tillståndsautomater del1 william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar
Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1
Digitalteknik 7.5 hp distans: 5.1 Generella sekvenskretsar 5.1.1 Från Wikipedia: Sekvensnät Ett sekvensnäts utgångsvärde beror inte bara på indata, utan även i vilken ordning datan kommer (dess sekvens).
Repetition och sammanfattning av syntes och analys av sekvensnät
Repetition och sammanfattning av syntes och analys av sekvensnät Sekvensnät = ihopkoppling av sekvenskretsar Består i praktiken av - minnesdel (sekvenskretsar) - kombinatorisk del. Sekvenskretsar = kretsar
Asynkrona sekvensmaskiner
Asynkrona sekvensmaskiner En asynkron sekvensmaskin är en sekvensmaskin utan vippor Asynkrona sekvensmaskiner bygger på återkopplade kombinatoriska grindnätverk Vid analys antar man: Endast EN signal i
Digital Design IE1204
Digital Design IE204 F9 Tillståndsautomater del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7
Digital Design IE1204
Digital Design IE204 F2 Asynkrona sekvensnät del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7
Sekvensnät i VHDL del 2
Laboration 6 i digitala system ht-16 Sekvensnät i VHDL del 2 Realisering av Mealy och Moore i VHDL............................. Namn............................. Godkänd (datum/sign.) 2 Laborationens syfte
Flaskautomaten Ett design-exempel av Ingo Sander
Flaskautomaten Ett design-exempel av Ingo Sander System ontrol Vi skall designa blocket systemstyrningen, System ontrol Myntinkast (OIN REEIVER) AUMU- LATOR OIN_PRESENT GT_1_EURO EQ_1_EURO LT_1_EURO DE_A
IE1204 Digital Design
IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM F0 F
Digital Design IE1204
Digital Design IE204 F2 Asynkrona sekvensnät del william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar F7
IE1205 Digital Design: F13: Asynkrona Sekvensnät (Del 2)
IE25 Digital Design: F3: Asynkrona Sekvensnät (Del 2) Rep. Tillståndsmaskiner LT_I_EURO (a) (b) (c) COIN_PRESENT COIN_PRESENT COIN_PRESENT COIN_PRESENT Tillståndsmaskiner styr sekvenser av händelser. Övergångar
Programmerbar logik och VHDL. Föreläsning 4
Programmerbar logik och VHDL Föreläsning 4 Förra gången Strukturell VHDL Simulering med ISim Strukturell VHDL Simulering test_bench specificerar stimuli Simulatorn övervakar alla signaler, virtuell logik-analysator
Laboration D159. Sekvensnät beskrivna med VHDL och realiserade med PLD. Namn: Datum: Epostadr: Kurs:
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Lars Wållberg/Håkan Joëlson 2001-03-01 v 1.5 ELEKTRONIK Digitalteknik Laboration D159 Sekvensnät beskrivna med VHDL och realiserade med PLD
SEKVENSKRETSAR. Innehåll
SEKVENSKRETSAR Innehåll Synkrona sekvenskretsar Tillståndsdiagram / tillståndstabell Definition av Moore- och Mealy-maskiner Tillståndskodning Syntes av sekventiell logik Räknare SEKVENSKRETSAR EXEMPEL
IE1205 Digital Design: F11: Programmerbar Logik, VHDL för Sekvensnät
IE1205 Digital Design: F11: Programmerbar Logik, VHDL för Sekvensnät Programmable Logic Devices Under 1970-talet introducerades programmerbara logiska kretsar som betecknas programmable logic device (PLD)
F5 Introduktion till digitalteknik
Exklusiv eller XOR F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant På övning 2 stötte ni på uttrycket x = (a b) ( a b) som kan utläsas antingen a eller b, men inte både a och
Digital- och datorteknik
Digital- och datorteknik Föreläsning #13 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Vad kännetecknar en tillståndsmaskin? En synkron tillståndsmaskin
Tentamen IE1204 Digital Design Måndag 15/
Tentamen IE1204 Digital Design Måndag 15/1 2018 14.00-18.00 Allmän information (Ask for an English version of this exam if needed) Examinator: Carl-Mikael Zetterling Ansvarig lärare vid tentamen: Carl-Mikael
Tentamen i Digitalteknik, EITF65
Elektro- och informationsteknik Tentamen i Digitalteknik, EITF65 3 januari 2018, kl. 14-19 Skriv anonymkod och identifierare, eller personnummer, på alla papper. Börja en ny uppgift på ett nytt papper.
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-08-27 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna
Tentamen med lösningar för IE1204/5 Digital Design Torsdag 15/
Tentamen med lösningar för IE4/5 Digital Design Torsdag 5/ 5 9.-. Allmän information Eaminator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist, tel 8-79 44 87. KTH Valhallavägen, Fredrik Jonsson,
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2008-08-29 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Johan Eriksson Tel 070 589 7911 Tillåtna
Tentamen IE Digital Design Fredag 13/
Tentamen IE204-5 Digital Design Fredag / 207 08.00-2.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Tentamen IE Digital Design Fredag 15/
Tentamen IE204-5 Digital Design Fredag 5/ 206 4.00-8.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
DESIGN AV SEKVENTIELL LOGIK
DESIGN AV SEKVENTIELL LOGIK Innehåll Timing i synkrona nätverk Synkrona processer i VHDL VHDL-kod som introducerar vippor (flip-flops) och latchar Initiering av register Mealy- och Moore-maskiner i VHDL
Omtentamen med lösningar i IE1204/5 Digital Design Fredag 10/
Omtentamen med lösningar i IE24/5 Digital Design Fredag /4 25 8.-2. Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandvist, tel 8-794487 / Fredrik Jonsson Tentamensuppgifterna behöver
Tentamen IE Digital Design Måndag 23/
Tentamen IE104-5 Digital Design Måndag 3/10 017 14.00-18.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Omtentamen IE Digital Design Måndag 14/
Omtentamen IE204-5 Digital Design Måndag 4/3 206 4.00-8.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
LEJON LABORATION3. Laborationens syfte
LABORATION3 LEJON Laborationens syfte Syftet med laborationen är dels att lära känna laborationsutrustningen och dels att få en uppfattning om hur en digital konstruktion är uppbyggd, i detta fallet med
Tentamen med lösningar i IE1204/5 Digital Design Måndag 27/
Tentamen med lösningar i IE04/5 Digital Design Måndag 7/0 04 9.00-3.00 Allmän information Examinator: Ingo Sander. Ansvarig lärare: Elena Dubrova /William Sandvist, tel 08-7904487 Tentamensuppgifterna
TSEA22 Digitalteknik 2019!
1(39) 2019 Mattias Krysander Ingemar Ragnemalm 1(39) Föreläsning 5. Sekv1. enna föreläsning: Vippor Sekvensnät Moore och Mealy 2(39)2(39) Förra föreläsningen: Labb 1. Adderare. Carryaccelerator Och ännu
IE1204/IE1205 Digital Design
TENTAMEN IE1204/IE1205 Digital Design 2012-12-13, 09.00-13.00 Inga hjälpmedel är tillåtna! Hjälpmedel Tentamen består av tre delar med sammanlagd tolv uppgifter, och totalt 30 poäng. Del A1 (Analys) innehåller
Repetition TSIU05 Digitalteknik Di/EL. Michael Josefsson
Repetition TSIU05 Digitalteknik Di/EL Michael Josefsson Här kommer några frågeställningar och uppgifter du kan använda för att använda som egenkontroll på om du förstått huvudinnehållet i respektive föreläsning.
Repetition delay-element
Repetition delay-element Synkront sekvensnät Klockad vippa Asynkront sekvensnät ett konstgrepp: Delay-element Andra beteckningar: Y och y Gyllene regeln Endast EN signal åt gången ändras Exitationstabell
Laboration D184. ELEKTRONIK Digitalteknik. Sekvensnät beskrivna med VHDL och realiserade med PLD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Lars Wållberg/Dan Weinehall/ Håkan Joëlson 2010-05-06 v 1.7 ELEKTRONIK Digitalteknik Laboration D184 Sekvensnät beskrivna med VHDL och realiserade
DIGITALTEKNIK I. Laboration DE2. Sekvensnät och sekvenskretsar
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson, John Berge 203 DIGITALTEKNIK I Laboration DE2 Sekvensnät och sekvenskretsar Namn... Personnummer... Epost-adress... Datum för
Tentamen med lösningar IE Digital Design Fredag 13/
Tentamen med lösningar IE24-5 Digital Design Fredag / 27 8.-2. Allmän information ( TCOMK, Ask for an english version of this eam if needed ) Eaminator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
Tentamen i IE1204/5 Digital Design onsdagen den 5/
Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Tentamensfrågor med lösningsförslag Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2011-08-26 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel
Digital Design IE1204
Digital Design IE204 F3 Asynkrona sekvensnät del 2 william@kth.se IE204 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska kretsar
Tentamen i IE1204/5 Digital Design onsdagen den 5/
Tentamen i IE1204/5 Digital Design onsdagen den 5/6 2013 9.00-13.00 Allmän information Exaator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204) Tentamensuppgifterna behöver
Exempel på LAX-uppgifter
Eempel på LAX-uppgifter Uppgift. I en myntautomat ingår en detektor för olika myntvalörer. Figur (a) visar myntinkastet, tre fotoceller och myntdetektorn som ska implementeras som en synkron sekvenskrets.
Digital Design IE1204
Digital Design IE204 Kursomgång för Högskoleingenjörsinriktningarna: Datateknik, Elektronik och Datorteknik. Kandidatinriktningen: Informations- och Kommunikationsteknik F3 Asynkrona sekvensnät del 2 william@kth.se
Tentamen med lösningar i IE Digital Design Fredag 15/
Tentamen med lösningar i IE4-5 Digital Design Fredag 5/ 6 4.-8. Allmän information (TCOMK, Ask for an english version of this exam if needed Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandvist
Tentamen med lösningar IE Digital Design Måndag 23/
Tentamen med lösningar IE04-5 Digital Design Måndag 3/0 07 4.00-8.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: Kista, William
Digitalteknik F12. Några speciella automater: register räknare Synkronisering av insignaler. Digitalteknik F12 bild 1
igitalteknik F2 Några speciella automater: register räknare Synkronisering av insignaler igitalteknik F2 bild Register Ett register är en degenererad automat som i allt väsentligt används för att lagra
Tentamen i IE1204/5 Digital Design Torsdag 29/
Tentamen i IE1204/5 Digital Design Torsdag 29/10 2015 9.00-13.00 Allmän information ( TCOMK, Ask for an english version of this exam if needed ) Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist
Tentamen i IE Digital Design Fredag 21/
Tentamen i IE204-5 Digital Design Fredag 2/0 206 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William Sandqvist
TSEA22 Digitalteknik 2019!
1(43) 2019 Mattias Krysander Ingemar Ragnemalm 1(43) Föreläsning 7. Sekv3. enna föreläsning: Lösningar närmare verkligheten Synkronisering Enpulsare Problem till design 2(43)2(43) Förra föreläsningen:
Digital Design IE1204
Digital Design IE1204 F11 Programmerbar logik VHDL för sekvensnät william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska
-c wc. Pre- Next state Out- Vi ser att tillstånden är redan sorterade i grupper med olika utsignaler,
9.17 Vi översätter beskrivningen till ett flödesdiagram, Figur E9.17a -c -c z=1 E A z=1 E A z=0 z=0 z=0 D z=0 D Figur E9.17a Flödesdiagram B z=0 B z=0 C z=0 C z=0 som vi i sin tur översätter till en flödestabell,
Tentamen i IE1204/5 Digital Design måndagen den 15/
Tentamen i IE1204/5 Digital Design måndagen den 15/10 2012 9.00-13.00 Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandqvist, tel 08-790 4487 (Kista IE1204), Tentamensuppgifterna
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2010-06-01 Skrivtid 9.00-14.00 (5 timmar) Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376
Tentamen med lösningar i IE1204/5 Digital Design Torsdag 29/
Tentamen med lösningar i IE4/5 Digital Design Torsdag 9/ 5 9.-. Allmän information Examinator: Ingo Sander. Ansvarig lärare: William Sandvist tel 8-794487 Tentamensuppgifterna behöver inte återlämnas när
IE1204/5 Digital Design typtenta
IE1204/5 Digital Design typtenta Del A1 tio korta Analys-uppgifter 1p totalt 10p Rättas bara Rätt/Fel! Observera minst 6p på A1 om vi ska rätta vidare! Del A2 två Metodikuppgifter om totalt 10p. Rättas
Tentamen. TSEA22 Digitalteknik 5 juni, 2015, kl
Tentamen TSEA22 Digitalteknik 5 juni, 2015, kl. 08.00-12.00 Tillåtna hjälpmedel: Inga. Ansvarig lärare: Mattias Krysander Visning av skrivningen sker mellan 10.00-10.30 den 22 juni på Datorteknik. Totalt
Institutionen för systemteknik, ISY, LiTH. Tentamen i. Tid: kl
Institutionen för systemteknik, ISY, LiTH Tentamen i Digitalteknik TSIU05/TEN1 Tid: 2016 10 26 kl. 14 18 Lokal : TER3 TER4 Ansvarig lärare: Michael Josefsson. Besöker lokalen kl 16. Tel.: 013-28 12 64
Styrteknik: Grundläggande logiska funktioner D2:1
Styrteknik: Grundläggande logiska funktioner D2:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik: Grundläggande logiska funktioner
Tentamen med lösningar i IE Digital Design Fredag 21/
Tentamen med lösningar i IE04-5 Digital Design Fredag /0 06 09.00-3.00 Allmän information (TCOMK, Ask for an english version of this exam if needed) Examinator: Ingo Sander. Ansvarig lärare: Kista, William
Digital Design IE1204
Digital Design IE1204 Kursomgång för IT, (ME), och IT-Kandidat, Kista. F11 Programmerbar logik VHDL för sekvensnät william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi,
Omtentamen med lösningar IE Digital Design Måndag 14/
Omtentamen med lösningar IE204-5 Digital Design Måndag 4/3 26 4.-8. Allmän information ( TCOMK, Ask for an english version of this exam if needed Examinator: Ingo Sander. Ansvarig lärare: Kista, William
Laboration i digitalteknik Introduktion till digitalteknik
Linköpings universitet Institutionen för systemteknik Laborationer i digitalteknik Datorteknik 6 Laboration i digitalteknik Introduktion till digitalteknik TSEA Digitalteknik D TSEA5 Digitalteknik Y TDDC75
Laborationshandledning
Laborationshandledning Utbildning: ED Ämne: TNE094 Digitalteknik och konstruktion Laborationens nummer och titel: Nr 5 Del A: Schmittrigger Del B: Analys av sekvensnät Laborant: E-mail: Medlaboranters
Laborationshandledning
Laborationshandledning Utbildning: ED Ämne: TNGE11 Digitalteknik Laborationens nummer och titel: Nr 5 Del A: Schmittrigger Del B: Analys av sekvensnät Laborant: E-mail: Medlaboranters namn: Handledarens
D2 och E3. EDA321 Digitalteknik-syntes. Fredag den 13 januari 2012, fm i M-salarna
EDA321 Digitalteknik-syntes D2 och E3 GU DIT795 Tentamen (EDA321-0205) Fredag den 13 januari 2012, fm i M-salarna Examinator Arne Linde, tel. 772 1683 Tillåtna hjälpmedel Inga hjälpmedel tillåtna. Detta
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-08-28 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna
IE1204 Digital Design
IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM
Programmerbar logik (PLD) Programmeringsspråket VHDL Kombinatoriska funktioner i VHDL för PLD Sekvensfunktioner i VHDL för PLD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2003-09-15 v 2.1 DIGITALTEKNIK Laboration D163 Programmerbar logik (PLD) Programmeringsspråket VHDL Kombinatoriska funktioner
IE1205 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering
IE25 Digital Design: F4 : Karnaugh-diagrammet, två- och fler-nivå minimering Mintermer 2 3 OR f En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som
IE1204/5 Digital Design typtenta
IE1204/5 Digital Design typtenta Del A1 tio korta Analys-uppgifter 1p totalt 10p Rättas bara Rätt/Fel! Observera minst 6p på A1 om vi ska rätta vidare! Del A2 två Metodikuppgifter om totalt 10p. Rättas
Quine McCluskys algoritm
Quine McCluskys algoritm Tabellmetod för att systematiskt finna alla primimplikatorer ƒ(a,b,c,d) = m(4,5,6,8,9,0,3) + d(0,7,5) Moment : Finn alla primimplikatorer Steg: Fyll i alla mintermer i kolumn.
Digital elektronik CL0090
Digital elektronik CL9 Föreläsning 5 27-2-2 8.5 2. Naxos Demonstration av uartus programvara. Genomgång av uartus flödesschema. Detta dokument finns på kurshemsidan. http://www.idt.mdh.se/kurser/cl9/ VHDL-kod
Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.
Lösningförslag till Exempel på tentamensfrågor Digitalteknik I.. Uttryckt i decimal form: A=28+32+8 + 2 =70 B=59 C=7 A+B+C=246 2. Jag låter A' betyda "icke A" A'B'C'D'+ABC'D'+A'BCD'+AB'CD'=D'(A'(B'C'+BC)+A(BC'+B'C))=
+5V. start. Styrsystem. stopp. Tillståndsmaskiner
Tillståndsmaskiner Beteendet hos en stor klass av tekniska system kan beskrivas, modelleras, med tillståndsmaskiner. En tillståndsmaskin är en sekvens av tillstånd som beror av händelser och som ger olika
Digitalteknik F9. Automater Minneselement. Digitalteknik F9 bild 1
Digitalteknik F9 Automater Minneselement Digitalteknik F9 bild Automater Från F minns vi följande om en automat (sekvenskrets): Utsignalerna beror av insignal och gammalt tillstånd: Insignaler Utsignaler
DIGITALTEKNIK. Laboration D172
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Håkan Joëlson 2006-02-24 v 1.2 DIGITALTEKNIK Laboration D172 Programmerbar logik (PLD) Programmeringsspråket VHDL Kombinatoriska funktioner
Avkodning av minnen (och I/O)
Avkodning av minnen (och I/O) IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2
+5V. start. Styrsystem. stopp. Tillståndsmaskiner
Tillståndsmaskiner Beteendet hos en stor klass av tekniska system kan beskrivas, modelleras, med tillståndsmaskiner. En tillståndsmaskin är en sekvens av tillstånd som beror av händelser och som ger olika
Tentamen i Digital Design
Kungliga Tekniska Högskolan Tentamen i Digital Design Kursnummer : Kursansvarig: 2B56 :e fo ingenjör Lars Hellberg tel 79 7795 Datum: 27-5-25 Tid: Kl 4. - 9. Tentamen rättad 27-6-5 Klagotiden utgår: 27-6-29
Sekvensnät. William Sandqvist
Sekvensnät Om en och samma insignal kan ge upphov till olika utsignal, är logiknätet ett sekvensnät. Det måste då ha ett inre minne som gör att utsignalen påverkas av både nuvarande och föregående insignaler!
Digital Design IE1204
Digital Design IE24 F2 : Logiska Grindar och Kretsar, Boolesk Algebra william@kth.se IE24 Digital Design F F3 F2 F4 Ö Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK LAB Kombinatoriska
Minnet. Minne. Minns Man Minnet? Aktivera Kursens mål: LV3 Fo7. RAM-minnen: ROM PROM FLASH RWM. Primärminnen Sekundärminne Blockminne. Ext 15.
Aktivera Kursens mål: LV3 Fo7 Konstruera en dator mha grindar och programmera denna Aktivera Förra veckans mål: Konstruktruera olika kombinatoriska nät som ingår i en dator. Studera hur addition/subtraktion
Konstruktionsmetodik för sekvenskretsar
Konstruktionsmetodik för sekvenskretsar Digitalteknik Föreläsning 7 Mattias Krysander Institutionen för systemteknik Dagens föreläsning Inför laboration 2 Synkronisering av insignaler Asynkrona ingångar
Läsminne Read Only Memory ROM
Läsminne Read Only Memory ROM Ett läsminne har addressingångar och datautgångar Med m addresslinjer kan man accessa 2 m olika minnesadresser På varje address finns det ett dataord på n bitar Oftast har
IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare
IE1205 Digital Design: F8: Minneselement: Latchar och Vippor. Räknare Sekvensiella System a(t) f(a(t)) Ett sekvensiellt system har ett inbyggt minne - utsignalen beror därför BÅDE av insignalens NUVARANDE
Grundläggande Datorteknik Digital- och datorteknik
Grundläggande Datorteknik Digital- och datorteknik Kursens mål: Fatta hur en dator är uppbggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW samverkar Digital teknik Dator teknik Grundläggande
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2009-06-04 Skrivtid 9.00-13.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng inkl bonus Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna
Mintermer. SP-form med tre mintermer. William Sandqvist
Mintermer OR f 2 3 En minterm är en produktterm som innehåller alla variabler och som anger den kombination av :or och :or som tillsammans gör att termen antar värdet. SP-form med tre mintermer. f = m
Avkodning av minnen (och I/O)
Avkodning av minnen (och I/O) IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2
SMD033 Digitalteknik. Digitalteknik F1 bild 1
SMD033 Digitalteknik Digitalteknik F1 bild 1 Vi som undervisar Anders Hansson A3209 91 230 aha@sm.luth.se Digitalteknik F1 bild 2 Registrering Registrering via email till diglabs@luth.se Digitalteknik
Konstruktionsmetodik för sekvenskretsar. Föreläsning 7 Digitalteknik Mattias Krysander Institutionen för systemteknik
Konstruktionsmetodik för sekvenskretsar Föreläsning 7 Digitalteknik Mattias Krysander Institutionen för systemteknik 2 Dagens föreläsning Hantering av insignaler Initiering av starttillstånd Inför lab
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 08-03-3 Sal (5) Tid 8- Kurskod TSEA Provkod TEN Kursnamn/benämning Provnamn/benämning Institution Antal uppgifter som
Digital- och datorteknik
Digital- och datorteknik Föreläsning #9 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola ekvensnät Vad kännetecknar ett sekvensnät? I ett sekvensnät
Lösningsförslag till tentamen i Digitalteknik, TSEA22
Försättsblad till skriftlig tentamen vid Linköpings universitet, Datorteknik, ISY (4) Lösningsförslag till tentamen i Digitalteknik, TSEA Datum för tentamen 3009 Salar U4, U7, U0 Tid 4.00-8.00 Kurskod
Tentamensskrivning 11 januari 2016
Lunds Universitet LTH Ingenjörshögskolan IDA IEA Helsingborg Tentamensskrivning 11 januari 2016 EDI 610 Digitala system 15 poäng, varav tentamen 4,5 p Kursansvarig: Bernt-Arne Jönsson och Bertil Larsson
Tenta i Digitalteknik
Tenta i Digitalteknik Kurskod D0011E Tentamensdatum 2012-12-17 Skrivtid 9.00-14.00 Maximalt resultat 50 poäng Godkänt resultat 25 poäng Jourhavande lärare Per Lindgren Tel 070 376 8150 Tillåtna hjälpmedel
Kodlås. Kopplingsschema över kodlåset PAL-18
Kodlås I den här uppgiften skall du konstruera ett kodlås med hjälp av ett litet tangentbord. Varje gång man trycker på en tangent skall det pipa i summern och när man tryckt in den rätta fyrsiffriga koden