Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017.
|
|
- Björn Lundgren
- för 6 år sedan
- Visningar:
Transkript
1 FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, Denna tentamen rättas anonymt. Ni fick ett id-nummer tilldelat er av systemet när ni anmälde er (ni kan också få det av tentavakten). Skriv detta id-nummer på tentamen och inte era namn. Besvara frågor till olika lärare på separata papper. Id-nummer och sidnummer på varje blad. Lägg frågorna i ordning innan du lämnar in. Fråga 1-4 Fråga 5 Fråga 6-10 Lars Harrie Lars Eklundh Lars Ollvik och Sven Agardh Maximal poäng: 50 p % = betyg % = betyg % = betyg 3 Hjälpmedel: Formelsamling till Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik. Miniräknare Lycka till önskar lärarna!
2 NYTT PAPPER TILL LARS H ) Förklara kortfattat följande begrepp. Max 5 meningar och 1 figur per begrepp (3p) a) Greenwich meridianen b) Geoidhöjd c) WGS 84 2) Jordmodeller och kartprojektioner (9p) a) Antag att du har två punkter p och q på en sfär med radien m. Punkterna har följande kartesiska koordinater: X Y Z p p p = m = m = m X Y Z q q q = m = m = m Beräkna det sfäriska avståndet mellan punkterna p och q. (3p) b) Beskriv hur man definierar latitud på en ellipsoid. c) Mercators projektion är en vinkelriktig normal cylinderprojektion. Vidare är projektionen halvperspektivistisk (perspektivistisk i öst-västlig riktning, men inte i nord-sydlig). Härled uttryck för indikatrisens axlar (h och k) för Mercators projektion på en sfär (gärna med hjälp av figurer). Indikatrisen är avbildningen på kartplanet av ett infinitesimalt sfärsikt område på den sfäriska jordmodellen. (3p) d) Beskriv kartprojektionssystemet Universal Transversal Mercator (UTM). (2p) 3) Höjdsystem och geodetiska referenssystem a) Motivera varför lodlinjen skär geoiden i rät vinkel. (2p) b) Beskriv SWEREF 99 och dess relation till ETRS 89. (3p)
3 4) Fotogrammetri och laserskanning a) För att ett flygfotografi (centralprojektion) ska vara skalriktig krävs två villkor. Ange vilka dessa är samt motivera varför de krävs för att skalan ska vara konstant i flygfotografiet. (3p) b) Motivera varför ökad flyghöjd generellt ger större mätosäkerhet i flygburen laserskanning. (2p) NYTT PAPPER TILL LARS E ) Fjärranalys (3p) a) Varför används flera våglängdsband inom fjärranalys? b) Beskriv kort principen för datorklassificering av fjärranalysdata. (2p)
4 NYTT PAPPER LARS O + SVEN A ) Redogör för följande begrepp och frågeställningar. a/ Vad innebär korresponderande trigonometrisk höjdmätning och vad är motivet för denna metod? b/ Vad är skillnaden mellan stommätning och detaljmätning och vilket samband finns mellan dessa metoder? c/ Vad är skillnaden mellan en fri station och en stationsetablering på känd punkt? d/ Hur många GPS-satelliter behövs minst och vilka obekanta parametrar är det som måste lösas vid kodmätning? e/ På vilket sätt skiljer sig kodmätning från fasmätning med avseende på hur avståndet från satelliten till mottagaren bestäms? 7) Beräkna polära utsättningsdata för gränspunkterna 6, 9 och 11 tillhörande Frötuna 4. Punkt 7 är stationspunkt och nollriktning mot punkt 1. Svaret anges i tabell med vinklar i gon med fyra decimaler samt längder i meter med tre decimaler. Indata för uppgifterna 7,8 och 9. Pkt N(meter) E(meter) , , , , , , , , , , , ,600 8 Beräkna arean för Frötuna 4 (gränspunkterna 6,7,9,11 och 12). Svaret anges i kvadratmeter med tre decimaler. Principfigur 9 Beräkna areans medelfel för Frötuna 4 (beräknat i uppgift 8), om samtliga koordinater har medelfelet 0,030 meter. Svaret anges i kvadratmeter med tre decimaler.
5 10 Beräkna med hjälp av minsta kvadratmetoden höjderna för fixpunkterna B och C. Beräkningarna ska genomföras med hjälp av matrisberäkningar. Mätningarna har gett följande höjdskillnader mellan fixpunkterna: Avvägningsriktningen anges av pilen på de fem avvägningssträckorna Tidigare mätta höjdskillnader: från A till B = 5,150 m från B till C = -1,640 m från C till D = 2,350 m Kända höjder: A = 10,500 m D = 16,430 m E = 9,930 m Nya kompletterande mätningar: Från Till Avstånd Stångavläsning Pkt nr Pkt nr meter i meter Bak Fram Bak Fram C ,546 0, ,389 0, B ,247 0,689 E ,781 0, ,876 1, C ,463 0,675 Beräkna följande sökta storheter: Principfigur Höjderna för fixpunkterna B och C Förbättringarna Mätningens standardosäkerhet Svaret anges i meter med tre decimaler för höjder, samt fyra decimaler för förbättringar och standardosäkerhet. Matrisberäkningarna ska redovisas!
6
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2017.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 10 januari, 2017. Denna tentamen
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2019.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 15 januari, 2019. Denna tentamen
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2012.
FÖRSÄTTSBLAD Institutionen för Naturgeografi och Ekosystemvetenskaper Institutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 21 december, 2012. Denna tentamen
4/29/2011. Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl maj, 2011.
FÖRSÄTTSBLAD 4/29/2011 Institutionen för Geo- och Ekosystemvetenskaper Institutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 2 maj, 2011. Besvara frågor till
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 12 januari, 2015. Denna tentamen
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2018.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 9 januari, 2018. Denna tentamen
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 20 december, 2013. Denna tentamen
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2012.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 21 december, 2012. Denna tentamen
Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl december, 2013.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 20 december, 2013.
FÖRSÄTTSBLAD. Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2019.
FÖRSÄTTSBLAD I nstitutionen för Naturgeografi och Ekosystemvetenskaper I nstitutionen för Teknik och Samhälle Rättningsmall fråga 1-4 för tentamen EXTA50 Samhällsmätning, 9 hp, kl. 8-13 15 januari, 2019.
Svar till beräkningsuppgifter för instuderingsfrågor i övning 2
Svar till beräkningsuppgifter för instuderingsfrågor i övning 2 F1: Introduktion till samhällsmätning a) Ge ett par exempel på geografisk information. b) Vad behandlas inom vetenskaperna geodesi respektive
Samhällsmätning EXTA50, 9 hp
Samhällsmätning EXTA50, 9 hp Lars Harrie och Perola Olsson Naturgeografi och ekosystemvetenskap Lunds universitet Lars Ollvik och Sven Agardh Teknik och Samhälle, LTH Varför är geografisk information intressant
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Mätningsteknik Provmoment:Tentamen Ladokkod:41I15B Tentamen ges för: 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2017-06-01 Tid: 14.00 18.00 Hjälpmedel: Formelsamlingar Räknare Totalt antal poäng på
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Mätningsteknik Provmoment:Tentamen Ladokkod:41I15B Tentamen ges för: 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tid: Hjälpmedel: 2018-06-01 14.00 18.00 Formelsamlingar Räknare Totalt antal poäng på
Svar till beräkningsuppgifter för instuderingsfrågor i övning 2
Svar till beräkningsuppgifter för instuderingsfrågor i övning 2 F1: Introduktion till samhällsmätning a) Ge ett par exempel på geografisk information. b) Vad behandlas inom vetenskaperna geodesi respektive
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik Version 2013-10-28 Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik by Lantmäteriet m.fl. is licensed under a Creative Commons Erkännande-Ickekommersiell-IngaBearbetningar
Anna Halvarsson. Privat - Ridning - Skidåkning framförallt nerför - Husrenovering och vedkapning
GITTER.SE Anna Halvarsson Jobbet - GIS ingenjörsutbildningen i Kiruna - GIS och geodata i alla former sedan 1997 - Från 2015-04-01 GITTER Consult AB tillsammans med Johan Esko Privat - Ridning - Skidåkning
Kursprogram för kursen EXTA50 Samhällsmätning. Hösten Kurshemsida:
Kursprogram för kursen EXTA50 Samhällsmätning Hösten 2018 Kurshemsida: http://web.nateko.lu.se/courses/exta50/ Syfte Kursens syfte är att ge grundläggande kunskaper om begrepp och metoder inom geodesi,
Metodbeskrivning RUFRIS
Metodbeskrivning RUFRIS Dokumenttitel: Underlag till metodbeskrivning RUFRIS Skapat av: Johan Vium Andersson Dokumentdatum: 2012-03-16 Dokumenttyp: Rapport Publikationsnummer 2012:210 Version: 1,0 Publiceringsdatum:
Introduktion till fotogrammetrin
Introduktion till fotogrammetrin Lars Harrie, Institutionen för naturgeografi och ekosystemvetenskaper Flera bilder är framtagna av Mikael Johansson, Lantmäteriet Disposition 1)Introduktion 2)Tillämpningar
Underlag till metodbeskrivning RUFRIS
Uppdragsnr: 10141701 1 (7) PM Underlag till metodbeskrivning RUFRIS Upprättad av: Johan Vium Andersson, WSP Samhällsbyggnad 2011-11-09 WSP Samhällsbyggnad 121 88 Stockholm-Globen Besök: Arenavägen 7 Tel:
Koordinatsystem och transformationer. Tina Kempe Lantmäteriet Informationsförsörjning geodesi tel. 026-63 38 56 christina.kempe@lm.
Koordinatsystem och transformationer Tina Kempe Lantmäteriet Informationsförsörjning geodesi tel. 026-63 38 56 christina.kempe@lm.se Geodesi Vetenskapen om jordytans uppmätning och kartläggning (Helmert
Ett geografiskt koordinatsystem definierar platser på en sfärisk modell av jorden. Det använder en ellipsoid modell av jorden.
Koordinatsystem och projektioner Ett koordinatsystem är en referensram för att definiera platser på en yta. Det är väldigt viktigt att man definierar rätt koordinatsystem för att kartan ska visas rätt
GPS del 2. Sadegh Jamali. kredit: Mohammad Bagherbandi, Stig-Göran Mårtensson, och Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH)
GPS del 2 Sadegh Jamali kredit: Mohammad Bagherbandi, Stig-Göran Mårtensson, och Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH) 1 Satellit positionering typer Absolut positionering (en
HMK-nytt Löpande justeringar av senast gällande version av HMK-dokument
HMK-nytt I HMK-nytt dokumenteras fortlöpande justeringar av senast gällande dokument, tills ny årsversion ges ut. Med justeringar avses rättning av skrivfel samt mindre justeringar av informationskaraktär
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik Version 2011-09-29 Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik by Lantmäteriet m.fl. is licensed under a Creative Commons Erkännande-Ickekommersiell-IngaBearbetningar
GPS del 2. Sadegh Jamali
GPS del 2 Sadegh Jamali Baserat på material från: Mohammad Bagherbandi, Stig-Göran Mårtensson, Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH) 1 GPS-mätmetoder Absolut positionering (en
Tentamensskrivning i matematik GISprogrammet MAGA45 den 23 augusti 2012 kl 14 19
Karlstads universitet matematik Peter Mogensen Tentamensskrivning i matematik GISprogrammet MAGA45 den 23 augusti 2012 kl 14 19 Tillåtna hjälpmedel: Godkänd räknare, bifogad formelsamling. Jourtelefon:
Introduktion till fotogrammetrin
Introduktion till fotogrammetrin Lars Harrie, Institutionen för naturgeografi och ekosystemvetenskaper Flera bilder är framtagna av Mikael Johansson, Lantmäteriet Disposition 1)Introduktion 2)Tillämpningar
Kursprogram för kursen EXTA50 Samhällsmätning. Hösten Kurshemsida:
Kursprogram för kursen EXTA50 Samhällsmätning Hösten 2016 Kurshemsida: http://web.nateko.lu.se/courses/exta50/ Syfte Kursens syfte är att ge grundläggande kunskaper om begrepp och metoder inom geodesi,
Tentamen i Terrester Navigation LNC Chalmers Institutionen för sjöfart och marinteknik sidan 1 (1 )
Chalmers Institutionen för sjöfart och marinteknik sidan 1 (1 ) Sjökortsarbete övningssjökort SE 61 Vid lösning av navigationsuppgifter skall missvisning tas fram på vedertaget sätt och användas om inte
Artikel publicerad i Sveriges Kart- & Mätningstekniska Förenings (SKMF:s) tidskrift Sinus, nr , sid 12-13
2018-03-09 PM Artikel publicerad i Sveriges Kart- & Mätningstekniska Förenings (SKMF:s) tidskrift Sinus, nr 1 2018, sid 12-13 Om SWEN17_RH2000 den nya nationella geoidmodellen TINA KEMPE & JONAS ÅGREN
RAPPORT. Höjdmätning med RUFRIS
RAPPORT Höjdmätning med RUFRIS Trafikverket Postadress: Rödavägen 1, 781 89 Borlänge E-post: trafikverket@trafikverket.se Telefon: 0771-921 921 TMALL 0004 Rapport generell v 2.0 Dokumenttitel: Höjdmätning
STOCKHOLMS UNIVERSITET FYSIKUM
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och
Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Realtidsuppdaterad fristation
Realtidsuppdaterad fristation Tillförlitlighetsanalys Juni 2011 Milan Horemuz Kungliga Tekniska högskolan, Institution för Samhällsplanering och miljö Avdelningen för Geodesi Teknikringen 72, SE 100 44
Sammanställning av kartprojektioner i alfabetisk ordning
L A N T M Ä T E R I E T 1 (54) Kartprojektioner 2006-01-12 Sammanställning av kartprojektioner i alfabetisk ordning Kartprojektionens namn Avbildning Utseende Sida Aitoffs Världskartor Azimutal 4 Alberts
Hur används GNSS-tekniken idag och i framtiden. GIS-Samverkan Dalarna Falun 14 mars 2018 Kent Ohlsson
Hur används GNSS-tekniken idag och i framtiden GIS-Samverkan Dalarna Falun 14 mars 2018 Kent Ohlsson Vad är GNSS? GNSS Global Navigation Satellite Systems Samlingsnamn för satellitsystem för navigering
Matematik CD för TB. x + 2y 6 = 0. Figur 1:
Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska
Realtidsuppdaterad fristation
Realtidsuppdaterad fristation Testmätningar BanaVäg i Väst April 2011 Milan Horemuz Kungliga Tekniska högskolan, Institution för Samhällsplanering och miljö Avdelningen för Geodesi och geoinformatik Teknikringen
Att mäta med kvalitet. Nya avtal för digital registerkarta Lycksele, Kent Ohlsson
Att mäta med kvalitet Nya avtal för digital registerkarta Lycksele, 2018-04-18 Kent Ohlsson I det här passet går vi igenom följande: Begreppen kvalitet och god mätsed HMK Handbok i mät- och kartfrågor
Datum: 24 okt Betygsgränser: För. finns på. Skriv endast på en. omslaget) Denna. Uppgift. Uppgift Beräkna. Uppgift Låt z. Var god. vänd.
Tentamen i Linjär algebra, HF94 Datum: 4 okt 8 Skrivtid: 4:-8: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C,
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN
freeleaks NpMaD vt001 för Ma4 1(7) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 001 Förord Utformningen av de nationella proven i matematik har varierat över tid. Uppgifter till den äldre
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (1:a omtentan), tisdag 17 juni 2014, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
CHALMERS LINDHOLMEN Instuderingsuppgifter Nav-E sid 1 ( 5 )
CHALMERS LINDHOLMEN Instuderingsuppgifter Nav-E sid 1 ( 5 ) A Radiovågor 1:A 1 Vilken hastighet har radiovågor i rymden? 2:A 2 Vilket samband finns mellan radiovågors hastighet, frekvens och våglängd?
Kortfattade lösningar till tenta för LNC022, :
Kortfattade lösningar till tenta för LNC022, 2015-04-15: 1. (a) Pythagoras sats ger hypotenusan: c 2 = 16 2 + 30 2 = 1156, c = 1156 = 34 cm. Vinkeln v mellan sidorna 16 och 34 ges av cos v = 16 30 34 eller
för Tekniskt/Naturvetenskapligt Basår
Institutionen för Fysik och Astronomi Tentamen i Matematik D 21-8-16 för Tekniskt/Naturvetenskapligt Basår lärare : Filip Heijkenskjöld, Susanne Mirbt, Lars Nordström Skrivtid: 8.-12. Hjälpmedel: Miniräknare
HMK SyostGIS
HMK 2014 SyostGIS 2014-11-11 C Bakgrund HMK HMK Handbok till Mätningskungörelsen gavs ut 1993-1995 Teknikbeskrivningar samt stöd för kvalitetskontroll och upphandling av mättjänster 9 delar HMK-Geodesi,
MVE520 Linjär algebra LMA515 Matematik, del C
MATEMATIK Chalmers tekniska högskola Tentamen MVE52 Linjär algebra LMA55 Matematik, del C Hjälpmedel: inga Datum: 28-8-29 kl 8 2 Telefonvakt: Sebastian Jobjörnsson ankn 6457 Examinator: Håkon Hoel Tentan
HMK. handbok i mät- och kartfrågor. Referenssystem och geodetisk mätning
HMK handbok i mät- och kartfrågor Referenssystem och geodetisk mätning 2013 Förord 2013 Dokumentet HMK Referenssystem och geodetisk mätning 2013 har jämfört med arbetsdokumentet 2012, framför allt genomgått
MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)
NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN
freeleaks NpMaB vt000 1() Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 000 Förord Skolverket har endast publicerat ett kursprov till kursen Ma. Innehållet i den äldre kursen Ma B hör
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 9 uppgifter utan miniräknare 3. Del II, 8 uppgifter utan miniräknare 5
freeleaks NpMaB vt00 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 00 Del I, 9 uppgifter utan miniräknare 3 Del II, 8 uppgifter utan miniräknare 5 Förord Uppgifter till den äldre
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 6825 kl. 8.3 2.3 Tentamen Telefonvakt: Carl Lundholm 5325 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Storcirkelnavigering
ÖPPET HAV KUSTNÄRA INOMSKÄRS Storcirkelnavigering Storcirkeln. En rak kurslinje mellan A och B i vanliga sjökort* - loxodromkursen - är, frånsett specialfall, inte den kortaste vägen. Söks den måste istället
Vad är god kvalitet vid mätning med GNSS/RTK?
Vad är god kvalitet vid mätning med GNSS/RTK? MBK-dag, 4 november 2015 Lars Jämtnäs Enheten för geodetisk infrastruktur lars.jamtnas@lm.se Att bedöma kvalitet vid realtidsmätning Finns det något att jämföra
Sverige byter referenssystem
Kommunerna har en nyckelroll Sverige byter referenssystem Förenklad användning av lägesbunden information FOTO: Björn Hårdstedt Ett enhetligt referenssystem förenklar användningen av lägesbunden information.
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,
HMK. Teknisk rapport 2018:1 Mät- och lägesosäkerhet vid geodatainsamling en lathund. Clas-Göran Persson. handbok i mät- och kartfrågor
HMK handbok i mät- och kartfrågor handbok i mät- och kartfrågor Mät- och lägesosäkerhet vid geodatainsamling en lathund Clas-Göran Persson Författarens kontaktuppgifter Clas-Göran Persson Skansstigen 3
PRÖVNINGSANVISNINGAR
PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.
2. Avgör om x och z är implicit definierade som funktion av y via följande ekvationssystem. x 3 + xy + y 2 + z 2 = 0 x + x 3 y + xy 3 + xz 3 = 0
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 1 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
Lite sfärisk geometri och trigonometri
Lite sfärisk geometri och trigonometri Torbjörn Tambour 8 april 2015 Geometri och trigonometri på sfären är ett område som inte nämns alls i de vanliga matematikkurserna, men som ändå är värt att stifta
(a) Bestäm för vilka värden på den reella konstanten c som ekvationssystemet är lösbart. (b) Lös ekvationssystemet för dessa värden på c.
UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson Prov i matematik X, geo, frist, lärare LINJÄR ALGEBRA och GEOMETRI I 200 0 08 Skrivtid: 8.00.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
5B1134 Matematik och modeller
KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,
BYTE REFERENSSYSTEM LULEÅ SWEREF99/RH 2000
BYTE REFERENSSYSTEM LULEÅ SWEREF99/RH 2000 FRÅN TILL PLAN LULEÅ LOKALA RT 38 5 gon O (72:-1) RT R12 R12 5 gon O (72:-1) SWEREF 99.21.45 HÖJD RH 00 RH 2000 RT 90 6 Projektioner SWEREF 99 12 Projektioner
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik Kapitel 6 Version 2013-10-28 Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik by Lantmäteriet m.fl. is licensed under a Creative
3D-scanning. Volymberäkning vid scanning av bergvägg. 3D-scanning Volume calculation when scanning a rock wall. Stefan Svahn
3D-scanning Volymberäkning vid scanning av bergvägg 3D-scanning Volume calculation when scanning a rock wall Fakulteten för humaniora och samhällsvetenskap, Naturgeografi Examensarbete Mät- och kartprogrammet
Tentamen i TATA43 Flervariabelanalys
Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter
1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1
ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
LNC Lösningar
LNC022 2013-05-27 Lösningar 1. (a) På en vägskylt står det att vägens lutning är 12 %. Om detta innebär att höjdskillnaden är 12 % av den körda vägsträckan, vilken är då vägens lutningsvinkel? (Rita figur.)
ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)
ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är
Global Positionering System (GPS)
Global Positionering System (GPS) Sadegh Jamali Baserat på material från: Mohammad Bagherbandi, Stig-Göran Mårtensson, Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH) 1 Traditionella metoder
LyckaTill önskar Anna
UPPSALA UNIVERSITET Institutionen för Informationsteknologi Tentamen i Programmeringsteknik I 2009-10-16 Skrivtid: 14:00-17:00 Hjälpmedel: Lewis & Loftus, Java Software Solutions eller Skansholm, Java
5. Sfärisk trigonometri
5. Sfärisk trigonometri Inledning Vi vill använda den sfäriska trigonometrin för beräkningar på storcirkelrutter längs jordytan (för sjöfart och luftfart). En storcirkel är en cirkel på sfären vars medelpunkt
FK Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00
FK4010 - Elektromagnetism, Fysikum, Stockholms universitet Tentamensskrivning (2:a omtentan), fredag 30 augusti 2013, kl 9:00-14:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror
HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng
Kursnummer: Moment: Program: Rättande lärare: Examinator: Datum: Tid: Hjälpmedel: Omfattning och betygsgränser: TENTAMEN HF0021 Matematik för basår I TEN2 Tekniskt basår Marina Arakelyan, Jonass Stenholm
Teknisk handbok. Relationshandlingar. Allmänna krav på relationshanlingar
Teknisk handbok Relationshandlingar Allmänna krav på relationshanlingar Innehåll 1 Allmänna krav på relationshandlingar 2 1.1 Sammanfattning 2 1.2 Allmänt 2 1.3 Inmätning 2 1.4 Leverans av CAD-filer 2
Tentamen i Linjär algebra, HF1904 Datum: 17 dec 2018 Skrivtid: 14:00-18:00 Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF194 Datum: 17 dec 18 Skrivtid: 14:-18: Lärare: Marina Arakelyan, Elias Said Examinator: Armin Halilovic För godkänt betyg krävs 1 av max 4 poäng Betygsgränser: För betyg A,
Geodesi Vad är geodesi?
L A N T M Ä T E R I E T 1 (9) Geodesi 2012-09-25 Vad är geodesi? Geodesins huvuduppgift är att bestämma punkters koordinatläge på jordytan, deras höjd över havsytan och deras tyngdkraftsvärden. För att
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik
Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik Kapitel 7-0 Version 03-0-8 Geodetisk och fotogrammetrisk mätnings- och beräkningsteknik by Lantmäteriet m.fl. is licensed under a Creative Commons
HMK. Geodesi: Geodetisk infrastruktur. handbok i mät- och kartfrågor
HMK handbok i mät- och kartfrågor Geodesi: Geodetisk infrastruktur 2015 Förord HMK-Geodesi 2015 består av fyra dokument som tillsammans utgör HMK-Geodesi, samt ett femte dokument som tillkommer vid 2016
Umeå universitet Institutionen för geografi och ekonomisk historia UMEÅ
Umeå universitet Institutionen för geografi och ekonomisk historia 901 87 UMEÅ Kodnr: TENTAMEN Samhällsplanering, 15 hp Moment 1: Markanvändning och samhällsplanering 1, 7,5 hp 2015-02-18 Onsdag Kl 09.00-13.00
Den räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.)
TENTAMEN 7-Okt-4, HF6 och HF8 Moment: TEN (Linjär algebra, 4 hp, skriftlig tentamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF6 Klasser: TIELA, TIMEL, TIDAA Tid: 8-, Plats: Campus
Instruktion för inmätning
inmätningsinstruktion_versiondocx Revision 1: Senast reviderad: 2012-02-20 Instruktion för inmätning Instruktion för inmätning av E.ON Värmes Sveriges fjärrvärme-, fjärrkyla- och akviferledningar samt
Kontrollskrivning KS1T
Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger
Lösningsförslag till tentamen TMA043 Flervariabelanalys E2
Lösningsförslag till tentamen TMA4 Flervariabelanalys E2 21-8-1 kl. 8. 12. Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Anders Martinsson, telefon: 7 88 4 Hjälpmedel: bifogat
HANDBOK. till mätningskungörelsen. Geodesi, Stommätning. En handbok utgiven av Lantmäteriverket Gävle 1996 i
HANDBOK till mätningskungörelsen Geodesi, Stommätning En handbok utgiven av Lantmäteriverket Gävle 1996 i Grafisk utformning, Muriel Bjureberg, LMV Layout omslag, Mona Olsson och Muriel Bjureberg, LMV
Den räta linjens ekvation
Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är
Tentamen i Linjär algebra, HF1904 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Linjär algebra, HF94 eempel Datum: Skrivtid: 4 timmar Eaminator: Armin Halilovic För godkänt betg krävs av ma 4 poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, respektive poäng. Komplettering:
Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 1715 kl. 14. - 18. Tentamen Telefonvakt: Jonny Lindström 733 674 MVE475 Inledande Matematisk Analys Tentan rättas och bedöms anonymt. Skriv
Tentamen i Matematisk analys MVE045, Lösningsförslag
Tentamen i Matematisk analys MVE5 26-8-23 Lösningsförslag Kl. 8.3 2.3. Tillåtna hjälpmedel: Mathematics handbook for science and engineering (BE- TA) eller CRC Standard Mathematical Tables. Indexeringar
Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA1 Grundläggande vektoralgebra, TEN5 alt.