Tentamen i Eleffektsystem 2C poäng
|
|
- Ida Nyström
- för 9 år sedan
- Visningar:
Transkript
1 Tentmen i Eleffektytem C40 4 poäng Ondgen 5 december 004 kl (Frågetund: 5.00, 6.00 och 7.30) Hjälpmedel: En hndkriven A4-id, Bet eller Joefon, fickräknre. Endt en uppgift per bld! Teern lämn in tillmmn med vren vid tentmen lut. Uppgift -5 ger mximlt 5p och uppgift 6-0 ger mximlt 5p. För tt få full poäng kräv tt uppgiften är löt och tt löninggången kn följ. För godkänt erfordr 60 poäng.. Betäm medeleffekten om u() t 6,7in( ω t) V = och i() t { u() t} =, 00ign A. (5p). Rit ett virdigrm med ll tre fpänningr och ll tre huvudpänningr på både primär- och ekundäridn v en obeltd Y/D-koppld trnformtor. (5p) 3. En ynkrongenertor till ett vindkrftverk kll prov inför en idrifttgning. Vid provet är mkinen onluten och roterr med vrvtlet 000 r/min. Fälttrömmen (rotortrömmen) är därvid 0 A och pänningen melln två uttg på ttorlindningen hr uppmätt till U h = 75 V. Vrvtlet höj edn till 000 r/min och fälttrömmen höj till 5 A. Betäm U h i dett fll. Förumm inverkn v mättning. (5p) 4. Vid kontruktionen v ett gte-drivdon för IGBT:er i trefväxelriktre vill Oquld betämm den mximl tid om IGBT:n hr TILL- repektive FRÅN-ignl under en cykel v witchfrekvenen. Motiver vrför Oquld då måte vet miniml witchfrekven om drivdonet kll dimenioner för. Motiver ockå vrför Oquld måte t red på det mximl värdet v modultionindex m. (5p) 5. Antg tt reglertyrkn i det Nordik elytemet (Norge, Sverige, Finlnd, Själlnd) är 6000 MW/Hz och tt frekvenen är tbil vid 50.0 Hz. Antg tt det inträffr ett fel på HVDC-överföringen melln Sverige och Polen å tt itället för tt exporter 500 MW till Polen importer 500 MW från Polen. Antg tt ing ndr lt- eller produktionändringr inträffr i det Nordik elytemet. Vd blir den ny frekvenen i ytemet efter det tt primärregleringen återtällt effektblnen? (5p)
2 C , HPN 6. En enftrnformtor om mt med en inuformig 50Hz-pänning är kortluten på ekundäridn. Primärlindningen hr 600 vrv och ekundärlindningen hr 80 vrv. ) Betäm primärpänningen om ekundärtrömmen är 47, A och om kortlutningrektnen edd från ekundäridn är 0,4 Ω. Kortlutningreitnen förumm. (5p) b) Kortlutningen på ekundäridn t bort och itället kortlut primäridn. Sekundärlindningen mt med mm pänning om primärpänningen i ). Betäm ekundärtrömmen i dett fll. (0p) 7. I den här uppgiften kll beräkningr utför på det enkl elytemet i Figur. U Nod Nod Z Z R Följnde är känt: Figur : Ett enkelt elytem Spänningen i den mtnde noden U = kv. Impednen Z = j0. Ω (repreenterr en ledning melln nod och nod ). Impednen Z = j.0 Ω mt reitnen R = Ω (repreenterr en lt) ) Beräkn effektfktorn i nod två där ledningen melln nod och nod nluter till nod mt beräkn hur mycket ktiv effekt om utveckl i lten. (8p) b) En huntkondentor med impednen Z3 = j.0 Ω intller i nod. Hur mycket ktiv effekt utveckl nu i lten? (7p) 8. Ett vit elektrikt drivytem tyr med en princip om bygger på tt mn i vrje ögonblick hr koll på ttorflödevektorn ψ. Mn vill tyr ttorflödet å tt jω ψ ˆ e t = ψ, där ψ ˆ = 3 V och ω = π 30 rd/. För tt kunn ltr dett flöde kräv tt den mtnde växelriktren förer mkinen med rätt pänningvektor. ) Betäm nödvändig u för tt åtdkomm den önkde flödevektorn. Förumm ttorreitnen. (5p) b) Betäm motvrnde pänningvektor i ett koordintytem om är prllellt med ψ. (5p) c) I det roternde koordintytemet i b) är trömmen ˆ e j γ i = i, där i ˆ = 7 A 3 * och γ = 47. Betäm momentet om T = Im { ψ i }. (5p)
3 C , HPN 9. En trefig ynkronmkin mt från en ymmetrik trefig pänningkäll. Fpänningen i f ge v u = 35co( ω t) V och emk:n härrörnde från rotormgnetieringen ge v e = 45co( ω t 7 ) V/f. Den ynkron rektnen är 0 Ω och ttorreitnen är förumbr. ) Hur tor meknik effekt vger eller upptr mkinen på xeln? (5p) b) Ge tidfunktionen för trömmen i f. (0p) 0. Ett elektrikt drivytem kll driv en lt om endt betår v ett tröghetmoment J =,0 kgm. Enligt pecifiktion från en kund k lten vrvtl vrier enligt Ω () t =Ω ˆ co( ω t ), där Ω= ˆ 0 rd/ och ω = π0 rd/. ) Beräkn hur mång grder lten vänger frm och tillbk. (5p) b) Beräkn vilket toppmoment drivytemet kll kunn leverer. (5p) c) Betäm drivytemet medeleffekt och toppeffekt. (5p) 3
4 C , HPN Löningr till tentmen i Eleffektytem C kl 4-9. T / T / () t () t 6,7 6,7 P= u i dt in( t)dt co( t) T / = T / ω = T / ω = ω ,7 = (-co( π )-(-co(0))) = 6,7 = 7,0 W π π. ekundäridn c c b bc b primäridn CA A C AB B BC Ir n Uh = k Ir n Uh = Uh = 75 = 55 V I r n Miniml witchfrekven innebär mximl periodtid för en cykel v witchfrekvenen. När modultionindex närmr ig blir tiden melln två witchningr nätn noll. Det innebär tt nät witchning är nätn en hel cykel enre. Ju högre modultionindex deto längre tid kn en witch lltå behöv vr TILL eller FRÅN. Om mn känner till både miniml witchfrekven och mximlt modultionindex kn mn lltå räkn ut de ökt tidern. T / 5. Direkt efter det tt törningen inträfft finn ett överkott v 000 MW i det nordik elytemet. Efter det tt primärregleringen återtällt effektblnen få frekvenändringen om: f = P/ R, där P är ändringen i effekt och R är reglertyrkn. Alltå f = 000 / Hz. Den ny frekvenen i ytemet efter det tt primärregleringen återtällt effektblnen blir f = = Hz. 6.) 600 U = 47, 0,4 = 40,3 V 80 b) 40,3 I = = 353,3 A 0,4 7. ) Effektfktorn i nod där ledningen melln nod och nod nluter till nod beräkn om co( rg ( U ) rg( I) ). Där U betecknr (den komplex) pänningen i nod och I betecknr trömmen genom ledningen. U j36.87 I = = = = 0.8 j0.6 = e (ka) Z + Z // R j0. + j.0 // j0.6 j0.30 = 0. = 0.( ) = = 0.89 (kv) U U j I j j j e ( ( U ) ( I) ) ( ) co rg rg = co 6.57 =
5 C , HPN Den ktiv effekten om utveckl i lten få om: j0.30 j36.87 j6.57 S = U I = 0.89e e = 0.89e = ( ) ( ) = 0.89co j0.89in 6.57 = j0.4 (MVA) = P+ jq Det vill äg: den ktiv effekten om utveckl i lten är 0.8 MW. b) Effekten beräkn på mm ätt om i uppgift ). U I = = = = 0.96 j0.9 = 0.98e Z+ Z // R// Z3 j0. + j.0 //// j.0 + j0. U = U ji = j0.(0.96 j0.9) = = 0.98e j.3 co( rg ( U ) rg ( I) ) = co ( 0) = Den ktiv effekten om utveckl I lten få om: S = U I = = 0.96 = P+ jq Det vill äg: den ktiv effekten om utveckl i lten är 0.96 MW. Vilket till lut innebär tt den ktiv effektutvecklingen ökr med 0.6 MW j.3 8.) b) u dψ = = ωψˆ = = dt jωt jωt j( ωt+ π /) j e jπ30 3 e 36 e V x u = u e = j = jπ30 3 = j36 V -jωt ˆ ωψ c) I det roternde koordintytemet erhåll 3 3 { * } { ˆ 3 3 j γ T = Im ψ Im ˆ e } ˆ ˆ i = ψ i = ψ i in( γ) = 3 7 0, 73 = 3,3 Nm 9.) 3EU P = in( δ ) = in(7 ) = 595 W X 0 Mkinen vger denn effekt på xeln. b) X I E U δ I ϕ ( δ ) ( δ ) XI= Uin( ) + E U co( ) = = 99, 7 V I = 99,7 /0 = 9,97 A P 595 P= 3UIco( ϕ) co( ϕ) = = = 0,8604 ϕ =± 30,6 3UI 3 9,8 9,97 Tecknet på ϕ erhåll ur virdigrmmet. i = 9,97 co( ωt+ 30,6 ) = 4, co( ωt+ 30,6 ) A 5
6 C , HPN 0.) dθ ˆ ˆ ˆ ˆ Ω 0 Ω= Ω= ωθ θ = = = 0,59 rd = 9, dt ω π0 Lten vänger lltå frm och tillbk ± 9,. d Ω b) T = J = JωΩˆ in( ωt) Tˆ = JωΩ= ˆ π0 0 = 68 Nm dt c) p =Ω T Tidfunktionern för Ω och T är känd vför ˆ ˆ co( ) ( ˆ JωΩ p =Ω ωt JωΩ in( ωt)) = in( ωt) Effekten vrierr lltå inuformigt med vinkelfrekvenen ω. Medeleffekten blir lltå noll. JωΩˆ π0 0 Toppeffekten blir pˆ = = = 34 = 3,4 kw 6
Montage-, drift- och underhållsanvisning för brand-/brandgasspjäll FK-SE
TROX Sverige AB Johnnelundvägen 3 SE-194 61 Upplnd Väby Telefon: +46 (0)8 594 114 70 Fx: +46 (0)8 594 114 71 e-mil info@trox.e www.trox.e Montge-, drift- och underhållnvining för brnd-/brndgpjäll Montge-,
Ett förspel till Z -transformen Fibonaccitalen
Ett förspel till Z -trnsformen Fibonccitlen Leonrdo Pisno vnligen klld Leonrdo Fiboncci, den knske störste mtemtiker som Europ frmburit före renässnsen skrev år 10 en bok (Liber bci) i räknelär. J, fktiskt.
0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.
Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.
Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1013 2013-06-03
Tentamen del 2 i kuren Elintallation, begränad behörighet ET1013 2013-06-03 Tentamen omfattar 60 poäng. För godkänd tentamen kräv 30 poäng. Tillåtna hjälpmedel är räknedoa amt bifogad formelamling Beräkningar
Reglerteknik M3, 5p. Tentamen 2008-08-27
Reglerteknik M3, 5p Tentamen 2008-08-27 Tid: 08:30 12:30 Lokal: M-huset Kurskod: ERE031/ERE032/ERE033 Lärare: Knut Åkesson, tel 0701-749525 Läraren besöker tentamenssalen vid två tillfällen för att svara
Onsdagen den 16 mars 2005, 8:00 13:00
Onsdagen den 16 mars 2005, 8:00 13:00 Tentamen omfattar fem uppgifter och till samtliga skall fullständiga lösningar lämnas. Maximal poäng per uppgift är 5. Godkänt garanteras på 11 poäng. Som hjälpmedel
LINJÄR ALGEBRA II LEKTION 1
LINJÄR ALGEBRA II LEKTION JOHAN ASPLUND INNEHÅLL. VEKTORRUM OCH DELRUM Hel kursen Linjär Algebr II hndlr om vektorrum och hur vektorrum (eller linjär rum, som de iblnd klls) beter sig. Tidigre hr mn ntgligen
TATA42: Tips inför tentan
TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så
100318/Thomas Munther IDE-sektionen/Högskolan i Halmstad. Formelsamling Reglerteknik
38/Thoms Munther IDE-sektionen/Högskoln i Hlmstd Formelsmling Reglerteknik Smbnd melln stegsvr och överföringsfunktion ( insignlen u är nedn ett steg med mplitud = som pplicers vid t=, där är llmänt y/
insignal H = V ut V in
1 Föreläsning 8 och 9 Hambley avsnitt 5.56.1 Tvåport En tvåport är en krets som har en ingångsport och en gångsport. Den brukar ritas som en låda med ingångsporten till vänster och gångsporten till höger.
Betongkonstruktion Facit Övningstal del 1 Asaad Almssad i samarbete med Göran Lindberg
Böjning ÖVNING 1 Bestäm M Rd Betong C30/37 XC3 vct ekv = 0,50 L100 Stenmax = 12 mm 4ϕ16 A s = 4 201 = 804 mm 2 Täckskikt: ϕ16 C nom = c min +Δc dev, Δc dev = 10 mm C min = max (c min,b, c min,dur, 10 mm)
PASS 1. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL
PASS. RÄKNEOPERATIONER MED DECIMALTAL OCH BRÅKTAL. Tl, bråktl och decimltl Vd är ett tl för någonting? I de finländsk fmiljern brukr det vnligtvis finns två brn enligt Sttistikcentrlen (http://www.tilstokeskus.fi/tup/suoluk/suoluk_vesto_sv.html).
Frågor för tentamen EXTA50 Samhällsmätning, 9 hp, kl januari, 2015.
FÖRSÄTTSBLAD Institutionen för Nturgeogrfi och Ekosystemvetenskper Institutionen för Teknik och Smhälle Frågor för tentmen EXTA50 Smhällsmätning, 9 hp, kl. 8-13 12 jnuri, 2015. Denn tentmen rätts nonymt.
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)
Finaltävling den 20 november 2010
SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning
SF1625 Envariabelanalys
SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen
= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.
Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl 14-19 Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ
CHECKLISTA FÖR PERSONALRUM
CHECKLISTA FÖR PERSONALRUM Checklistn är ett hjälpmedel både vid plnering v ny personlrum och vid genomgång v befintlig personlutrymmen. Den innehålller bl frågor om klädrum, torkskåp och torkrum, tvätt-
TENTAMENSUPPGIFTER I ELEKTROTEKNIK MED SVAR
ELEKTOTEKNIK Inlämningstid Kl: 1 MSKINKONSTUKTION KTH TENTMENSUPPGIFTE I ELEKTOTEKNIK MED SV Elektroteknik MF117 11 1 18 Kl: 14: 17: För godkänt fordras c:a 5% av totalpoängen. Du får lämna salen tidigast
Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg)
Dagens tema Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Fasplan(-rum), trajektorier, fasporträtt ZC sid 340-1, ZC10.2 Definitioner: Lösningarna
Facit - Tänk och Räkna 4a
Vår tl Fit Tänk oh Räkn 9 9 69 996, 997, 998 998, 999, 000 6 6699, 6700, 670, 670, 670, 670 67 m, 67 m, 67 m 800 m, 900 m, 000 m 900 m, 90 m, 90 m NAF 06 7 9 d 6 8 e 7 76 f 8 8 d 6 e 0 f 8 9 7 8 88 d 80
M6410C,L / M7410C Öka / minska ställdon
M8, UEC.13 M6410C,L / M7410C Ök / minsk ställdon SLGLÄNGD 6.5MM PRODUKTINFORMTION ESKRIVNING Kompkt design vilket möjliggör instlltion i trång utrymmen Lång livslängd Låg energiförrukning Visuell indikering
Geometrisk optik F7 Reflektion och brytning F8 Avbildning med linser och speglar. Optiska system optiska instrument. Avbildning. Parallella strålar
Optisk system optisk instrument Geometrisk optik F7 elektion oc rytning F8 Avildning med linser oc speglr Optisk system F9 Optisk instrument 1 2 Optisk system optisk instrument epetition: Avildning i särisk
Kylfrysguide [Namn] Elektroskandia Sverige AB [år-månad-dag]
Kylfrysguide [Nmn] Elektroskndi Sverige AB [år-månd-dg] Kylfrysguide Vilken kyl-frys sk du välj? Nturligtvis är det utrymmet som är det först tt t hänsyn till. Vnligst instlltionsbredd är 60 cm, men även
4 Signaler och system i frekvensplanet Övningar
Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern
Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.
KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer
TENTAMENSUPPGIFTER I ELEKTROTEKNIK MED SVAR
ELEKTROTEKNIK Inlämningstid Kl: 1 MSKINKONSTRUKTION KTH TENTMENSUPPGIFTER I ELEKTROTEKNIK MED SVR Elektroteknik MF1017 013 10 31 Kl: 14:00 17:00 Du får, som hjälpmedel, använda räknedosa, kursens lärobok
Elektriska kretsar - Likström och trefas växelström
Elektriska kretsar - Likström och trefas växelström Syftet med laborationen är att du ska få en viss praktisk erfarenhet av hur man hanterar enkla elektriska kopplingar. Laborationen ska också öka din
Asynkronmotorn. Asynkronmotorn. Den vanligaste motorn i industrin Alla effektklasser, från watt till megawatt Typiska användningsområden
Asynkronmotorn Asynkronmotorn Den vanligaste motorn i industrin Alla effektklasser, från watt till megawatt Typiska användningsområden Fläktar Pumpar Transportband Verktygsmaskiner Asynkronmotorns elanvändning
WALLENBERGS FYSIKPRIS 2014
WALLENBERGS FYSIKPRIS 2014 Tävlingsuppgifter (Finaltävlingen) Riv loss detta blad och lägg det överst tillsammans med de lösta tävlingsuppgifterna i plastmappen. Resten av detta uppgiftshäfte får du behålla.
Tentamen i FysikB IF0402 TEN2:3 2010-08-12
Tentamen i FysikB IF040 TEN: 00-0-. Ett ekolod kan användas för att bestämma havsdjupet. Man sänder ultraljud med frekvensen 5 khz från en båt. Ultraljudet reflekteras mot havets botten. Tiden det tar
Grundläggande ellära - - 1. Induktiv och kapacitiv krets. Förberedelseuppgifter. Labuppgifter U 1 U R I 1 I 2 U C U L + + IEA Lab 1:1 - ETG 1
IEA Lab 1:1 - ETG 1 Grundläggande ellära Motivering för laborationen: Labmomenten ger träning i att koppla elektriska kretsar och att mäta med oscilloskop och multimetrar. Den ger också en koppling till
Monteringsanvisning. Bakåtvänd montering. Godkänd höjd 61-105 cm. Maximal vikt 18 kg. UN regulation no. R129 i-size. Ålder 6 mån - 4 år. 1 a.
1 6 d c e Monteringsnvisning f h g i j k l m 7 8 10 2 3 9 c e d Bkåtvänd montering Godkänd höjd 61-105 cm 4 5 11 12 Mximl vikt 18 kg Ålder 6 mån - 4 år UN regultion no. R129 i-size 8 9 Tck för tt du vlde
Stål Textil Stål Textil. A har komparativa fördelar för T, B för Stål, A exporterar T, B exporterar S.
Uppgift 1 a) Uppgifter om produktion per timme ger nedanstående: Antal timmar/enhet: Alternativkostnader Stål Textil Stål Textil A 0,5 0,2 2,5T 0,4S B 0,1 0,05 2T 0,5S A har komparativa fördelar för T,
Föreläsning 7: Trigonometri
ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi
Induktion LCB 2000/2001
Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n
En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning.
F5 LE1460 Analog elektronik 2005-11-23 kl 08.15 12.00 Alfa En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning. ( Impedans är inte samma sak som resistans. Impedans
SF1625 Envariabelanalys
Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En
Lösningsförslag till Problem i kapitel 3 i Mobil Radiokommunikation
Lösningsförslag till Problem i kapitel 3 i Mobil Radiokommunikation 3.1 En mottagarantenn med 50 Ω matningsimpedans och 10 db antennförstärkning befinner sig i ett fält med styrkan 75 dbµv/m vid frekvensen
Tenta Elektrisk mätteknik och vågfysik (FFY616) 2013-12-19
Tenta Elektrisk mätteknik och vågfysik (FFY616) 013-1-19 Tid och lokal: Torsdag 19 december kl. 14:00-18:00 i byggnad V. Examinator: Elsebeth Schröder (tel 031 77 844). Hjälpmedel: Chalmers-godkänd räknare,
Addition och subtraktion
Sidor i boken 35-39 Addition och subtrktion Vi börjr med lite ritmetik. Heltlsddition innebär ing som helst problem. Här tr vi lämpligen räknedosn till hjälp. Eempel. 3+00+5 = 7 Så länge ll nämnre är lik
Föreläsning 7b. 3329 Längdskalan är L = 2 3
Föreläsning 7b 3329 Längdskln är L = 2 3 eller 2 : 3 som det oft skrivs i smbnd med krtor. Från teorin får vi tt A, reskln är längdskln i kvdrt det vill säg A = L 2. I denn uppgift ger det A = ( ) 2 2
3.1.1 3.1.2. Lösningar elektrisk mätteknik
3.1.1 a) Instrument 2,3 och 4. b) 1. Instrumentet visar medelvärdet av signalen, alltså A. 2. Instrumentet likriktar signalen och multiplicerar medelvärdet av den likriktade signalen med formfaktorn för
StyleView Scanner Shelf
StyleView Scnner Shelf User's Guide Mximl vikt: 2 ls ( kg) SV-vgn & Huvud-enhet Alterntiv - LCD-vgnr Alterntiv 2 - Lptop-vgnr Alterntiv 3 - Väggspår Alterntiv 4 - Bksid v SV-vgn 3 6 7 Reduce Reuse Recycle
Tentamen i EJ1200 Eleffektsystem, 6 hp
Elektro- och ytemteknik Elektrika makiner och effektelektronik Stefan Ötlund 7745 Tentamen i EJ Eleffektytem, 6 hp Den 7 december, 4.-9. Räknedoa och matematik handbok (Beta) får använda. Tentamen kan
19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3
Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i
TORKEL 840 /860. g GE Energy Services Programma Products. Batteriurladdare TORKEL 840/860
TORKEL 840 /860 Batteriurladdare Batterierna i kraftverk och transformatorstationer ska förse anläggningarna med reservkraft vid nätavbrott. Tyvärr kan batteriernas kapacitet minska innan de nått den beräknade
Kretsprocesser. För att se hur långt man skulle kunna komma med en god konstruktion skall vi ändå härleda verkningsgraden i några enkla fall.
Kretsrocesser Termodynamiken utvecklades i början för att förstå hur bra man kunde bygga olika värmemaskiner, hur man skulle kunna öka maskinernas verkningsgrad d v s hur mycket mekaniskt arbete som kunde
Komplexa tal. j 2 = 1
Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1
Elektriska kretsar - Likström och trefas växelström
Elektriska kretsar - Likström och trefas växelström Syftet med laborationen är att du ska få en viss praktisk erfarenhet av hur man hanterar enkla elektriska kopplingar. Laborationen ska också öka din
Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.
Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan
ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
Övningar för finalister i Wallenbergs fysikpris
Övningar för finalister i Wallenbergs fysikpris 0 mars 05 Läsa tegelstensböcker i all ära, men inlärning sker som mest effektivt genom att själv öva på att lösa problem. Du kanske har upplevt under gymnasiet
Kurvlängd och geometri på en sfärisk yta
325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,
Tentamen i Krets- och mätteknik, fk - ETEF15
Tentamen i Krets- och mätteknik, fk - ETEF15 Institutionen för elektro- och informationsteknik LTH, Lund University 2015-10-29 8.00-13.00 Uppgifterna i tentamen ger totalt 60. Uppgifterna är inte ordnade
14. Potentialer och fält
4. Potentialer och fält [Griffiths,RMC] För att beräkna strålningen från kontinuerliga laddningsfördelningar och punktladdningar måste deras el- och magnetfält vara kända. Dessa är i de flesta fall enklast
Gustafsgårds åldringscentrum Ålderdomshem Dagverksamhet Servicecentral
Gustfsgårds åldringscentrum Ålderdomshem Dgverksmhet Servicecentrl 1 På Gustfsgård uppskttr mn följnde sker: invånres välmående ett gott liv ktivt smrbete med de nhörig kompetens i gerontologisk vård personlens
Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer
Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel
temaunga.se EUROPEISKA UNIONEN Europeiska socialfonden
temung.se T E M AG RU P P E N U N G A I A R B E T S L I V E T n n u k k s g n u r All e d u t s r e l l e b job EUROPEISKA UNIONEN Europeisk socilfonden »GÅ UT GYMNASIET«Mång ung upplever stress och tjt
Gör slag i saken! Frank Bach
Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn
Föreskrift. om nyckeltal för elnätsverksamheten och deras publicering. Utfärdad i Helsingfors den 21 december 2011
dnr 963/002/2011 Föreskrift om nyckeltal för elnätsverksamheten och deras publicering Utfärdad i Helsingfors den 21 december 2011 Energimarknadsverket har med stöd av 3 kap. 12 3 mom. i elmarknadslagen
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n, 18 DECEMBER 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1
UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs
40 V 10 A. 5. a/ Beräkna spänningen över klämmorna AB! µu är en beroende spänningskälla. U får inte ingå i svaret.
Exempelsamling 1. Likström mm 1. a/ educera nedanstående nät så långt som möjligt! 100 Ω 100 Ω 100 Ω 50 Ω 50 Ω 50 Ω b/ educera källorna anslutna till punkterna AB resp. D, men behåll de ursprungliga resistanserna!
Sidor i boken
Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer
9. Vektorrum (linjära rum)
9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,
Möbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
Tentamen den 22 mars 2003 Elkraftteknik och kraftelektronik TEL202
Karlstads universitet / Avd för elektroteknik / Elkraftteknik TEL202 / Tentamen / 030322 / BHä 1 (5) Tentamen den 22 mars 2003 Elkraftteknik och kraftelektronik TEL202 Examinator och kursansvarig: Bengt
Skriv tydligt! Uppgift 1 (5p)
1(1) IF1611 Ingenjörsmetodik för IT och ME, HT 1 Tentmen Gäller även studenter som är registrerde på B1116 Torsdgen den 1 okt, 1, kl. 14.-19. Skriv tydligt! Skriv nmn och personnummer på ll inlämnde ppper!
Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15
Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt
Lamellgardin. Nordic Light Luxor INSTALLATION - MANÖVRERING - RENGÖRING
INSTALLATION - MANÖVRERING - RENGÖRING Se till tt lmellgrdinen fästes i ett tillräckligt säkert underlg. Ev motor och styrutrustning skll instllers v behörig elektriker. 1 Montering Luxor monters med de
9. Bestämda integraler
77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln
Mälardalens högskola Akademin för utbildning, kultur och kommunikation
Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkl ÖVN Lösningsförslag 0.04.0 4.0 6.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna
Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:...
Reglerteknik M3 Inlämningsuppgift 3 Lp II, 006 Namn:... Personnr:... Namn:... Personnr:... Uppskattad tid, per person, för att lösa inlämningsuppgiften:... Godkänd Datum:... Signatur:... Påskriften av
Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017
KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,
Växelström ~ Växelström. Belastad växelströmskrets. Belastad växelströmskrets. Belastad växelströmskrets. Belastad växelströmskrets
Växelström http://www.walter-fendt.de/ph11e/generator_e.htm http://micro.magnet.fsu.edu/electromag/java/generator/ac.html Växelström e = ê sin(ωt) = ê sin(πft) = ê sin(π t) T e = momentan källspänning
============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.
GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet
Mat-1.1510 Grundkurs i matematik 1, del III
Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))
Diffraktion och interferens
Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att
Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.
Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.
Hårdmagnetiska material / permanent magnet materials
1 Hårdmagnetika material / permanent magnet material agnetiera fört med tort magnetfält H 1 (ofta pulat), när det yttre fältet är bortaget finn fortfarande det avmagnetierande fältet H d och materialet
FOURIERANALYS En kort introduktion
FOURIERAALYS En kort introduktion Kurt Hansson 2009 Innehåll 1 Signalanalys 2 2 Periodiska signaler 2 3 En komplex) skalärprodukt 4 4 Fourierkoefficienter 4 5 Sampling 5 5.1 Shannon s teorem.................................
Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.
KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan
Tentamen ellära 92FY21 och 27
Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C1035, 4C1012) den 4 juni 2007
Tentmen i Hållfsthetslär gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1020, 4C105, 4C1012) den 4 juni 2007 Resultt finns tillgänglig på Min Sidor senst den 19 juni 2007 kl. 1. Klgomål på rättningen skll vr frmförd
Internetförsäljning av graviditetstester
Internetförsäljning v grviditetstester Mrkndskontrollrpport från Enheten för medicinteknik 2010-05-28 Postdress/Postl ddress: P.O. Box 26, SE-751 03 Uppsl, SWEDEN Besöksdress/Visiting ddress: Dg Hmmrskjölds
Uppsala Universitet Matematiska Institutionen T Erlandsson
Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.
Tvärfallet begränsas av glidningsrisker vid halt väglag, av sidkrafternas storlek och av risker vid passager av brytpunkter, t ex vid omkörning.
8 Tvärfall Med tvärfall avses vägbanans lutning i tvärled. Lutningen anges i förhållande till horisontalplanet. Tvärfallet kan göras dubbelsidigt, s.k. takform, eller enkelsidigt. Enkelsidigt tvärfall
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6
Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva
Elektroteknik MF1016 föreläsning 11 Permanetmagnet Synkronmotor
Elektroteknik MF1016 föreläsning 11 Permnetmgnet Synkronmotor (I oken 7. 8 PM-synkronmotorn) Likheter oh skillnder med likströmsmskinen Enfsig modell (klls även per fs modell ) Ström oh moment Vrvtl oh
IEA 1. En tvåpol sett utifrån från lasten - karakteriseras av tomgångsspänning E t., inre impedans Z i
IEA 1 Lösning EoE 00 05 31 tl 1 En tvåpol sett utifrån från lsten krkterisers v tomgångsspänning E t, inre impedns Z i och kortslutningsström I k Med utgångspunkt från dess prmetrr kn vi bygg ekvivlenter
Ö 1:1 U B U L. Ett motstånd med resistansen 6 kopplas via en strömbrytare till ett batteri som spänningskälla som figuren visar.
Ö : Ett motstånd med resistansen 6 kopplas via en strömbrytare till ett batteri som spänningskälla som figuren visar B L Spänningskällan ger spänningen V Brytaren är öppen som i figuren a) Beräkna strömmen
TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M
TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M 2012-01-13 Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv
Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1
F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentmen i Elektromgnetisk fältteori för π3 (ETEF01) och F3 (ETE055) Ti och plts: 3 jnuri, 017, kl. 14.00 19.00, lokl: Sprt B för F och E3139 för Pi. Kursnsvrig lärre: Aners Krlsson, tel. 40 89.
Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3
Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.
KOORDINATVEKTORER. BASBYTESMATRIS
Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme
SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013
SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre
Byt till den tjocka linsen och bestäm dess brännvidd.
LINSER Uppgit: Mteriel: Teori: Att undersök den rytnde örmågn hos olik linser och tt veriier linsormeln Ljuskäll och linser ur Optik-Elin Med hjälp v en lmp och en ländre med ler öppningr år vi ler ljusstrålr,